The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review
Abstract
:1. Introduction
2. Biofilm Occurrence in the Dairy Industry
3. Ozone
3.1. Chemical, Physical Properties, and Antimicrobial Action
3.2. Generation
3.3. Parameters That Affect the Antimicrobial Performances
3.4. Aqueous or Gaseous Form?
3.5. Legislation
3.6. Limitations: Toxicity, Effect on Foods and Equipment
3.7. Effect on Microbial Biofilms
3.7.1. Pseudomonas
3.7.2. Bacillus
3.7.3. Listeria
3.7.4. Staphylococcus
3.7.5. Salmonella
3.7.6. Clostridium, Cronobacter, Escherichia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Galiè, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- González-Rivas, F.; Ripolles-Avila, C.; Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1261–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, G.M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int. J. Microbiol. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Srey, S.; Jahid, I.K.; Ha, S.-D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Brooks, J.D.; Flint, S.H. Biofilms in the food industry: Problems and potential solutions. Int. J. Food Sci. Technol. 2008, 43, 2163–2176. [Google Scholar] [CrossRef]
- Flint, S.; Bremer, P.; Brooks, J.; Palmer, J.; Sadiq, F.A.; Seale, B.; Teh, K.H.; Wu, S.; Zain, S.N.M. Bacterial fouling in dairy processing. Int. Dairy J. 2020, 101, 104593. [Google Scholar] [CrossRef]
- Wassenaar, T.M.; Ussery, D.; Nielsen, L.N.; Ingmer, H. Review and phylogenetic analysis ofqacgenes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur. J. Microbiol. Immunol. 2015, 5, 44–61. [Google Scholar] [CrossRef] [Green Version]
- Marino, M.; Maifreni, M.; Baggio, A.; Innocente, N. Inactivation of Foodborne Bacteria Biofilms by Aqueous and Gaseous Ozone. Front. Microbiol. 2018, 9, 2024. [Google Scholar] [CrossRef] [Green Version]
- Oniciuc, E.A.; Likotrafiti, E.; Alvarez-Molina, A.; Prieto, M.; López, M.; Alvarez-Ordóñez, A. Food processing as a risk factor for antimicrobial resistance spread along the food chain. Curr. Opin. Food Sci. 2019, 30, 21–26. [Google Scholar] [CrossRef]
- Martínez-Suárez, J.V.; Ortiz, S.; López-Alonso, V. Potential Impact of the Resistance to Quaternary Ammonium Disinfectants on the Persistence of Listeria monocytogenes in Food Processing Environments. Front. Microbiol. 2016, 7, 638. [Google Scholar] [CrossRef] [Green Version]
- Møretrø, T.; Schirmer, B.C.; Heir, E.; Fagerlund, A.; Hjemli, P.; Langsrud, S. Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int. J. Food Microbiol. 2017, 241, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Guérin, A.; Bridier, A.; Le Grandois, P.; Sévellec, Y.; Palma, F.; Félix, B.; LISTADAPT Study Group; Roussel, S.; Soumet, C. Exposure to Quaternary Ammonium Compounds Selects Resistance to Ciprofloxacin in Listeria monocytogenes. Pathogens 2021, 10, 220. [Google Scholar] [CrossRef]
- Rubiola, S.; Chiesa, F.; Dalmasso, A.; Di Ciccio, P.; Civera, T. Detection of Antimicrobial Resistance Genes in the Milk Production Environment: Impact of Host DNA and Sequencing Depth. Front. Microbiol. 2020, 11, 11. [Google Scholar] [CrossRef]
- Colagiorgi, A.; Festa, R.; Di Ciccio, P.A.; Gogliettino, M.; Balestrieri, M.; Palmieri, G.; Anastasio, A.; Ianieri, A. Rapid biofilm eradication of the antimicrobial peptide 1018-K6 against Staphylococcus aureus: A new potential tool to fight bacterial biofilms. Food Control. 2020, 107, 106815. [Google Scholar] [CrossRef]
- Friedlander, A.; Nir, S.; Reches, M.; Shemesh, M. Preventing Biofilm Formation by Dairy-Associated Bacteria Using Peptide-Coated Surfaces. Front. Microbiol. 2019, 10, 1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meireles, A.; Borges, A.; Giaouris, E.; Simões, M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res. Int. 2016, 86, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci. Technol. 2020, 99, 142–151. [Google Scholar] [CrossRef]
- Masotti, F.; Vallone, L.; Ranzini, S.; Silvetti, T.; Morandi, S.; Brasca, M. Effectiveness of air disinfection by ozonation or hydrogen peroxide aerosolization in dairy environments. Food Control. 2019, 97, 32–38. [Google Scholar] [CrossRef]
