Inoculation with Plant Growth-Promoting Bacteria to Reduce Phosphate Fertilization Requirement and Enhance Technological Quality and Yield of Sugarcane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area Location
2.2. Experimental Design and Treatments
2.3. Experiment Implementation and Conduction
2.4. Evaluations
2.5. Statistical Analysis
3. Results
3.1. Nitrogen and P Leaf Concentrations
3.2. Sugarcane Technological Quality
3.3. Stalk and Sugar Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- National Supply Company (CONAB). Brazilian Crop Monitoring: Sugarcane, Third Survey: 2019/20 Crop. 2019. Available online: https://www.conab.gov.br/ (accessed on 8 December 2021). (In Portuguese)
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. 2019. Available online: https://www.fao.org/faostat/en/ (accessed on 22 December 2019).
- Lopes, M.L.; Paulillo, S.C.L.; Godoy, A.; Cherubin, R.A.; Lorenzi, M.S.; Giometti, F.H.C.; Bernardino, C.D.; de Amorim Neto, H.B.; de Amorim, H.V. Ethanol production in Brazil: A bridge between science and industry. Braz. J. Microbiol. 2016, 47, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Moore, P.H.; Paterson, A.H.; Tew, T. Sugarcane: The crop, the plant, and domestication. In Sugarcane: Physiology, Biochemistry, and Functional Biology; Moore, P.H., Botha, F.C., Eds.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 1–7. [Google Scholar]
- Bento, C.B.; Filoso, S.; Pitombo, L.M.; Cantarella, H.; Rossetto, R.; Martinelli, L.A.; do Carmo, J.B. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases. J. Environ. Manag. 2018, 206, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.J.; Camberato, J.J. A Critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World phosphorus use efficiency in cereal crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- Kingston, G. Mineral Nutrition of Sugarcane; Willey: New York, NY, USA, 2014. [Google Scholar]
- Caione, G.; Prado, R.M.; Campos, C.N.S.; Moda, L.R.; Vasconcelos, R.L.; Pizauro Júnior, J.M. Response of sugarcane in a Red Ultisol to phosphorus rates, phosphorus sources, and filter cake. Sci. World J. 2015, 2015, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.B.; Andrade, P.K.B.; Silva, S.A.M.; Simões Neto, D.E.; Freire, F.J.; Oliveira, E.C.A. P fertilization on plant and ratoon cane in the argisoils of the northeast of different textures. Rev. Caatinga 2014, 27, 47–56, (In Portuguese, abstract in English). [Google Scholar]
- Van Raij, B.; Cantarella, H. Other industrial crops: Sugarcane. In Liming and Fertilization Recommendations for the State of São Paulo; Boletim Técnico 100; Van Raij, B., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 1997; 285p. (In Portuguese) [Google Scholar]
- Rosa, P.A.L.; Mortinho, E.S.; Jalal, A.; Galindo, F.S.; Buzetti, S.; Fernandes, G.C.; Barco Neto, M.; Pavinato, P.S.; Teixeira Filho, M.C.M. Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Front. Environ. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Lopes, C.M.; Silva, A.M.M.; Estrada-Bonilla, G.A.; Ferraz-Almeida, R.; Vieira, J.L.V.; Otto, R.; Vitti, G.C.; Cardoso, E.J.B.N. Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. J. Clean. Prod. 2021, 298, 126821. [Google Scholar] [CrossRef]
- Vitti, G.C.; Otto, R.; Ferreira, L.R.P. Sugarcane nutrition and fertilization. In Agricultural Processes and Mechanization of Sugarcane; Belardo, G.C., Cassia, M.T., Silva, R.P., Eds.; Associação Brasileira de Engenharia Agrícola: Jaboticabal, Brazil, 2015; pp. 177–205. (In Portuguese) [Google Scholar]
- Zavaschi, E.; de Abreu Faria, L.; Ferraz-Almeida, R.; do Nascimento, C.A.C.; Pavinato, P.S.; Otto, R.; Vitti, A.C.; Vitti, G.C. Dynamic of P flux in tropical acid soils fertilized with humic acid–complexed phosphate. J. Soil Sci. Plant Nutr. 2020, 20, 1937–1948. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Rodrigues, M.; Soltangheisi, A.; de Carvalho, T.S.; Guilherme, L.R.G.; Benites, V.D.M.; Gatiboni, L.C.; de Sousa, D.M.G.; Nunes, R.D.S.; Rosolem, C.A.; et al. Transitions to sustainable management of phosphorus in Brazilian agriculture. Sci. Rep. 2018, 8, 2537. [Google Scholar] [CrossRef]
