Nematode–Microbe Complexes in Soils Replanted with Apple
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Soil Sample Collection and Nematode Extraction
2.2. Characterization of the Nematode Diversity
2.3. Characterization of the Nematode-Associated Microbial Diversity
2.4. Sequence Analysis
2.5. Statistical Analyses
3. Results
3.1. Reduction in Apple Plant Growth after Repeated Replanting
3.2. Nematode Community Structure in Replanted and Control Plots
3.3. Nematode-Associated Fungi in Replanted and Control Plots
3.4. Nematode-Associated Bacteria in Replanted and Control Plots
3.5. CCA Analysis of the Associations of OTU Abundance and Root Weight
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klaus, H. Das Problem der Bodenmüdigkeit unter Berücksichtigung des Obstbaus. Landw. Jahrb. 1939, 89, 413–459. [Google Scholar]
- Von Bronsart, H. Der heutige Stand unseres Wissens von der Bodenmüdigkeit. Z. Für Pflanz. Düngung Bodenkd. 1949, 45, 166–193. [Google Scholar] [CrossRef]
- Oostenbrink, M.; Hoestra, H. Nematode damage and “specific sickness” in Rosa, Malus and Laburnum. Tijdschr. Plantenziekten 1961, 67, 264–272. [Google Scholar]
- Pitcher, R.S.; Way, D.W.; Savory, B.M. Specific replant diseases of apple and cherry and their control by soil fumigation. J. Hort. Sci. 1966, 41, 379–396. [Google Scholar] [CrossRef]
- Grunewaldt-Stöcker, G.; Mahnkopp, F.; Popp, C.; Maiss, E.; Winkelmann, T. Diagnosis of apple replant disease (ARD): Microscopic evidence of early symptoms in fine roots of different apple rootstock genotypes. Sci. Hortic. 2019, 243, 583–594. [Google Scholar] [CrossRef]
- Mazzola, M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 1998, 88, 930–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, W.F.; Abawi, G.S. Controlling replant diseases of pome and stone fruits in Northeastern United States by preplant fumigation. Plant Dis. 1981, 65, 859–864. [Google Scholar] [CrossRef]
- Mai, W.F.; Merwin, I.A.; Abawi, G.S. Diagnosis, etiology and management of replant disorders in New York cherry and apple orchards. Acta Hortic. 1994, 363, 33–42. [Google Scholar] [CrossRef]
- Winkelmann, T.; Smalla, K.; Amelung, W.; Baab, G.; Grunewaldt-Stöcker, G.; Kanfra, X.; Meyhöfer, R.; Reim, S.; Schmitz, M.; Vetterlein, D.; et al. Apple replant disease: Causes and mitigation strategies. Curr. Issues Mol. Biol. 2019, 30, 89–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, B.; Smalla, K.; Winkelmann, T. Evaluation of apple replant problems based on different soil disinfection treatments—links to soil microbial community structure? Plant Soil 2013, 366, 617–631. [Google Scholar] [CrossRef]
- Weiß, S.; Liu, B.; Reckwell, D.; Beerhues, L.; Winkelmann, T. Impaired defense reactions in apple replant disease-affected roots of Malus domestica ‘M26’. Tree Physiol. 2017, 37, 1672–1685. [Google Scholar] [CrossRef] [PubMed]
- Manici, L.M.; Kelderer, M.; Caputo, F.; Saccà, M.L.; Nicoletti, F.; Topp, A.R.; Mazzola, M. Involvement of Dactylonectria and Ilyonectria spp. in tree decline affecting multi-generation apple orchards. Plant Soil 2018, 425, 217–230. [Google Scholar] [CrossRef]
- Weiß, S.; Bartsch, M.; Winkelmann, T. Transcriptomic analysis of molecular responses in Malus domestica ‘M26′ roots affected by apple replant disease. Plant Mol. Biol. 2017, 94, 303–318. [Google Scholar] [CrossRef]
- Tewoldemedhin, Y.T.; Mazzola, M.; Labuschagne, I.; McLeod, A. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biol. Biochem. 2011, 43, 1917–1927. [Google Scholar] [CrossRef]
- Manici, L.M.; Caputo, F.; Saccà, M.L. Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease. Plant Soil 2017, 415, 85–98. [Google Scholar] [CrossRef]