- Varga, L.; Szigeti, J. Use of ozone in the dairy industry: A review. Int. J. Dairy Technol. 2016, 69, 157–168. [Google Scholar] [CrossRef]
- Pascual, A.; Llorca, I.; Canut, A. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends Food Sci. Technol. 2007, 18, S29–S35. [Google Scholar] [CrossRef]
- De Candia, S.; Morea, M.; Baruzzi, F. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces. Front. Microbiol. 2015, 6, 733. [Google Scholar] [CrossRef] [PubMed]
- Bigi, F.; Haghighi, H.; Quartieri, A.; De Leo, R.; Pulvirenti, A. Impact of low-dose gaseous ozone treatment to reduce the growth of in vitro broth cultures of foodborne pathogenic/spoilage bacteria in a food storage cold chamber. J. Food Saf. 2021, 41, e12892. [Google Scholar] [CrossRef]
- Botta, C.; Ferrocino, I.; Pessione, A.; Cocolin, L.; Rantsiou, K. Spatiotemporal Distribution of the Environmental Microbiota in Food Processing Plants as Impacted by Cleaning and Sanitizing Procedures: The Case of Slaughterhouses and Gaseous Ozone. Appl. Environ. Microbiol. 2020, 86, 86. [Google Scholar] [CrossRef]
- Sivaranjani, S.; Prasath, V.A.; Pandiselvam, R.; Kothakota, A.; Khaneghah, A.M. Recent advances in applications of ozone in the cereal industry. LWT 2021, 146, 111412. [Google Scholar] [CrossRef]
- Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, F.; Rubiola, S.; Chiesa, F.; Civera, T.; Di Ciccio, P. Effect of Gaseous Ozone on Listeria monocytogenes Planktonic Cells and Biofilm: An In Vitro Study. Foods 2021, 10, 1484. [Google Scholar] [CrossRef] [PubMed]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A. Use of ozone in the food industry. LWT 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Subhashini, S.; Priya, E.B.; Kothakota, A.; Ramesh, S.; Shahir, S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 2019, 41, 17–34. [Google Scholar] [CrossRef]
- Brodowska, A.J.; Nowak, A.; Śmigielski, K.B. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [Google Scholar] [CrossRef]
- Afonso, R.; Moreira, R.; de Almeida, P. Can ozone be used as antimicrobial in the dairy industry? A systematic review. J. Dairy Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Marchand, S.; De Block, J.; De Jonghe, V.; Coorevits, A.; Heyndrickx, M.; Herman, L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr. Rev. Food Sci. Food Saf. 2012, 11, 133–147. [Google Scholar] [CrossRef]
- Teh, K.H.; Flint, S.; Palmer, J.; Lindsay, D.; Andrewes, P.; Bremer, P. Thermo-resistant enzyme-producing bacteria isolated from the internal surfaces of raw milk tankers. Int. Dairy J. 2011, 21, 742–747. [Google Scholar] [CrossRef]
- Zhang, C.; Bijl, E.; Svensson, B.; Hettinga, K. The Extracellular Protease AprX from Pseudomonas and its Spoilage Potential for UHT Milk: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 834–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teh, K.H.; Flint, S.; Palmer, J.; Andrewes, P.; Bremer, P.; Lindsay, D. Biofilm—An unrecognised source of spoilage enzymes in dairy products? Int. Dairy J. 2014, 34, 32–40. [Google Scholar] [CrossRef]
- Latorre, A.; Van Kessel, J.; Karns, J.; Zurakowski, M.; Pradhan, A.; Boor, K.; Jayarao, B.; Houser, B.; Daugherty, C.; Schukken, Y. Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. J. Dairy Sci. 2010, 93, 2792–2802. [Google Scholar] [CrossRef]
- Pacha, P.; Munoz, M.; González-Rocha, G.; Martín, I.S.; Quezada-Aguiluz, M.; Aguayo-Reyes, A.; Bello-Toledo, H.; Latorre, A. Molecular diversity of Staphylococcus aureus and the role of milking equipment adherences or biofilm as a source for bulk tank milk contamination. J. Dairy Sci. 2021, 104, 3522–3531. [Google Scholar] [CrossRef]
- Jaakkonen, A.; Kivistö, R.; Aarnio, M.; Kalekivi, J.; Hakkinen, M. Persistent contamination of raw milk by Campylobacter jejuni ST-883. PLoS ONE 2020, 15, e0231810. [Google Scholar] [CrossRef]
- Anand, S.; Singh, D.; Avadhanula, M.; Marka, S. Development and Control of Bacterial Biofilms on Dairy Processing Membranes. Compr. Rev. Food Sci. Food Saf. 2014, 13, 18–33. [Google Scholar] [CrossRef]