- Sharpley, A. Managing agricultural phosphorus to minimize water quality impacts. Sci. Agric. 2016, 73, 1–8. [Google Scholar] [CrossRef]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhad, R.C.; Singh, S.; Lata, A.S. Phosphate solubilizing microorganisms. In Bioaugmentation, Biostimulation and Biocontrol; Soil Biology Series 28; Singh, A., Parmar, N., Kuhad, R.C., Eds.; Springer: Berlin, Germany, 2011; pp. 65–84. [Google Scholar]
- Mumtaz, M.Z.; Ahmad, M.; Jamil, M.; Hussain, T. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol. Res. 2017, 202, 51–60. [Google Scholar] [CrossRef]
- Oliveira, R.P.; Schultz, N.; Monteiro, R.C.; Pereira, W.; Araújo, A.P.; Urquiaga, S.; Reis, V.M. Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. Afr. J. Agric. Res. 2016, 11, 2786–2795. [Google Scholar]
- Patel, J.K.; Archana, G. Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 2017, 417, 99–116. [Google Scholar] [CrossRef]
- Hungria, M.; Ribeiro, R.A.; Nogueira, M.A. Draft genome sequences of Azospirillum brasilense strains Ab-V5 and Ab-V6, commercially used in inoculants for grasses and legumes in Brazil. Genome Announc. 2018, 6, e00393-18. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.R.; Zoz, J.; Oliveira, C.E.S.; Zuffo, A.M.; Steiner, F.; Zoz, T.; Vendruscolo, E.P. Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Arch. Microbiol. 2019, 201, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Galindo, F.S.; Buzetti, S.; Rodrigues, W.L.; Boleta, E.H.M.; Silva, V.M.; Tavanti, R.F.R.; Fernandes, G.C.; Biagini, A.L.C.; Rosa, P.A.L.; Teixeira Filho, M.C.M. Inoculation of Azospirillum brasilense associated with silicon as a liming source to improve nitrogen fertilization in wheat crops. Sci. Rep. 2020, 10, 6160. [Google Scholar] [CrossRef]
- Steiner, F.; Oliveira, C.E.S.; Zoz, T.; Zuffo, A.M.; de Freitas, R.S. Co-Inoculation of common bean with Rhizobium and Azospirillum enhance the drought tolerance. Russ. J. Plant Physiol. 2020, 67, 923–932. [Google Scholar] [CrossRef]
- Tayade, A.S.; Geetha, P.; Anusha, S.; Dhanapal, R.; Hari, K. Bio-intensive modulation of sugarcane ratoon rhizosphere for enhanced soil health and sugarcane productivity under tropical Indian condition. Sugar Tech 2019, 21, 278–288. [Google Scholar] [CrossRef]
- Barreto, M.C.S.; Figueiredo, M.V.B.; Silva, M.V.; Oliveira, J.P.; Andrade, A.G.; Almeida, C.M.A.; Ferreira Junior, M.U.; Santos, C.E.R.S.; Reis Junior, O.V.; Lima, V.L.M. Inoculation of endophlytic diazotrophic bacteria in micro propagated seedlings of sugarcane (Saccharum officinarum sp.). Environ. Sustain. 2019, 2, 5–12. [Google Scholar] [CrossRef]
- Marra, L.M.; de Oliveira, S.M.; Soares, C.R.F.S.; Moreira, F.M.S. Solubilisation of inorganic phosphates by inoculant strains from tropical legumes. Sci. Agric. 2011, 68, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Bashan, Y.; Holguin, G.; de-Bashan, L.E. Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 2004, 50, 521–577. [Google Scholar] [CrossRef] [Green Version]
- Florio, A.; Pommier, T.; Gervaix, J.; Bérard, A.; Le Roux, X. Soil C and N statuses determine the effect of maize inoculation by plant growth promoting rhizobacteria on nitrifying and denitrifying communities. Sci. Rep. 2017, 7, 8411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embrapa. Brazilian Soil Classification System, 5th ed.; Embrapa: Brasília, Brazil, 2018. (In Portuguese) [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy—USDA; Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Embrapa. Manual of Soil Analysis Methods; Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil, 2017; p. 575. (In Portuguese) [Google Scholar]
- Oliveira, L.B.G.; Teixeira Filho, M.C.M.; Galindo, F.S.; Nogueira, T.A.R.; Barco Neto, M.; Buzetti, S. Forms and types of coinoculation in the soybean crop in Cerrado region. Rev. Cienc. Agrar. 2019, 42, 924–932, (In Portuguese, Abstract in English). [Google Scholar]
- Pereira, N.C.M.; Galindo, F.S.; Gazola, R.P.D.; Dupas, E.; Rosa, P.A.L.; Mortinho, E.S.; Teixeira Filho, M.C.M. Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria. Front. Environ. Sci. 2020, 8, 40. [Google Scholar] [CrossRef]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Evaluation of Plant Nutritional Status: Principles and Applications; Potafos: Piracicaba, Brazil, 1997. (In Portuguese) [Google Scholar]
- Fernandes, A.C. Calculations in the Sugarcane Agribusiness; STAB: Piracicaba, Brazil, 2011. (In Portuguese) [Google Scholar]
- R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 16 December 2021).