- Otto, G. Investigations on the cause of soil sickness in fruit trees VII. An actinomycete isolated from rootlets of apple seedlings, the probable cause of specific apple replant disease. J. Cultiv. Plants 2017, 69, 175–179. [Google Scholar] [CrossRef]
- Manici, L.M.; Kelderer, M.; Franke-Whittle, I.H.; Rühmer, T.; Baab, G.; Nicoletti, F.; Caputo, F.; Topp, A.; Insam, H.; Naef, A.; et al. Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in Europe. Appl. Soil Ecol. 2013, 72, 207–214. [Google Scholar] [CrossRef]
- Nicola, L.; Insam, H.; Pertot, I.; Stres, B. Reanalysis of microbiomes in soils affected by apple replant disease (ARD): Old foes and novel suspects lead to the proposal of extended model of disease development. Appl. Soil Ecol. 2018, 129, 24–33. [Google Scholar] [CrossRef]
- Manici, L.M.; Caboni, E.; Caputo, F.; Frattarelli, A.; Lucioli, S. Phytotoxins from Dactylonectria torresensis involved in replant disease of fruit trees. Rhizosphere 2021, 17, 100300. [Google Scholar] [CrossRef]
- Dillman, A.R.; Chaston, J.M.; Adams, B.J.; Ciche, T.A.; Goodrich-Blair, H.; Stock, S.P.; Sternberg, P.W. An entomopathogenic nematode by any other name. PLoS Pathog. 2012, 8, e1002527. [Google Scholar] [CrossRef] [Green Version]
- Allen, J. Annual ryegrass toxicity–An animal disease caused by toxins produced by a bacterial plant pathogen. Microbiol. Aust. 2012, 33, 18. [Google Scholar] [CrossRef]
- Back, M.A.; Haydock, P.P.J.; Jenkinson, P. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol. 2002, 51, 683–697. [Google Scholar] [CrossRef]
- Morris, K.A.; Langston, D.B.; Dutta, B.; Davis, R.F.; Timper, P.; Noe, J.P.; Dickson, D.W. Evidence for a disease complex between Pythium aphanidermatum and root-knot nematodes in cucumber. Plant Health Progr. 2016, 17, 200–201. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.; de Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera—an outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar] [PubMed]
- Yim, B.; Winkelmann, T.; Ding, G.-C.; Smalla, K. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis—Contribution to improved aboveground apple plant growth? Front. Microbiol. 2015, 6, 1224. [Google Scholar] [CrossRef] [Green Version]
- Yim, B.; Nitt, H.; Wrede, A.; Jacquiod, S.; Sørensen, S.J.; Winkelmann, T.; Smalla, K. Effects of soil pre-treatment with Basamid® granules, Brassica juncea, Raphanus sativus, and Tagetes patula on bacterial and fungal communities at two apple replant disease sites. Front. Microbiol. 2017, 8, 1604. [Google Scholar] [CrossRef]
- Kanfra, X.; Obawolu, T.; Wrede, A.; Strolka, B.; Winkelmann, T.; Hardeweg, B.; Heuer, H. Alleviation of nematode-mediated apple replant disease by pre-cultivation of Tagetes. Horticulturae 2021, 7, 433. [Google Scholar] [CrossRef]
- Jaffee, B.A.; Abawi, G.S.; Mai, W.F. Role of soil microflora and Pratylenchus penetrans in an apple replant disease. Phytopathology 1982, 72, 247–251. [Google Scholar] [CrossRef]
- Johnson, P.W.; Dirks, V.A.; Pree, D.J.; Marks, C.F. Systemic nematicides for control of Pratylenchus penetrans during apple orchard estabishment in Ontario. Plant Dis. 1982, 66, 299–301. [Google Scholar] [CrossRef]
- Kanfra, X.; Liu, B.; Beerhues, L.; Sørensen, S.J.; Heuer, H. Free-living nematodes together with associated microbes play an essential role in apple replant disease. Front. Plant Sci. 2018, 9, 1666. [Google Scholar] [CrossRef]
- Lucas, M.; Balbín-Suárez, A.; Smalla, K.; Vetterlein, D. Root growth, function and rhizosphere microbiome analyses show local rather than systemic effects in apple plant response to replant disease soil. PLoS ONE 2018, 13, e0204922. [Google Scholar] [CrossRef] [Green Version]