- Chen, C.-L.; Liu, W.-T.; Chong, M.-L.; Wong, M.-T.; Ong, S.L.; Seah, H.; Ng, W.J. Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach. Appl. Microbiol. Biotechnol. 2004, 63, 466–473. [Google Scholar] [CrossRef]
- Chamberland, J.; Lessard, M.-H.; Doyen, A.; Labrie, S.; Pouliot, Y. A sequencing approach targeting the 16S rRNA gene unravels the biofilm composition of spiral-wound membranes used in the dairy industry. Dairy Sci. Technol. 2017, 96, 827–843. [Google Scholar] [CrossRef] [Green Version]
- Jindal, S.; Anand, S.; Metzger, L.; Amamcharla, J. Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. J. Dairy Sci. 2018, 101, 2921–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Anand, S. Biofilms evaluation as an essential component of HACCP for food/dairy processing industry—A case. Food Control 2002, 13, 469–477. [Google Scholar] [CrossRef]
- Mugadza, D.T.; Owusu-Darko, R.; Buys, E.M. Short communication: Source tracking Bacillus cereus in an extended-shelf-life milk processing plant using partial sequencing of rpoB and multilocus sequence typing. J. Dairy Sci. 2019, 102, 135–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.; Liedtke, J.; Plattes, S.; Lipski, A. Bacterial community composition of biofilms in milking machines of two dairy farms assessed by a combination of culture-dependent and –independent methods. PLoS ONE 2019, 14, e0222238. [Google Scholar] [CrossRef]
- Lee, S.H.I.; Barancelli, G.V.; de Camargo, T.M.; Corassin, C.H.; Rosim, R.E.; da Cruz, A.G.; Cappato, L.P.; de Oliveira, C.A.F. Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. Food Res. Int. 2017, 91, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Bertolotti, L.; Brito, L.; Civera, T. Biofilm Formation and Disinfectant Susceptibility of Persistent and Nonpersistent Listeria monocytogenes Isolates from Gorgonzola Cheese Processing Plants. Foodborne Pathog. Dis. 2016, 13, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Panebianco, F.; Giarratana, F.; Caridi, A.; Sidari, R.; De Bruno, A.; Giuffrida, A. Lactic acid bacteria isolated from traditional Italian dairy products: Activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. LWT 2020, 137, 110446. [Google Scholar] [CrossRef]
- Salomskiene, J.; Jonkuviene, D.; Macioniene, I.; Abraitiene, A.; Zeime, J.; Repeckiene, J.; Vaiciulyte-Funk, L. Differences in the occurence and efficiency of antimicrobial compounds produced by lactic acid bacteria. Zeitschrift Untersuchung Nahrungs Genußmittel 2019, 245, 569–579. [Google Scholar] [CrossRef]
- Didienne, R.; Defargues, C.; Callon, C.; Meylheuc, T.; Hulin, S.; Montel, M.-C. Characteristics of microbial biofilm on wooden vats (‘gerles’) in PDO Salers cheese. Int. J. Food Microbiol. 2012, 156, 91–101. [Google Scholar] [CrossRef]
- Gaglio, R.; Cruciata, M.; Scatassa, M.L.; Tolone, M.; Mancuso, I.; Cardamone, C.; Corona, O.; Todaro, M.; Settanni, L. Influence of the early bacterial biofilms developed on vats made with seven wood types on PDO Vastedda della valle del Belìce cheese characteristics. Int. J. Food Microbiol. 2019, 291, 91–103. [Google Scholar] [CrossRef]
- Margalit, M.; Attias, E.; Attias, D.; Elstein, D.; Zimran, A.; Matzner, Y. Effect of ozone on neutrophil function in vitro. Int. J. Lab. Hematol. 2001, 23, 243–247. [Google Scholar] [CrossRef]
- Baggio, A.; Marino, M.; Innocente, N.; Celotto, M.; Maifreni, M. Antimicrobial effect of oxidative technologies in food processing: An overview. Eur. Food Res. Technol. 2020, 246, 669–692. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E. Decontamination of a Multilaminated Aseptic Food Packaging Material and Stainless Steel by Ozone. J. Food Saf. 2001, 21, 1–13. [Google Scholar] [CrossRef]
- Giménez, B.; Graiver, N.; Giannuzzi, L.; Zaritzky, N. Treatment of beef with gaseous ozone: Physicochemical aspects and antimicrobial effects on heterotrophic microflora and Listeria monocytogenes. Food Control 2021, 121, 107602. [Google Scholar] [CrossRef]
- Naito, S.; Takahara, H. Ozone Contribution in Food Industry in Japan. Ozone Sci. Eng. 2006, 28, 425–429. [Google Scholar] [CrossRef]
