Web-Based Real-Time Alarm and Teleoperation System for Autonomous Navigation Failures Using ROS 1 and ROS 2
Abstract
:1. Introduction
- A frontend framework for ROS 1 and ROS 2 that enables users to access real-time sensor and environmental data, including the robot’s trajectory, area mapping, camera inputs, position, and both linear and rotational speed.
- An alarm system that monitors: (a) the vibration and inclination thresholds of the robot, caused by irregular terrain or climbing attempts that may compromise its stability, and (b) the distance thresholds between the robot and nearby objects, indicating potential collisions. Alerts are displayed on the web interface and joystick, with increasing vibrations signaling anomalies, ensuring the operator receives timely notifications about critical events.
- Simulations and experiments involving the web interface and joystick design, which enable increased vibration feedback based on alarms triggered during navigation tasks.
2. Related Work
3. Problem Formulation and Teleoperation System
3.1. Risky Cases
3.2. Teleoperation System Architecture
4. Software Design
4.1. Definition of the ROS Environment
4.2. Proximity Alarm Function
Algorithm 1 Proximity Alarm Function |
|
4.3. Stability Alarm Implementation
Algorithm 2 Stability Alarm Function with Oscillation Check |
|
4.4. Design and Connection Between ROS and the Web Interface
5. Haptic Joystick Design
5.1. Joystick Electronic and Control System Design
Algorithm 3 Joystick operation |
|
5.2. Joystick–Robot Vinculation
Algorithm 4 Joystick and Ghrapical Interface ROS Vinculation |
|
6. Simulation and Experiments
6.1. System Adaptation to Sudden Environmental Changes and Failures
6.2. Simulated Environment
6.3. Experimental Results
6.4. Latency Analysis in Simulation and Real-World Experiments
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gul, F.; Mir, I.; Mir, S. Efficient environment exploration for multi agents: A novel framework. In Proceedings of the AIAA SCITECH 2023 Forum, Online, 23–27 January 2023; p. 1088. [Google Scholar]
- Zhao, T.; Li, P.; Yuan, Y.; Zhang, L.; Zhao, Y. Trajectory Re-Planning and Tracking Control for a Tractor–Trailer Mobile Robot Subject to Multiple Constraints. Actuators 2024, 13, 109. [Google Scholar] [CrossRef]
- Jeon, J.; Jung, H.r.; Luong, T.; Moon, H. Task-Motion Planning System for Socially Viable Service Robots Based on Object Manipulation. Biomimetics 2024, 9, 436. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Mei, G.; Yuan, X.; Wang, L.; Wang, Z.; Wang, J. Visual SLAM for robot navigation in healthcare facility. Pattern Recognit. 2021, 113, 107822. [Google Scholar] [PubMed]
- Kim, P.; Chen, J.; Kim, J.; Cho, Y.K. SLAM-driven intelligent autonomous mobile robot navigation for construction applications. In Proceedings of the Advanced Computing Strategies for Engineering: 25th EG-ICE International Workshop 2018, Lausanne, Switzerland, 10–13 June 2018; Proceedings, Part I 25. Springer: Cham, Switzerland, 2018; pp. 254–269. [Google Scholar]
- Pico, N.; Soriano, D.; Auh, E.; Velasquez, W.; Shin, J.; Moon, H. Accurate Stair Measurement Method for Autonomous Robot Navigation using RGB-D Camera. In Proceedings of the 2024 24th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 29 October–1 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1567–1572. [Google Scholar]
- Pico, N.; Montero, E.; Vanegas, M.; Erazo Ayon, J.M.; Auh, E.; Shin, J.; Doh, M.; Park, S.H.; Moon, H. Integrating Radar-Based Obstacle Detection with Deep Reinforcement Learning for Robust Autonomous Navigation. Appl. Sci. 2024, 15, 295. [Google Scholar] [CrossRef]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human motion trajectory prediction: A survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Auh, E.; Jung, H.; Pico, N.; Choi, H.; Koo, J.; Moon, H. Model Predictive Contouring Control for Four-Wheel Independent Steering and Driving Mobile Robots. In Proceedings of the 2024 IEEE International Conference on Real-time Computing and Robotics (RCAR), Alesund, Norway, 24–28 June 2024; pp. 259–264. [Google Scholar] [CrossRef]
- Canaza Ccari, L.F.; Adrian Ali, R.; Valdeiglesias Flores, E.; Medina Chilo, N.O.; Sulla Espinoza, E.; Silva Vidal, Y.; Pari, L. JVC-02 Teleoperated Robot: Design, Implementation, and Validation for Assistance in Real Explosive Ordnance Disposal Missions. Actuators 2024, 13, 254. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Ding, L.; Wang, J.; Gao, H.; Deng, Z. Teleoperation of wheeled mobile robot with dynamic longitudinal slippage. IEEE Trans. Control Syst. Technol. 2022, 31, 99–113. [Google Scholar] [CrossRef]