- Mahnkopp, F.; Simon, M.; Lehndorff, E.; Pätzold, S.; Wrede, A.; Winkelmann, T. Induction and diagnosis of apple replant disease (ARD): A matter of heterogeneous soil properties? Sci. Hortic. 2018, 241, 167–177. [Google Scholar] [CrossRef]
- Simon, M.; Lehndorff, E.; Wrede, A.; Amelung, W. In-field heterogeneity of apple replant disease: Relations to abiotic soil properties. Sci. Hortic. 2020, 259, 108809. [Google Scholar] [CrossRef]
- Reim, S.; Rohr, A.-D.; Winkelmann, T.; Weiß, S.; Liu, B.; Beerhues, L.; Schmitz, M.; Hanke, M.-V.; Flachowsky, H. Genes involved in stress response and especially in phytoalexin biosynthesis are upregulated in four Malus genotypes in response to apple replant disease. Front. Plant Sci. 2020, 10, 1724. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.J.; Hallmann, J.; Subbotin, S.A. Methods for extraction, processing and detection of plant and soil nematodes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 2nd ed.; Luc, M., Sikora, R.A., Bridge, J., Eds.; CABI: Wallingford, UK, 2005; pp. 53–85. ISBN 9780851997278. [Google Scholar]
- Kaplan, D.T.; Thomas, W.K.; Frisse, L.M.; Sarah, J.-L.; Stanton, J.M.; Speijer, P.R.; Marin, D.H.; Opperman, C.H. Phylogenetic analysis of geographically diverse Radopholus similis via rDNA sequence reveals a monomorphic motif. J. Nematol. 2000, 32, 134. [Google Scholar]
- Porazinska, D.L.; Giblin-Davis, R.M.; Faller, L.; Farmerie, W.; Kanzaki, N.; Morris, K.; Powers, T.O.; Tucker, A.E.; Sung, W.; Thomas, W.K. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol. Ecol. Resour. 2009, 9, 1439–1450. [Google Scholar] [CrossRef]
- Moll, J.; Roy, F.; Bässler, C.; Heilmann-Clausen, J.; Hofrichter, M.; Kellner, H.; Krabel, D.; Schmidt, J.H.; Buscot, F.; Hoppe, B. First evidence that nematode communities in deadwood are related to tree species identity and to co-occurring fungi and prokaryotes. Microorganisms 2021, 9, 1454. [Google Scholar] [CrossRef] [PubMed]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region—Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, C.; Al-Soud, W.A.; Larsson, M.; Alm, E.; Yekta, S.S.; Svensson, B.H.; Sørensen, S.J.; Karlsson, A. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol. Ecol. 2013, 85, 612–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Abarenkov, K.; Zirk, A.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Nilsson, R.H.; Kõljalg, U. UNITE General FASTA Release for Fungi. UNITE Community 2021. Available online: https://link.springer.com/book/10.1007/978-1-4684-7682-8#about (accessed on 16 December 2021).
- Cock, P.J.A.; Grüning, B.A.; Paszkiewicz, K.; Pritchard, L. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ 2013, 1, e167. [Google Scholar] [CrossRef] [Green Version]
- Antweiler, K.; Schreiter, S.; Keilwagen, J.; Baldrian, P.; Kropf, S.; Smalla, K.; Grosch, R.; Heuer, H. Statistical test for tolerability of effects of an antifungal biocontrol strain on fungal communities in three arable soils. Microb. Biotechnol. 2017, 10, 434–449. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.3–0. 2015. Available online: https://cran.r-project.org/web/packages/vegan (accessed on 1 July 2021).
- Roberts, D.W. labdsv: Ordination and Multivariate Analysis for Ecology. Available online: https://cran.r-project.org/web/packages/labdsv/labdsv.pdf (accessed on 23 July 2018).
- SAS Institute Inc. 2013 SAS/STAT®13.1 User’s Guide—The GLIMMIX Procedure. Available online: https://support.sas.com/documentation/onlinedoc/stat/131/glimmix.pdf (accessed on 1 July 2021).