- Sert, D.; Mercan, E.; Kara, Ü. Butter production from ozone-treated cream: Effects on characteristics of physicochemical, microbiological, thermal and oxidative stability. LWT 2020, 131, 109722. [Google Scholar] [CrossRef]
- Segat, A.; Biasutti, M.; Iacumin, L.; Comi, G.; Baruzzi, F.; Carboni, C.; Innocente, N. Use of ozone in production chain of high moisture Mozzarella cheese. LWT Food Sci. Technol. 2014, 55, 513–520. [Google Scholar] [CrossRef]
- Greene, A.K.; Smith, G.; Knight, C.S. Ozone in dairy chilling water systems: Effect on metal materials. Int. J. Dairy Technol. 1999, 52, 126–128. [Google Scholar] [CrossRef]
- Moore, G.; Griffith, C.; Peters, A. Bactericidal Properties of Ozone and Its Potential Application as a Terminal Disinfectant. J. Food Prot. 2000, 63, 1100–1106. [Google Scholar] [CrossRef]
- Maggio, F.; Rossi, C.; Chaves-López, C.; Serio, A.; Valbonetti, L.; Pomilio, F.; Chiavaroli, A.; Paparella, A. Interactions between L. monocytogenes and P. fluorescens in Dual-Species Biofilms under Simulated Dairy Processing Conditions. Foods 2021, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Reichler, S.; Murphy, S.; Martin, N.; Wiedmann, M. Identification, subtyping, and tracking of dairy spoilage-associated Pseudomonas by sequencing the ileS gene. J. Dairy Sci. 2021, 104, 2668–2683. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, F.; Lomonaco, S.; Nucera, D.; Garoglio, D.; Dalmasso, A.; Civera, T. Distribution of Pseudomonas species in a dairy plant affected by occasional blue discoloration. Ital. J. Food Saf. 2014, 3, 1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, C.; Serio, A.; Chaves-López, C.; Anniballi, F.; Auricchio, B.; Goffredo, E.; Cenci-Goga, B.T.; Lista, F.; Fillo, S.; Paparella, A. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018, 86, 241–248. [Google Scholar] [CrossRef]
- Shemesh, M.; Ostrov, I. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. J. Sci. Food Agric. 2020, 100, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Egopal, N.; Hill, C.; Ross, R.; Beresford, T.P.; Fenelon, M.; Cotter, P.D. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Front. Microbiol. 2015, 6, 1418. [Google Scholar] [CrossRef]
- Kumari, S.; Sarkar, P.K. Bacillus cereus hazard and control in industrial dairy processing environment. Food Control 2016, 69, 20–29. [Google Scholar] [CrossRef]
- Pasvolsky, R.; Zakin, V.; Ostrova, I.; Shemesh, M. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int. J. Food Microbiol. 2014, 181, 19–27. [Google Scholar] [CrossRef]
- Ostrov, I.; Sela, N.; Belausov, E.; Steinberg, D.; Shemesh, M. Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability. Food Microbiol. 2019, 82, 316–324. [Google Scholar] [CrossRef]
- Doyle, C.J.; Gleeson, D.; Jordan, K.; Beresford, T.P.; Ross, R.; Fitzgerald, G.F.; Cotter, P.D. Anaerobic sporeformers and their significance with respect to milk and dairy products. Int. J. Food Microbiol. 2015, 197, 77–87. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Elariny, E.Y.T.; Ahmed, H.A.; Khatab, A.A.H.; Mohamed, R.E. Genotyping, Antibiotic Resistance and Biofilm Formation Ability of Clostridium perfringens Isolated from Raw Milk, Dairy Products and Human Consumers. J. Anim. Health Prod. 2021, 9, 34–41. [Google Scholar] [CrossRef]
- Oh, S.; Chen, P.; Kang, D.-H. Biofilm Formation by Enterobacter Sakazakii Grown in Artificial Broth and Infant Milk Formula on Plastic Surface. J. Rapid Methods Autom. Microbiol. 2007, 15, 311–319. [Google Scholar] [CrossRef]
- Gupta, T.B.; Mowat, E.; Brightwell, G.; Flint, S.H. Biofilm formation and genetic characterization of New Zealand Cronobacter isolates. J. Food Saf. 2018, 38, e12430. [Google Scholar] [CrossRef]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes Biofilms in the Wonderland of Food Industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’Orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Møretrø, T. Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Curr. Opin. Food Sci. 2021, 37, 171–178. [Google Scholar] [CrossRef]
- Lianou, A.; Nychas, G.-J.; Koutsoumanis, K.P. Strain variability in biofilm formation: A food safety and quality perspective. Food Res. Int. 2020, 137, 109424. [Google Scholar] [CrossRef]