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Lollato, R.P.; Figueiredo, B.M.; Dhillon, J.S.; Arnall, D.B.; Raun, W.R. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments. Field Crops Res. 2019, 236, 42–57. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas, C.L.; Xiang, J.; Long, Y.; Wang, X.; Zou, J.; Luo, Z.; Ding, G.; Cai, H.; Graham, N.S.; et al. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci. Rep. 2016, 6, 33113. [Google Scholar] [CrossRef]
- Galindo, F.S.; Strock, J.S.; Pagliari, P.H. Nutrient accumulation affected by corn stover management associated with nitrogen and phosphorus fertilization. Agriculture 2021, 11, 1118. [Google Scholar] [CrossRef]
- Soltangheisi, A.; Withers, P.J.A.; Pavinato, P.S.; Cherubin, M.R.; Rossetto, R.; Do Carmo, J.B.; da Rocha, G.C.; Martinelli, L.A. Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bioenergy 2019, 11, 1444–1455. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Cherubin, M.R.; Soltangheisi, A.; Rocha, G.C.; Chadwick, D.R.; Jones, D.L. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci. Rep. 2020, 10, 15615. [Google Scholar] [CrossRef] [PubMed]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Ahmad, E. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology; Khan, M.S., Zaidi, A., Musarrat, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 31–62. [Google Scholar]
- Estrada-Bonilla, G.A.; Durrer, A.; Cardoso, E.J.B.N. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl. Soil Ecol. 2021, 157, 103760. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.K.; Li, H.B.; Guo, D.J.; Sharma, A.; Lakshmanan, P.; Malviya, M.K.; Song, X.P.; Solanki, M.K.; Verma, K.K.; et al. Diazotrophic bacteria Pantoea dispersa and Enterobacter asburiae promote sugarcane growth by inducing nitrogen uptake and defense-related gene expression. Front. Microbiol. 2021, 11, 3272. [Google Scholar] [CrossRef]
- Beneduzi, A.; Moreira, F.; Costa, P.B.; Vargas, L.K.; Lisboa, B.B.; Favreto, R.; Baldani, J.I.; Passaglia, L.M.P. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl. Soil Ecol. 2013, 63, 94–104. [Google Scholar] [CrossRef]
- Vacheron, J.; Moënne-Loccoz, Y.; Dubost, A.; Gonçalves-Martins, M.; Muller, D.; Prigent-Combaret, C. Pseudomonas fluorescens strains with only few plant-beneficial properties are favored in the maize rhizosphere. Front. Plant Sci. 2016, 7, 1212. [Google Scholar] [CrossRef] [Green Version]
- Almario, J.; Muller, D.; Défago, G.; Moënne-Loccoz, Y. Minireview: Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco. Environ. Microbiol. 2014, 16, 1949–1960. [Google Scholar] [CrossRef] [Green Version]
- Arruda, B.; Rodrigues, M.; Gumiere, T.; Richardson, A.E.; Andreote, F.D.; Soltangheisi, A.; Gatiboni, L.C.; Pavinato, P.S. The impact of sugarcane filter cake on the availability of P in the rhizosphere and associated microbial community structure. Soil Use Manag. 2019, 35, 334–345. [Google Scholar] [CrossRef]
- Magallon-Servin, P.; Antoun, H.; Taktek, S.; de-Bashan, L.E. Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR. Biol. Fertil. Soils 2020, 56, 521–536. [Google Scholar] [CrossRef]