- Ding, G.-C.; Smalla, K.; Heuer, H.; Kropf, S. A new proposal for a principal component-based test for high-dimensional data applied to the analysis of PhyloChip data. Biom. J. 2012, 54, 94–107. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Mazzola, M.; Manici, L.M. Apple replant disease: Role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 2012, 50, 45–65. [Google Scholar] [CrossRef]
- Popp, C. Investigations on the Occurrence of Fungal Root Endophytes and an Associated Mycovirus in Context with Apple Replant Disease. Ph.D. Thesis, Leibniz Universität Hannover, Hannover, Germany, 2020. [Google Scholar]
- Popp, C.; Grunewaldt-Stöcker, G.; Maiss, E. A soil-free method for assessing pathogenicity of fungal isolates from apple roots. J. Plant Dis. Prot. 2019, 101, 15. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Q.; Li, X.; Zhou, B.; Wei, Q. Apple replant disorder of Pingyitiancha rootstock is closely associated with rhizosphere fungal community development. J. Phytopathol. 2017, 165, 162–173. [Google Scholar] [CrossRef]
- Tewoldemedhin, Y.T.; Mazzola, M.; Botha, W.J.; Spies, C.F.J.; McLeod, A. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur. J. Plant Pathol. 2011, 130, 215–229. [Google Scholar] [CrossRef]
- Tewoldemedhin, Y.T.; Mazzola, M.; Mostert, L.; McLeod, A. Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. Eur. J. Plant Pathol. 2011, 129, 637–651. [Google Scholar] [CrossRef]
- Wang, G.; Yin, C.; Pan, F.; Wang, X.; Xiang, L.; Wang, Y.; Wang, J.; Tian, C.; Chen, J.; Mao, Z. Analysis of the fungal community in apple replanted soil around Bohai Gulf. Hortic. Plant J. 2018, 4, 175–181. [Google Scholar] [CrossRef]
- Mazzola, M.; Hewavitharana, S.S.; Strauss, S.L. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation. Phytopathology 2015, 105, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costante, J.F.; Mai, W.F.; Aleong, J.; Klein, R.M. Effects of apple rootstocks and nematicides on Pratylenchus penetrans populations and apple tree growth. J. Am. Soc. Hortic. Sci. 1987, 112, 441–444. [Google Scholar]
- Kotcon, J.B. Distribution, frequency, and population density of nematodes in West Virginia peach orchards. J. Nematol. 1990, 22, 712–717. [Google Scholar]
- Isutsa, D.K.; Merwin, I.A. Nematodes and fungi associated with apple replant disorder in sampled New York State orchards. Glob. J. Biosci. Biotechnol. 2014, 3, 174–180. [Google Scholar]
- Singh, S.; Singh, B.; Singh, A.P. Nematodes: A threat to sustainability of agriculture. Procedia Environ. Sci. 2015, 29, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Hoestra, H.; Oostenbrink, M. Nematodes in relation to plant growth. IV. Pratylenchus penetrans (Cobb) on orchard trees. Neth. J. Agric. Sci. 1962, 10, 286–296. [Google Scholar]
- Haraguchi, S.; Yoshiga, T. Potential of the fungal feeding nematode Aphelenchus avenae to control fungi and the plant parasitic nematode Ditylenchus destructor associated with garlic. Biol. Control 2020, 143, 104203. [Google Scholar] [CrossRef]
- Sutherland, J.R. Parasitism of Tylenchus emarginatus on conifer seedling roots and some observations on the biology of the nematode. Nematologica 1967, 13, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, M.R. Tylenchida: Parasites of Plants and Insects; CABI: Wallingford, UK, 2000; ISBN 9780851992020. [Google Scholar]
- Tronsmo, A.M.; Collinge, D.; Djurle, A.; Munk, L.; Yuen, J.; Tronsmo, A. Plant Pathology and Plant Diseases; CAB International: Boston, MA, USA, 2020; ISBN 9781789243178. [Google Scholar]