- Lee, S.; Mangolin, B.; Gonçalves, J.L.; Neeff, D.; Silva, M.; da Cruz, A.G.; Oliveira, C. Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. J. Dairy Sci. 2014, 97, 1812–1816. [Google Scholar] [CrossRef]
- Thiran, E.; Di Ciccio, P.; Graber, H.; Zanardi, E.; Ianieri, A.; Hummerjohann, J. Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. J. Dairy Sci. 2018, 101, 1000–1012. [Google Scholar] [CrossRef] [Green Version]
- Avila-Novoa, M.-G.; Iñíguez-Moreno, M.; Solís-Velázquez, O.-A.; González-Gómez, J.-P.; Guerrero-Medina, P.-J.; Gutiérrez-Lomelí, M. Biofilm Formation by Staphylococcus aureus Isolated from Food Contact Surfaces in the Dairy Industry of Jalisco, Mexico. J. Food Qual. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cody, S.H.; Abbott, S.L.; Marfin, A.A.; Schulz, B.; Wagner, P.; Robbins, K.; Mohle-Boetani, J.C.; Vugia, D.J. Two Outbreaks of Multidrug-Resistant Salmonella Serotype Typhimurium DT104 Infections Linked to Raw-Milk Cheese in Northern California. JAMA J. Am. Med. Assoc. 1999, 281, 1805–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, E.; Travanut, M.; Fabre, L.; Larréché, S.; Ramelli, L.; Pascal, L.; Guinard, A.; Vincent, N.; Calba, C.; Meurice, L.; et al. Outbreak of Salmonella Newport associated with internationally distributed raw goats’ milk cheese, France. Epidemiol. Infect. 2020, 148, e180. [Google Scholar] [CrossRef] [PubMed]
- Villar, R.G.; Macek, M.; Simons, S.; Hayes, P.S.; Goldoft, M.J.; Lewis, J.H.; Rowan, L.L.; Hursh, D.; Patnode, M.; Mead, P.S. Investigation of Multidrug-Resistant Salmonella Serotype Typhimurium DT104 Infections Linked to Raw-Milk Cheese in Washington State. JAMA J. Am. Med Assoc. 1999, 281, 1811–1816. [Google Scholar] [CrossRef] [Green Version]
- Leyer, G.J.; Johnson, E.A. Acid adaptation promotes survival of Salmonella spp. in cheese. Appl. Environ. Microbiol. 1992, 58, 2075–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kessel, J.A.S.; Karns, J.S.; Lombard, J.E.; Kopral, C.A. Prevalence of Salmonella enterica, Listeria monocytogenes, and Escherichia coli Virulence Factors in Bulk Tank Milk and In-Line Filters from U.S. Dairies. J. Food Prot. 2011, 74, 759–768. [Google Scholar] [CrossRef]
- Lamas, A.; Regal, P.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Influence of milk, chicken residues and oxygen levels on biofilm formation on stainless steel, gene expression and small RNAs in Salmonella enterica. Food Control. 2018, 90, 1–9. [Google Scholar] [CrossRef]
- Reitsma, C.J.; Henning, D.R. Survival of Enterohemorrhagic Escherichia coli O157:H7 During the Manufacture and Curing of Cheddar Cheese. J. Food Prot. 1996, 59, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Espié, E.; Vaillant, V.; Mariani-Kurkdjian, P.; Grimont, F.; Martin-Schaller, R.; De Valk, H.; Vernozy-Rozand, C. Escherichia coli O157 outbreak associated with fresh unpasteurized goats’ cheese. Epidemiol. Infect. 2005, 134, 143–146. [Google Scholar] [CrossRef]
- Honish, L.; Predy, G.; Hislop, N.; Chui, L.; Kowalewska-Grochowska, K.; Trottier, L.; Kreplin, C.; Zazulak, I. An Outbreak of E. coli O157:H7 Hemorrhagic Colitis Associated with Unpasteurized Gouda Cheese. Can. J. Public Health 2005, 96, 182–184. [Google Scholar] [CrossRef]
- Spano, G.; Goffredo, E.; Beneduce, L.; Tarantino, D.; Dupuy, A.; Massa, S. Fate of Escherichia coli O157:H7 during the manufacture of Mozzarella cheese. Lett. Appl. Microbiol. 2003, 36, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Anand, S. Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol. 2002, 19, 627–636. [Google Scholar] [CrossRef]
- Aryal, M.; Muriana, P.M. Efficacy of Commercial Sanitizers Used in Food Processing Facilities for Inactivation of Listeria monocytogenes, E. Coli O157:H7, and Salmonella Biofilms. Foods 2019, 8, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Bono, J.L.; Kalchayanand, N.; Shackelford, S.; Harhay, D.M. Biofilm Formation by Shiga Toxin–Producing Escherichia coli O157:H7 and Non-O157 Strains and Their Tolerance to Sanitizers Commonly Used in the Food Processing Environment. J. Food Prot. 2012, 75, 1418–1428. [Google Scholar] [CrossRef] [Green Version]