- Korir, H.; Mungai, N.W.; Thuita, M.; Hamba, Y.; Masso, C. Co-inoculation effect of Rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 2017, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 2017, 7, 153. [Google Scholar] [CrossRef]
- Jang, J.H.; Kim, S.H.; Khaine, I.; Kwak, M.J.; Lee, H.K.; Lee, T.Y.; Lee, W.Y.; Woo, S.Y. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS. Photosynthetica 2018, 56, 1188–1203. [Google Scholar] [CrossRef]
- Martins, M.R.; Jantalia, C.P.; Reis, V.M.; Döwich, I.; Polidoro, J.C.; Alves, B.J.R.; Boddey, R.M.; Urquiaga, S. Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15N recovery by maize in a Cerrado Oxisol. Plant Soil 2018, 422, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Posada, L.F.; Álvarez, J.C.; Romero-Tabarez, M.; de-Bashan, L.; Villegas-Escobar, V. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol. Res. 2018, 217, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, L.P.; Ferrando, L.; Fernández-Scavino, A.; García de Salamone, I.E. Microorganisms reveal what plants do not: Wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions. Plant Soil 2018, 424, 405–417. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Pagliari, P.H.; Santini, J.M.K.; Alves, C.J.; Megda, M.M.; Nogueira, T.A.R.; Andreotti, M.; Arf, O. Maize yield response to nitrogen rates and sources associated with Azospirillum brasilense. Agron. J. 2019, 111, 1985–1997. [Google Scholar] [CrossRef] [Green Version]
- Pankievicz, V.C.S.; do Amaral, F.P.; Santos, K.F.D.N.; Agtuca, B.; Xu, Y.; Schueller, M.J.; Arisi, A.M.C.; Steffens, M.B.; de Souza, E.M.; Pedrosa, F.O.; et al. Robust biological nitrogen fixation in a model grass-bacterial association. Plant J. 2015, 81, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Skonieski, F.R.; Viégas, J.; Martin, T.N.; Carlos, C.; Mingotti, A.; Naetzold, S.; Tonin, T.J.; Dotto, L.R.; Meinerz, G.R. Effect of nitrogen topdressing fertilization and inoculation of seeds with Azospirillum brasilense on corn yield and agronomic characteristics. Agronomy 2019, 9, 812. [Google Scholar] [CrossRef] [Green Version]
- Rekha, K.; Baskar, B.; Srinath, S.; Usha, B. Plant-growth-promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots. Can. J. Microbiol. 2018, 64, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Moreno, C.Y.; La Cruz-Rodríguez, Y.D.; Vega-Arreguín, J.; Alvarado-Rodríguez, M.; Gómez-Soto, J.M.; Alvarado-Gutiérrez, A.; Fraire-Velázquez, S. Draft genome sequence of Bacillus subtilis 2C-9B, a strain with biocontrol potential against chili pepper root pathogens and tolerance to Pb and Zn. Genome Announc. 2018, 6, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Prakash, J.; Arora, N.K. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 2019, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, L.C.C.; Leal, L.C.S.; Galvez, Y.A.; Burbano, V.E.M. Bacillus: A genus of bacteria that exhibits important phosphate solubilizing abilities. Nova 2014, 12, 165–178. (In Spanish) [Google Scholar]