- Jairajpuri, M.S.; Ahmad, W. Dorylaimida: Free-Living, Predaceous and Plant-Parasitic Nematodes; Brill: Leiden, The Netherlands, 1992; ISBN 9004092293. [Google Scholar]
- Pokharel, R.R.; Reighard, G.L. Evaluation of biofumigation, soil solarization and rootstock on peach replant disease. Acta Hortic. 2015, 1084, 577–584. [Google Scholar] [CrossRef]
- Elhady, A.; Giné, A.; Topalović, O.; Jacquiod, S.; Sørensen, S.J.; Sorribas, F.J.; Heuer, H. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS ONE 2017, 12, e0177145. [Google Scholar] [CrossRef] [Green Version]
- Topalović, O.; Bredenbruch, S.; Schleker, A.S.S.; Heuer, H. Microbes attaching to endoparasitic phytonematodes in soil trigger plant defense upon root penetration by the nematode. Front. Plant Sci. 2020, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Derycke, S.; de Meester, N.; Rigaux, A.; Creer, S.; Bik, H.; Thomas, W.K.; Moens, T. Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol. Ecol. 2016, 25, 2093–2110. [Google Scholar] [CrossRef] [Green Version]
- Dirksen, P.; Marsh, S.A.; Braker, I.; Heitland, N.; Wagner, S.; Nakad, R.; Mader, S.; Petersen, C.; Kowallik, V.; Rosenstiel, P.; et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 2016, 14, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuelke, T.; Pereira, T.J.; Hardy, S.M.; Bik, H.M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol. Ecol. 2018, 27, 1930–1951. [Google Scholar] [CrossRef]
- Bintarti, A.F.; Wilson, J.K.; Quintanilla-Tornel, M.A.; Shade, A. Biogeography and diversity of multi-trophic root zone microbiomes in Michigan apple orchards: Analysis of rootstock, scion, and local growing region. Phytobiomes J. 2020, 4, 122–132. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, M.; Jiang, W.; Wang, Y.; Chen, X.; Yin, C.; Mao, Z. Key indicators for renewal and reconstruction of perennial trees soil: Microorganisms and phloridzin. Ecotoxicol. Environ. Saf. 2021, 225, 112723. [Google Scholar] [CrossRef]
- Utkhede, R.S.; Li, T.S.C. Chemical and biological treatments for control of apple replant disease in British Columbia. Can. J. Plant Pathol. 1989, 11, 143–147. [Google Scholar] [CrossRef]
- Soman, A.G.; Gloer, J.B.; Wicklow, D.T. Antifungal and antibacterial metabolites from a sclerotium-colonizing isolate of Mortierella vinacea. J. Nat. Prod. 1999, 62, 386–388. [Google Scholar] [CrossRef]
- Deacon, L.J.; Pryce-Miller, E.J.; Frankland, J.C.; Bainbridge, B.W.; Moore, P.D.; Robinson, C.H. Diversity and function of decomposer fungi from a grassland soil. Soil Biol. Biochem. 2006, 38, 7–20. [Google Scholar] [CrossRef]
- Nicola, L.; Turco, E.; Albanese, D.; Donati, C.; Thalheimer, M.; Pindo, M.; Insam, H.; Cavalieri, D.; Pertot, I. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Appl. Soil Ecol. 2017, 113, 71–79. [Google Scholar] [CrossRef]
- Orion, D.; Kritzman, G. A role of the gelatinous matrix in the resistance of root-knot nematode (Meloidogyne spp.) eggs to microorganisms. J. Nematol. 2001, 33, 203. [Google Scholar] [PubMed]
- Chen, S.Y.; Chen, F.J. Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. J. Nematol. 2003, 35, 271–277. [Google Scholar]
- DiLegge, M.J.; Manter, D.K.; Vivanco, J.M. A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Sci. Rep. 2019, 9, 7521. [Google Scholar] [CrossRef] [Green Version]
- Haj Nuaima, R.; Ashrafi, S.; Maier, W.; Heuer, H. Fungi isolated from cysts of the beet cyst nematode parasitized its eggs and counterbalanced root damages. J. Pest Sci. 2021, 94, 563–572. [Google Scholar] [CrossRef]