- Greene, A.K.; Few, B.K.; Serafini, J.C. A Comparison of Ozonation and Chlorination for the Disinfection of Stainless Steel Surfaces. J. Dairy Sci. 1993, 76, 3617–3620. [Google Scholar] [CrossRef]
- Dosti, B.; Guzel-Seydim, Z.; Greene, A.K. Effectiveness of ozone, heat and chlorine for destroying common food spoilage bacteria in synthetic media and biofilms. Int. J. Dairy Technol. 2005, 58, 19–24. [Google Scholar] [CrossRef]
- Shelobolina, E.S.; Walker, D.K.; Parker, A.E.; Lust, D.V.; Schultz, J.M.; Dickerman, G.E. Inactivation of Pseudomonas aeruginosa biofilms formed under high shear stress on various hydrophilic and hydrophobic surfaces by a continuous flow of ozonated water. Biofouling 2018, 34, 826–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachikawa, M.; Yamanaka, K. Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide. Water Res. 2014, 64, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.M.M.; Nascimento, M.S. Effect of dry sanitizing methods on Bacillus cereus biofilm. Braz. J. Microbiol. 2021, 52, 919–926. [Google Scholar] [CrossRef]
- Babu, K.S.; Liu, Z.; Amamcharla, J.K. 0713 Use of fluorescence-based Amaltheys analyzer for studying effect of pH and heat on whey protein interactions in reconstituted milk protein concentrate. J. Anim. Sci. 2016, 94, 341–342. [Google Scholar] [CrossRef]
- Tiwari, M.; Scannell, A.; O’ Donnell, C. Effect of ozone in combination with cleaning in place reagent (cip) to control biofilms of spore-formers in food process environment. In Biosystems and Food Engineering Research Review 22; Cummins, E.J., Curran, T.P., Eds.; University College Dublin: Dublin, Ireland, 2017. [Google Scholar]
- Korany, A.M.; Hua, Z.; Green, T.; Hanrahan, I.; El-Shinawy, S.H.; El-Kholy, A.; Hassan, G.; Zhu, M.-J. Efficacy of Ozonated Water, Chlorine, Chlorine Dioxide, Quaternary Ammonium Compounds and Peroxyacetic Acid Against Listeria monocytogenes Biofilm on Polystyrene Surfaces. Front. Microbiol. 2018, 9, 2296. [Google Scholar] [CrossRef]
- Robbins, J.B.; Fisher, C.W.; Moltz, A.G.; Martin, S.E. Elimination of Listeria monocytogenes Biofilms by Ozone, Chlorine, and Hydrogen Peroxide. J. Food Prot. 2005, 68, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, R.; Dunton, P.; Tatham, A.; Fielding, L. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes. J. Appl. Microbiol. 2013, 115, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.M.; Nascimento, M.S. Efficacy of dry sanitizing methods on Listeria monocytogenes biofilms. Food Control. 2021, 124, 107897. [Google Scholar] [CrossRef]
- Baumann, A.R.; Martin, S.E.; Feng, H. Removal of Listeria monocytogenes Biofilms from Stainless Steel by Use of Ultrasound and Ozone. J. Food Prot. 2009, 72, 1306–1309. [Google Scholar] [CrossRef] [PubMed]
- Cabo, M.; Herrera, J.; Crespo, M.; Pastoriza, L. Comparison among the effectiveness of ozone, nisin and benzalkonium chloride for the elimination of planktonic cells and biofilms of Staphylococcus aureus CECT4459 on polypropylene. Food Control 2009, 20, 521–525. [Google Scholar] [CrossRef]
- Shao, L.; Dong, Y.; Chen, X.; Xu, X.; Wang, H. Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. Using combined ultrasound and disinfectants. Ultrason. Sonochem. 2020, 69, 105269. [Google Scholar] [CrossRef]
- Silva, V.; Peirone, C.; Amaral, J.S.; Capita, R.; Alonso-Calleja, C.; Marques-Magallanes, J.A.; Martins, Â.; Carvalho, Á.; Maltez, L.; Pereira, J.E.; et al. High Efficacy of Ozonated Oils on the Removal of Biofilms Produced by Methicillin-Resistant Staphylococcus aureus (MRSA) from Infected Diabetic Foot Ulcers. Molecules 2020, 25, 3601. [Google Scholar] [CrossRef]
- Singla, R.; Goel, H.; Ganguli, A. Novel synergistic approach to exploit the bactericidal efficacy of commercial disinfectants on the biofilms of Salmonella enterica serovar Typhimurium. J. Biosci. Bioeng. 2014, 118, 34–40. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No. 2073/2005. Microbiological Criteria for Foodstuffs. 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02005R2073-20200308&qid=1641987351211 (accessed on 1 December 2021).