- Zeffa, D.I.M.; Perini Júnior, L.; Silva, M.B.; Sousa, N.V.; Scapim, C.A.; Oliveira, A.L.M.; Amaral Júnior, A.T.; Gonçalves, L.S.A. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE 2019, 14, e0215332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, B.V.; Chandrasehar, G.; Selvam, P.N. Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop Improvement through Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 221–243. [Google Scholar]
- Kamble, R.; Jadhav, P.; Gurjar, M. Biocontrol potential of Pseudomonas species against phytopathogens. Int. Res. J. Mod. Eng. Technol. Sci. 2020, 2, 558–568. [Google Scholar]
- Alaylar, B.; Egamberdieva, D.; Gulluce, M.; Karadayi, M.; Arora, N.K. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World J. Microbiol. Biotechnol. 2020, 36, 93. [Google Scholar] [CrossRef]
- Jing, X.; Cui, Q.; Li, X.; Yin, J.; Ravichandran, V.; Pan, D.; Fu, J.; Tu, Q.; Wang, H.; Bian, X.; et al. Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb. Biotechnol. 2020, 13, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Pineda, M.E.B. Phosphate solubilization as a microbial strategy for promoting plant growth. Corpoica Cienc. Tecnol. Agropecu. 2014, 15, 101–113, (In Spanish, abstract in English). [Google Scholar]
Layer | P Resin | S-SO4 | OM | pH | K | Ca | Mg | H + Al | Al | SB | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | -----mg dm−3----- | g dm−3 | CaCl2 | --------------------------mmol c dm−3------------------------ | |||||||||||
0.00–0.25 | 2 | 3 | 13 | 4.7 | 2.6 | 8 | 6 | 20 | 1 | 16.6 | |||||
0.25–0.50 | 2 | 2 | 12 | 4.8 | 2.4 | 9 | 7 | 20 | 2 | 18.4 | |||||
Layer | B b | Cu c | Fe c | Mn c | Zn c | CEC | V | m | |||||||
(m) | --------------------------mg dm−3-------------------------- | mmol c dm−3 | % | % | |||||||||||
0.00–0.25 | 0.22 | 0.8 | 14 | 16.2 | 0.6 | 36.6 | 45 | 6 | |||||||
0.25–0.50 | 0.22 | 1.0 | 7 | 8.3 | 0.3 | 38.4 | 48 | 10 |
Nitrogen | Phosphorus | |
---|---|---|
g kg−1 | ||
Rates of P2O5 | ||
(kg ha−1) | ||
0 | 20.44 | 2.32 |
45 | 20.53 | 2.34 |
90 | 20.08 | 2.37 |
135 | 20.39 | 2.31 |
180 | 20.33 | 2.36 |
Inoculation | ||
Control | 19.53 | 2.25 b |
Azo | 20.09 | 2.22 b |
Bac | 21.14 | 2.32 b |
Pseud | 20.58 | 2.41 a |
Azo + Bac | 20.03 | 2.37 a |
Azo + Pseud | 20.36 | 2.31 b |
Bac + Pseud | 20.65 | 2.48 a |
Azo + Bac + Pseud | 20.47 | 2.35 a |
F test | ||
Rates of P2O5 (D) | ns | ns |
Inoculation (I) | ns | * |
D × I | ns | ns |
Overall Average | 20.36 | 2.34 |
Standard error | 0.34 | 0.05 |
Fiber | Purity | Brix | Pol | TRS | STY | SUY | |
---|---|---|---|---|---|---|---|
% | % | % | % | kg t−1 | t ha−1 | t ha−1 | |
Rates of P2O5 | |||||||
(kg ha−1) | |||||||
0 | 10.19 | 81.58 | 19.57 | 14.15 | 142.62 | 175.31 | 24.80 |
45 | 10.58 | 82.12 | 20.16 | 14.53 | 145.20 | 177.60 | 25.80 |
90 | 10.77 | 81.28 | 20.34 | 14.31 | 140.41 | 180.11 | 25.78 |
135 | 10.59 | 81.03 | 20.15 | 14.33 | 140.95 | 181.14 | 25.96 |
180 | 10.41 | 82.84 | 19.59 | 13.96 | 143.99 | 189.99 | 26.41 |
Inoculation | |||||||
Control | 10.45 | 82.27 | 19.89 | 14.27 | 142.51 | 167.58 | 23.85 |
Azo | 10.65 | 83.72 | 19.86 | 14.29 | 145.26 | 177.23 | 25.41 |