- Grabowski, A.; Jankowski, J.; Wodzyński, M. Teleoperated mobile robot with two arms: The influence of a human-machine interface, VR training and operator age. Int. J. Hum.-Comput. Stud. 2021, 156, 102707. [Google Scholar]
- Fine, T.; Zaidner, G.; Shapiro, A. Grasping assisting algorithm in tele-operated robotic gripper. Appl. Sci. 2021, 11, 2640. [Google Scholar] [CrossRef]
- Thrun, S. Probabilistic algorithms in robotics. Ai Mag. 2000, 21, 93. [Google Scholar]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar]
- Ebadi, K.; Bernreiter, L.; Biggie, H.; Catt, G.; Chang, Y.; Chatterjee, A.; Denniston, C.E.; Deschênes, S.P.; Harlow, K.; Khattak, S.; et al. Present and future of slam in extreme environments: The darpa subt challenge. IEEE Trans. Robot. 2023, 40, 936–959. [Google Scholar]
- Wong, C.; Yang, E.; Yan, X.T.; Gu, D. An overview of robotics and autonomous systems for harsh environments. In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Sun, Y.; Ren, D.; Lian, S.; Fu, S.; Teng, X.; Fan, M. Robust path planner for autonomous vehicles on roads with large curvature. IEEE Robot. Autom. Lett. 2022, 7, 2503–2510. [Google Scholar]
- Alakshendra, V.; Chiddarwar, S.S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn. 2017, 87, 2147–2169. [Google Scholar] [CrossRef]
- Cui, M.; Liu, W.; Liu, H.; Jiang, H.; Wang, Z. Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties. Nonlinear Dyn. 2016, 83, 667–683. [Google Scholar]
- Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691. [Google Scholar]
- Montero, E.; Ghergherehchi, M.; Song, H.S. Memory-driven deep-reinforcement learning for autonomous robot navigation in partially observable environments. Eng. Sci. Technol. Int. J. 2025, 62, 101942. [Google Scholar]
- Pico, N.; Montero, E.; Amirbek, A.; Auh, E.; Jeon, J.; Alvarez-Alvarado, M.S.; Jamil, B.; Algabri, R.; Moon, H. Human and environmental feature-driven neural network for path-constrained robot navigation using deep reinforcement learning. Eng. Sci. Technol. Int. J. 2025, 64, 101993. [Google Scholar]
- Galarza, B.R.; Ayala, P.; Manzano, S.; Garcia, M.V. Virtual reality teleoperation system for mobile robot manipulation. Robotics 2023, 12, 163. [Google Scholar] [CrossRef]
- Li, S.; Jiang, J.; Ruppel, P.; Liang, H.; Ma, X.; Hendrich, N.; Sun, F.; Zhang, J. A mobile robot hand-arm teleoperation system by vision and imu. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 10900–10906. [Google Scholar]
- Penizzotto, F.; Slawinski, E.; Mut, V. Analysis and experimentation of a mobile robot teleoperation system over internet. IEEE Lat. Am. Trans. 2014, 12, 1191–1198. [Google Scholar]
- Szymańska, E.; Petrović, L.; Marković, I.; Petrović, I. Mobile robot teleoperation via Android mobile device with UDP communication. In Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1143–1148. [Google Scholar]
- Adamides, G.; Christou, G.; Katsanos, C.; Xenos, M.; Hadzilacos, T. Usability guidelines for the design of robot teleoperation: A taxonomy. IEEE Trans. Hum.-Mach. Syst. 2014, 45, 256–262. [Google Scholar] [CrossRef]
- Wijayasinghe, I.B.; Saadatzi, M.N.; Peetha, S.; Popa, D.O.; Cremer, S. Adaptive Interface for Robot Teleoperation using a Genetic Algorithm. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; pp. 50–56. [Google Scholar] [CrossRef]
Version | LiDAR | Camera | Joystick | ||||
---|---|---|---|---|---|---|---|
Time (s) | Latency | Time (s) | Latency | Time (s) | Latency | ||
SIM | ROS 1 - Web | 60.0324 | 0.0123 | 60.1821 | 0.0958 | 60 | 0.0009 |
ROS 2 - Web | 60.0238 | 0.0105 | 60.4245 | 0.1581 | 60 | 0.0080 | |
REAL | ROS 1 - Web | 60.3155 | 0.04992 | 60.1964 | 0.0971 | 60 | 0.0036 |
ROS 2 - Web | 60.1648 | 0.04243 | 60.2254 | 0.15199 | 60 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pico, N.; Mite, G.; Morán, D.; Alvarez-Alvarado, M.S.; Auh, E.; Moon, H. Web-Based Real-Time Alarm and Teleoperation System for Autonomous Navigation Failures Using ROS 1 and ROS 2. Actuators 2025, 14, 164. https://doi.org/10.3390/act14040164
Pico N, Mite G, Morán D, Alvarez-Alvarado MS, Auh E, Moon H. Web-Based Real-Time Alarm and Teleoperation System for Autonomous Navigation Failures Using ROS 1 and ROS 2. Actuators. 2025; 14(4):164. https://doi.org/10.3390/act14040164
Chicago/Turabian StylePico, Nabih, Giovanny Mite, Daniel Morán, Manuel S. Alvarez-Alvarado, Eugene Auh, and Hyungpil Moon. 2025. "Web-Based Real-Time Alarm and Teleoperation System for Autonomous Navigation Failures Using ROS 1 and ROS 2" Actuators 14, no. 4: 164. https://doi.org/10.3390/act14040164
APA StylePico, N., Mite, G., Morán, D., Alvarez-Alvarado, M. S., Auh, E., & Moon, H. (2025). Web-Based Real-Time Alarm and Teleoperation System for Autonomous Navigation Failures Using ROS 1 and ROS 2. Actuators, 14(4), 164. https://doi.org/10.3390/act14040164