- Foegeding, P. Ozone inactivation of Bacillus and Clostridium spore populations and the importance of the spore coat to resistance. Food Microbiol. 1985, 2, 123–134. [Google Scholar] [CrossRef]
- Novak, J.S.; Yuan, J.T.C. Increased Inactivation of Ozone-Treated Clostridium perfringens Vegetative Cells and Spores on Fabricated Beef Surfaces Using Mild Heat. J. Food Prot. 2004, 67, 342–346. [Google Scholar] [CrossRef]
- Torlak, E.; Sert, D. Inactivation of Cronobacter by gaseous ozone in milk powders with different fat contents. Int. Dairy J. 2013, 32, 121–125. [Google Scholar] [CrossRef]
- Ölmez, H.; Temur, S. Effects of different sanitizing treatments on biofilms and attachment of Escherichia coli and Listeria monocytogenes on green leaf lettuce. LWT 2010, 43, 964–970. [Google Scholar] [CrossRef]
- Souza, S.M.D.O.; De Alencar, E.R.; Ribeiro, J.L.; Ferreira, M.D.A. Inactivation of Escherichia coli O157:H7 by ozone in different substrates. Braz. J. Microbiol. 2019, 50, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, Z.; Kalbasi-Ashtari, A.; Riskowski, G.; Castillo, A. Reduction of Salmonella and Shiga toxin-producing Escherichia coli on alfalfa seeds and sprouts using an ozone generating system. Int. J. Food Microbiol. 2019, 289, 57–63. [Google Scholar] [CrossRef] [PubMed]
Genus | Species Commonly Found in Dairy Products and Environment | Problems | References |
---|---|---|---|
Pseudomonas | P. fluorescens, P. koreensis, P. marginalis, P. rhodesiae, P. fragi, P. putida, P. entomophila, P. mendocina, P. aeruginosa | Spoilage: P. fluorescens, P. koreensis, P. marginalis, P. rhodesiae, P. fragi, P. putida, P. entomophila, P. mendocina Foodborne pathogens: P. aeruginosa | [33,61,62,63] |
Bacillus | B. licheniformis, B. cereus, B. subtilis, B. thuringiensis, B. weihenstephanensis, B. mycoides, B. sporothermodurans, B. megaterium | Spoilage: B. licheniformis, B. cereus, B. subtilis, B. thuringiensis, B. weihenstephanensis, B. mycoides, B. sporothermodurans, B. megaterium Foodborne pathogens: B. cereus | [64,65,66,67,68] |
Clostridium | C. tyrobutyricum, C. sporogenes, C. beijerinckii, C. butyricum, C. botulinum, C. perfringens | Spoilage: C. tyrobutyricum, C. sporogenes, C. beijerinckii, C. butyricum Foodborne pathogens: C. botulinum, C. perfringens | [69,70,71] |
Cronobacter | C. sakazakii | Foodborne pathogen | [72,73] |
Listeria | L. monocytogenes | Foodborne pathogen | [26,45,46,74,75,76,77] |
Staphylococcus | S. aureus | Foodborne pathogen | [78,79,80] |
Salmonella | S. typhimurium, S. enterica | Foodborne pathogens | [81,82,83,84,85,86] |
Escherichia | Shiga toxin–producing E. coli (STEC) | Foodborne pathogens | [87,88,89,90,91,92,93] |
Target Microorganisms | Surface/Material | Treatment | Effect | Reference | |
---|---|---|---|---|---|
Genus | Species | ||||
Pseudomonas | P. fluorescens | Stainless steel | Ozonated water (0.5 ppm for 10 min) | Loads Reduction (~4 Log10) | [94] |
P. fluorescens, P. fragi, P. putida | Stainless steel | Ozonated medium (0.6 ppm for 10 min) | Loads Reduction (from 2.9 to 4.2 Log CFU/cm2) | [95] | |
P. fluorescens | Stainless steel | (i) Static: ozonated water (0.5 mg/L) at 20 s, 40 s, 1 min, 3 min, 5 min, 10 min, and 20 min. (ii) Dynamic: flow of ozonated water (0.5 mg/L) for 20 s, 40 s, 1 min, 3 min, 5 min, 10 min, and 20 min. (iii) Gaseous ozone: concentrations of 0.1, 0.15, 0.2, 2, 5, and 20 ppm for exposure times of 2, 5, 7, 10, 20, 30, and 60 min. | (i) Loads Reduction (~1.56 Log CFU/cm2 in 20 min); (ii) Loads Reduction (~3.52 Log CFU/cm2 in 20 min); (iii) Loads Reduction (~5.51 Log CFU/cm2 in 20 min) | [8] | |
P. fluorescens | Multilaminated food packaging, stainless steel | Aqueous ozone (3.7–12.9 mg/mL) | Decrease of 2.3–2.6 logs after 1 min exposure to 4.5–5.6 mg/mL. More efficiency on stainless steel compared to the multilaminated packaging material (difference of 2–4 logs depending on the dosage of ozone) | [53] | |
P. aeruginosa | Glass, ceramic, plastic | Dissolved ozone (2, 5 and 7 ppm for 10 and 20 min) | Inactivation correlated to the concentration and the time (predicted D-values: 11.1, 5.7 and 2.2 min at 2, 5 and 7 ppm, respectively). Inactivation (5 ppm for 20 min) | [96] | |
P. fluorescens | Glass | Sequential treatment (1.0 and 1.7 mg/L of ozone followed by 0.8 and 1.1% of hydrogen peroxide) | Significative effect on the survival ratio | [97] | |
Bacillus | B. cereus | Stainless steel, polypropylene | Gaseous ozone (45 ± 2 ppm for 30 min) | Greater action on stainless steel in the first 10 min. Polypropylene: increase in the reduction with the exposure time, until 2.16 Log CFU/cm2 after 30 min | [98] |