Bac | 10.48 | 81.21 | 19.74 | 13.91 | 140.60 | 177.11 | 24.55 |
Pseud | 10.23 | 82.05 | 20.20 | 14.71 | 143.37 | 185.13 | 27.42 |
Azo + Bac | 10.89 | 81.60 | 20.29 | 14.13 | 140.70 | 186.21 | 26.19 |
Azo + Pseud | 10.43 | 81.85 | 19.82 | 14.35 | 142.14 | 189.05 | 27.13 |
Bac + Pseud | 10.37 | 80.74 | 19.88 | 14.20 | 142.62 | 196.78 | 27.77 |
Azo + Bac + Pseud | 10.58 | 80.72 | 20.03 | 14.18 | 143.87 | 167.56 | 23.68 |
F test | |||||||
Rates of P2O5 (D) | ** | ns | ** | ** | ** | ns | ns |
Inoculation (I) | ** | ns | ** | ** | ** | ** | ** |
D × I | ** | ns | ** | ** | ** | ** | ** |
Overall Average | 10.51 | 81.77 | 19.96 | 14.25 | 142.63 | 180.83 | 25.75 |
Standard error | 0.07 | 0.86 | 0.09 | 0.12 | 0.49 | 5.30 | 0.75 |
CV (%) | 2.59 | 4.09 | 1.87 | 3.23 | 1.33 | 13.11 | 13.10 |
Fiber (%) | |||||
Rates of P2O5 (kg ha−1) | |||||
Inoculation | 0 | 45 | 90 | 135 | 180 |
Control | 9.92 b | 10.14 c | 10.37 b | 10.75 b | 11.07 a |
Azo | 10.05 b | 11.34 a | 10.91 a | 10.61 b | 10.33 b |
Bac | 9.96 b | 10.51 c | 11.22 a | 10.49 b | 10.21 b |
Pseud | 10.61 a | 10.42 c | 10.21 b | 10.04 b | 9.87 b |
Azo + Bac | 10.58 a | 10.80 b | 11.17 a | 11.34 a | 10.55 a |
Azo + Pseud | 9.97 b | 10.39 c | 11.24 a | 10.41 b | 10.16 b |
Bac + Pseud | 10.04 b | 10.19 c | 10.36 b | 10.47 b | 10.80 a |
Azo + Bac + Pseud | 10.40 a | 10.88 b | 10.71 b | 10.65 b | 10.28 b |
Standard error | 0.16 | ||||
Brix (%) | |||||
Rates of P2O5 (kg ha−1) | |||||
Inoculation | 0 | 45 | 90 | 135 | 180 |
Control | 20.15 a | 19.97 b | 19.90 c | 19.72 b | 19.68 b |
Azo | 20.00 a | 20.84 a | 19.92 c | 19.64 b | 18.90 b |
Bac | 19.42 b | 19.62 b | 20.35 c | 19.98 b | 19.33 b |
Pseud | 19.44 b | 20.48 a | 20.71 b | 20.72 a | 19.65 b |
Azo + Bac | 19.35 b | 20.48 a | 21.33 a | 20.31 b | 20.01 a |
Azo + Pseud | 18.78 c | 19.72 b | 19.98 c | 20.14 b | 20.47 a |
Bac + Pseud | 20.51 a | 20.09 b | 19.89 c | 19.64 b | 19.28 b |
Azo + Bac + Pseud | 18.94 c | 20.12 b | 20.65 b | 21.08 a | 19.37 b |
Standard error | 0.22 | ||||
Pol (%) | |||||
Rates of P2O5 (kg ha−1) | |||||
Inoculation | 0 | 45 | 90 | 135 | 180 |
Control | 14.66 a | 14.36 b | 14.24 b | 14.26 b | 13.82 b |
Azo | 14.43 a | 15.40 a | 14.10 b | 13.87 b | 13.63 b |
Bac | 13.46 b | 13.57 b | 13.81 b | 14.14 b | 14.56 a |
Pseud | 13.88 b | 14.65 b | 15.15 a | 16.10 a | 13.78 b |
Azo + Bac | 13.36 b | 14.34 b | 14.97 a | 13.98 b | 13.98 b |
Azo + Pseud | 14.74 a | 14.26 b | 13.74 b | 14.30 b | 14.72 a |
Bac + Pseud | 15.07 a | 14.36 b | 14.03 b | 13.82 b | 13.73 b |
Azo + Bac + Pseud | 13.58 b | 15.27 a | 14.44 b | 14.20 b | 13.43 b |
Standard error | 0.27 |
TRS (kg t−1) | |||||
Rates of P2O5 (kg ha−1) | |||||
Inoculation | 0 | 45 | 90 | 135 | 180 |
Control | 144.38 c | 142.63 b | 142.10 b | 141.78 b | 141.68 c |
Azo | 142.64 c | 152.33 a | 139.33 c | 142.86 b | 149.15 b |
Bac | 141.18 c | 138.75 c | 135.90 d | 140.81 b | 146.39 b |
Pseud | 145.84 b | 150.74 a | 136.27 d | 132.29 c | 151.71 a |
Azo + Bac | 133.45 e | 143.51 b | 146.18 a | 140.28 b | 140.10 c |
Azo + Pseud | 146.64 b | 140.43 c | 135.50 d | 140.24 b | 147.89 b |