- O’Donoghue, A.J.; Knudsen, G.M.; Beekman, C.; Perry, J.A.; Johnson, A.D.; DeRisi, J.L.; Craik, C.S.; Bennett, R.J. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc. Natl. Acad. Sci. USA 2015, 112, 7478–7483. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liang, L.; Zhang, Y.; Li, J.; Zhang, L.; Ye, F.; Gan, Z.; Zhang, K.-Q. Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl. Microbiol. Biotechnol. 2007, 75, 557–565. [Google Scholar] [CrossRef]
- Wicklow, D.T.; Hirschfield, B.J. Evidence of a competitive hierarchy among coprophilous fungal populations. Can. J. Microbiol. 1979, 25, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Horst, R.K. Plant diseases and their pathogens. In Westcott’s Plant Disease Handbook; Springer: Boston, MA, USA, 1990; pp. 86–515. [Google Scholar]
- Beck, D.A.C.; Hendrickson, E.L.; Vorobev, A.; Wang, T.; Lim, S.; Kalyuzhnaya, M.G.; Lidstrom, M.E.; Hackett, M.; Chistoserdova, L. An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis. J. Bacteriol. 2011, 193, 4758–4765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Taxonomic Group | Fixed Effect | Pearson Factor | p-Value |
---|---|---|---|
Nematode community | Replanting (ARD/Healthy) | 0.75 | <0.0001 |
Sampling (H1/E2/E3/H4) | 0.56 | <0.0001 | |
Nematode-associated fungi | Replanting (ARD/Healthy) | 0.56 | <0.0001 |
Sampling (H1/E2/E3/H4) | 0.74 | <0.0001 | |
Nematode-associated bacteria | Replanting (ARD/Healthy) | 0.52 | <0.0001 |
Sampling (H1/E2/E3/H4) | 0.55 | <0.0001 |
OTU | LDA Score | SILVA BlastN Hit | Identity |
---|---|---|---|
36 | −4.5 | AY284594 Cephalenchus hexalineatus | 100% |
25 | −4.2 | AJ875139 Dorylaimida | 99.6% |
2 | −4.2 | AB368918 Aphelenchus avenae | 100% |
43 | 5.1 | AY284653 Rhabditis terricola | 100% |
169 | 3.7 | KJ869398 Helicotylenchus digitiformis | 100% |
OTU | LDA Score | UNITE BlastN Hit | Identity |
---|---|---|---|
3184 | −4.24 | SH1557087 Mortierella | 100% |
4072 | −3.65 | SH1578257 Cercophora | 100% |
3099 | −3.23 | SH2750281 Helotiales | 89.9% |
4020 | −3.22 | SH1557243 Pseudogymnoascus | 97.5% |
3218 | 4.73 | SH1615738 Chaetomiaceae | 100% |
1653 | 3.70 | SH2732359 Cirrenalia | 100% |
4491 | 3.59 | SH1657881 Bipolaris sorokiniana | 100% |
1503 | 3.54 | SH2720643 Marasmius | 96.9% |
804 | 3.36 | SH1561418 Metarhizium marquandii | 99.6% |
OTU | LDA Score | SILVA BlastN Hit | Identity |
---|---|---|---|
269 | −3.08 | EU937916 Methylotenera | 98.7% |
268 | −2.56 | KC172347 Methylophilus | 99.5% |
324 | −2.42 | KX146487 Flavitalea antarctica | 100% |
9262 | 3.11 | DQ125809 Streptomyces | 98.8% |
38 | 2.94 | MW339074 Sphingomonas | 100% |
284 | 2.89 | EF019722 Acidibacter | 98.5% |
228 | 2.68 | JF120108 Luedemannella | 100% |
1035 | 2.52 | GQ264163 Steroidobacter | 98.2% |
2254 | 2.51 | JF176556 Chloroflexi | 99.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanfra, X.; Wrede, A.; Moll, J.; Heuer, H. Nematode–Microbe Complexes in Soils Replanted with Apple. Microorganisms 2022, 10, 157. https://doi.org/10.3390/microorganisms10010157
Kanfra X, Wrede A, Moll J, Heuer H. Nematode–Microbe Complexes in Soils Replanted with Apple. Microorganisms. 2022; 10(1):157. https://doi.org/10.3390/microorganisms10010157
Chicago/Turabian StyleKanfra, Xorla, Andreas Wrede, Julia Moll, and Holger Heuer. 2022. "Nematode–Microbe Complexes in Soils Replanted with Apple" Microorganisms 10, no. 1: 157. https://doi.org/10.3390/microorganisms10010157
APA StyleKanfra, X., Wrede, A., Moll, J., & Heuer, H. (2022). Nematode–Microbe Complexes in Soils Replanted with Apple. Microorganisms, 10(1), 157. https://doi.org/10.3390/microorganisms10010157