B. cereus | Flat sheet polyethersulfone (PES) membranes | Ozonated water | Average reduction of 1.0 Log CFU/cm2 | [99] | |
B. subtilis, B. amyloliquefaciens | Stainless steel | Gaseous ozone (1.4 ppm) in combination with cleaning in place reagent (NaOH) | Higher inactivation (60 and 120″) obtained with 1.4 ppm of ozone coupled with 1% NaOH as compared to NaOH (1%) alone (240″) | [100] | |
Listeria | L. monocytogenes | Polystyrene | Ozonated water (1.0, 2.0, and 4.0 ppm for 1 min) | ∼0.9, 3.4, and 4.1 Log reduction | [101] |
L. monocytogenes | Stainless steel | Ozonated PPB (3 min) | Attached cells eliminated at concentration of 4.00 ppm (7.47-log reduction). A fourfold increase in sanitizer concentration was required to destroy biofilm cells | [102] | |
L. monocytogenes | Stainless steel | Gaseous ozone (45 ppm) | Mean reduction of 3.41 Log10 CFU/cm2 for stainless steel-attached cells after 1 h. The same strains organized in biofilm were significantly more resistant | [103] | |
L. monocytogenes | Polypropylene, stainless steel | Gaseous ozone (45 ppm) | Reduction of sessile cells below the limit of detection (1.7 Log CFU/cm2) in 5 min on polypropylene; reduction of 3.4 Log CFU/cm2 in stainless steel | [104] | |
L. monocytogenes | Polystyrene | Gaseous ozone (50 ppm for 6 h) | Significant decrease of the biofilm biomass (colorimetric assay) for 59% of the strains tested; slight reduction of live cells in the formed biofilm | [26] | |
L. monocytogenes | Glass, polypropylene, stainless steel, expanded polystyrene | Cold gaseous ozone | A continuous ozone flow (1.07 mg m−3) after 24 or 48 h of cold incubation resulted in the inactivation of 11 strains; with high inoculum level (9 log CFU coupon−1) the best inactivation rate was observed after 48 h of treatment at 3.21 mg m−3 of ozone on stainless steel and expanded polystyrene | [21] | |
L. monocytogenes | Stainless steel | Ozone in combination with power ultrasound treatment | Reductions of combined treatments were significantly (p < 0.05) higher than by either treatment alone. No recoverable cells after 60 s of combined treatment when an ozone concentration of 0.5 ppm was used (7.31-log CFU/mL reduction) | [105] | |
Staphylococcus | S. aureus | Polypropylene | Ozonized water (1 mg/g) | 99% inactivation | [106] |
S. aureus | Stainless steel | Ozonized water | Reduction less than 0.8 Log CFU/cm2 of S. aureus and Salmonella spp. biofilm after exposure to ozonized water for 20 min | [107] | |
S. aureus | Stainless steel | (i) Static: ozonated water (0.5 mg/L) at 20 s, 40 s, 1 min, 3 min, 5 min, 10 min, and 20 min. (ii) Dynamic: flow of ozonated water (0.5 mg/L) for 20 s, 40 s, 1 min, 3 min, 5 min, 10 min, and 20 min. (iii) Gaseous ozone: concentrations of 0.1, 0.15, 0.2, 2, 5, and 20 ppm for exposure times of 2, 5, 7, 10, 20, 30, and 60 min. | Highly sensitive to aqueous ozone treatment at dynamic conditions; exposure to gaseous ozone at high concentrations (20 ppm) resulted in a reduction of 4.72 Log CFU/cm2 of biofilm | [8] | |
Methicillin-resistant S. aureus (MRSA) | Polystyrene | Ozonated oils (from 0.53 to 17 mg/g) | Most strains inhibited at concentrations of 4.24 mg/g. Removal of adherent cells and high capacity in the eradication of 24 h biofilms | [108] | |
Salmonella | S. Agona, S. Infantis, S. Typhimurium, ATCC 13076 (Enteritidis serotype), S. Enteritidis | Stainless steel | Ozonized water | Reduction less than 0.8 Log CFU/cm2 of S. aureus and Salmonella spp. biofilm after exposure to ozonized water for 20 min | [107] |
S. typhimurium | PVC pipes, polyethylene, plastic, fresh produce | Malic acid and ozone | Reduction of biofilm formation on plastic bags and PVC pipes. In microtiter plates, reductions in biofilm formation were observed after 20 h and 40 h treatments | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panebianco, F.; Rubiola, S.; Di Ciccio, P.A. The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022, 10, 162. https://doi.org/10.3390/microorganisms10010162
Panebianco F, Rubiola S, Di Ciccio PA. The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms. 2022; 10(1):162. https://doi.org/10.3390/microorganisms10010162
Chicago/Turabian StylePanebianco, Felice, Selene Rubiola, and Pierluigi Aldo Di Ciccio. 2022. "The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review" Microorganisms 10, no. 1: 162. https://doi.org/10.3390/microorganisms10010162
APA StylePanebianco, F., Rubiola, S., & Di Ciccio, P. A. (2022). The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms, 10(1), 162. https://doi.org/10.3390/microorganisms10010162