Bac + Pseud | 149.83 a | 141.92 b | 140.10 c | 139.93 b | 141.33 c |
Azo + Bac + Pseud | 137.04 d | 151.29 a | 147.90 a | 149.40 a | 133.71 d |
Standard error | 1.09 | ||||
STY (t ha−1) | |||||
Rates of P2O5 (kg ha−1) | |||||
Inoculation | 0 | 45 | 90 | 135 | 180 |
Control | 167.30 a | 153.13 b | 155.33 b | 167.25 b | 194.90 a |
Azo | 174.20 a | 196.68 a | 185.48 a | 131.25 b | 198.55 a |
Bac | 163.15 a | 182.98 a | 179.10 a | 194.90 a | 165.43 a |
Pseud | 170.85 a | 151.25 b | 202.55 a | 199.73 a | 201.25 a |
Azo + Bac | 205.03 a | 211.28 a | 141.65 b | 188.33 a | 184.78 a |
Azo + Pseud | 168.08 a | 185.53 a | 203.30 a | 201.28 a | 187.08 a |
Bac + Pseud | 180.03 a | 181.75 a | 201.43 a | 218.43 a | 202.28 a |
Azo + Bac + Pseud | 173.88 a | 158.25 b | 172.03 b | 147.95 b | 185.68 a |
Standard error | 11.85 | ||||
SUY (t ha−1) | |||||
Rates of P2O5 (kg ha−1) | |||||
Inoculation | 0 | 45 | 90 | 135 | 180 |
Control | 24.45 a | 21.99 b | 22.14 b | 23.85 b | 26.80 a |
Azo | 25.16 a | 30.29 a | 26.28 a | 18.23 b | 27.10 a |
Bac | 21.75 a | 24.69 b | 24.69 b | 27.51 a | 24.13 a |
Pseud | 24.02 a | 22.56 b | 30.84 a | 32.19 a | 27.50 a |
Azo + Bac | 27.25 a | 30.33 a | 21.17 b | 26.35 a | 25.87 a |
Azo + Pseud | 25.08 a | 26.27 b | 28.11 a | 28.56 a | 27.61 a |
Bac + Pseud | 27.18 a | 26.11 b | 28.07 a | 29.93 a | 27.57 a |
Azo + Bac + Pseud | 23.51 a | 24.14 b | 24.98 b | 21.03 b | 24.76 a |
Standard error | 1.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, P.A.L.; Galindo, F.S.; Oliveira, C.E.d.S.; Jalal, A.; Mortinho, E.S.; Fernandes, G.C.; Marega, E.M.R.; Buzetti, S.; Teixeira Filho, M.C.M. Inoculation with Plant Growth-Promoting Bacteria to Reduce Phosphate Fertilization Requirement and Enhance Technological Quality and Yield of Sugarcane. Microorganisms 2022, 10, 192. https://doi.org/10.3390/microorganisms10010192
Rosa PAL, Galindo FS, Oliveira CEdS, Jalal A, Mortinho ES, Fernandes GC, Marega EMR, Buzetti S, Teixeira Filho MCM. Inoculation with Plant Growth-Promoting Bacteria to Reduce Phosphate Fertilization Requirement and Enhance Technological Quality and Yield of Sugarcane. Microorganisms. 2022; 10(1):192. https://doi.org/10.3390/microorganisms10010192
Chicago/Turabian StyleRosa, Poliana Aparecida Leonel, Fernando Shintate Galindo, Carlos Eduardo da Silva Oliveira, Arshad Jalal, Emariane Satin Mortinho, Guilherme Carlos Fernandes, Evelyn Maria Rocha Marega, Salatiér Buzetti, and Marcelo Carvalho Minhoto Teixeira Filho. 2022. "Inoculation with Plant Growth-Promoting Bacteria to Reduce Phosphate Fertilization Requirement and Enhance Technological Quality and Yield of Sugarcane" Microorganisms 10, no. 1: 192. https://doi.org/10.3390/microorganisms10010192
APA StyleRosa, P. A. L., Galindo, F. S., Oliveira, C. E. d. S., Jalal, A., Mortinho, E. S., Fernandes, G. C., Marega, E. M. R., Buzetti, S., & Teixeira Filho, M. C. M. (2022). Inoculation with Plant Growth-Promoting Bacteria to Reduce Phosphate Fertilization Requirement and Enhance Technological Quality and Yield of Sugarcane. Microorganisms, 10(1), 192. https://doi.org/10.3390/microorganisms10010192