Pathogenic Escherichia coli, Salmonella spp. and Campylobacter spp. in Two Natural Conservation Centers of Wildlife in Portugal: Genotypic and Phenotypic Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Study Population and Sample Collection
2.3. Isolation Methodology
2.4. Bacterial Typing and Antimicrobial Susceptibility Testing
2.5. Whole-Genome Sequencing, in Silico Typing and Screening of Virulence/AMR Genes
2.6. Core-Genome MLST Clustering Analysis of Pathogenic E. coli
3. Results
3.1. Detection and Characterization of Isolates
3.2. Antimicrobial Susceptibility Testing and in Silico Genotyping
3.3. Core Genome MLST Clustering Analysis of Pathogenic E. coli Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassel, J.M.; Begon, M.; Ward, M.J. Urbanization and Disease Emergence: Dynamics at the Wildlife-Livestock-Human Interface. Trends Ecol. Evol. 2017, 32, 55–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.B.; Häsler, B.; Rushton, J. Economic Aspects of Zoonoses: Impact of Zoonoses on the Food Industry. In Zoonoses-Infections Affecting Humans and Animals; Springer: Dordrecht, The Netherlands, 2014; pp. 1107–1126. [Google Scholar]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, 6971. [Google Scholar]
- Aguirre, A.A.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J.; Murphy, C.E.; Su, C.; et al. The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies. Ecohealth 2019, 16, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latif, A.A.; Mukaratirwa, S. Zoonotic origins and animal hosts of coronaviruses causing human disease pandemics: A review. Onderstepoort J. Vet. Res. 2020, 87, 1895. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozolinš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef] [PubMed]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, 6490. [Google Scholar]
- Mora, A.; López, C.; Dhabi, G.; López-Beceiro, A.M.; Fidalgo, L.E.; Diaz, E.A.; Martínez-Carrasco, C.; Mamani, R.; Herrera, A.; Blanco, J.E.; et al. Seropathotypes, Phylogroups, Stx subtypes, and intimin types of wildlife-carried, shiga toxin-producing Escherichia coli strains with the same characteristics as human-pathogenic isolates. Appl. Environ. Microbiol. 2012, 78, 2578–2585. [Google Scholar] [CrossRef] [Green Version]
- Bertelloni, F.; Cilia, G.; Bogi, S.; Ebani, V.V.; Turini, L.; Nuvoloni, R.; Cerri, D.; Fratini, F.; Turchi, B. Pathotypes and Antimicrobial Susceptibility of Escherichia Coli Isolated from Wild Boar (Sus scrofa) in Tuscany. Animals 2020, 10, 744. [Google Scholar] [CrossRef]
- Alonso, C.A.; Mora, A.; Díaz, D.; Blanco, M.; González-Barrio, D.; Ruiz-Fons, F.; Simón, C.; Blanco, J.; Torres, C. Occurrence;and characterization of stx and/or eae-positive Escherichia coli isolated from wildlife, including a typical EPEC strain from a wild boar. Vet. Microbiol. 2017, 207, 69–73. [Google Scholar] [CrossRef]
- Sannö, A.; Aspán, A.; Hestvik, G.; Jacobson, M. Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars. Epidemiol. Infect. 2014, 142, 2542–2547. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.; Martinez, R.; García, A.; Vidal, D.; Blanco, J.; Blanco, M.; Blanco, J.E.; Mora, A.; Herrera-León, S.; Echeita, A.; et al. Detection and characterisation of O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in wild boars. Vet. Microbiol. 2010, 143, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gonzalez, N.; Porrero, M.C.; Mentaberre, G.; Serrano, E.; Mateos, A.; Cabal, A.; Domínguez, L.; Lavín, S. Escherichia coli O157:H7 in wild boars (Sus scrofa) and Iberian ibex (Capra pyrenaica) sharing pastures with free-ranging livestock in a natural environment in Spain. Vet. Q 2015, 35, 102–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, D.; Caetano, T.; Torres, R.T.; Fonseca, C.; Mendo, S. Shiga toxin-producing Escherichia coli in wild ungulates. Sci. Total Environ. 2019, 651 Pt 1, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Szczerba-Turek, A.; Socha, P.; Bancerz-Kisiel, A.; Platt-Samoraj, A.; Lipczynska-Ilczuk, K.; Siemionek, J.; Kończyk, K.; Terech-Majewska, E.; Szweda, W. Pathogenic potential to humans of Shiga toxin-producing Escherichia coli isolated from wild boars in Poland. Int. J. Food Microbiol. 2019, 300, 8–13. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, N.; Casas-Díaz, E.; Porrero, C.M.; Mateos, A.; Domínguez, L.; Lavín, S.; Serrano, E. Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars in Barcelona, Spain. Vet. Microbiol. 2013, 167, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Wacheck, S.; Fredriksson-Ahomaa, M.; König, M.; Stolle, A.; Stephan, R. Wild Boars as an Important Reservoir for Foodborne Pathogens. Foodborne Pathog Dis 2010, 7, 307–312. [Google Scholar] [CrossRef]
- Marotta, F.; Di Marcantonio, L.; Janowicz, A.; Pedonese, F.; Di Donato, G.; Ardelean, A.; Nuvoloni, R.; Di Giannatale, E.; Garofolo, G. Genotyping and Antibiotic Resistance Traits in Campylobacter jejuni and coli from Pigs and Wild Boars in Italy. Front. Cell Infect. Microbiol. 2020, 10, 592512. [Google Scholar] [CrossRef]
- 20 Mokracka, J.; Krzymińska, S.; Ałtunin, D.; Wasyl, D.; Koczura, R.; Dudek, K.; Dudek, M.; Chyleńska, Z.A.; Ekner-Grzyb, A. In vitro virulence characteristics of rare serovars of Salmonella enterica isolated from sand lizards (Lacerta agilis L.). Antonie Van Leeuwenhoek 2018, 111, 1863–1870. [Google Scholar] [CrossRef] [Green Version]
- Sabat, G.; Rose, P.; Hickey, W.J.; Harkin, J.M. Selective and sensitive method for PCR amplification of Escherichia coli 16S rRNA genes in soil. Appl. Environ. Microbiol. 2000, 66, 844–849. [Google Scholar] [CrossRef] [Green Version]
- ISO 6579-1:2017; Microbiology of the Food Chain-Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- ISO 10272-1:2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for Detection and Enumeration of Campylobacter spp.—Part 1: Detection Method. ISO: Geneva, Switzerland, 2006.
- Persson, S.; Olsen, K.E.; Scheutz, F.; Krogfelt, K.A.; Gerner-Smidt, P. A method for fast and simple detection of major diarrhoeagenic Escherichia coli in the routine diagnostic laboratory. Clin. Microbiol. Infect. 2007, 13, 516–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisen, N.; Scheutz, F.; Rasko, D.A.; Redman, J.C.; Persson, S.; Simon, J.; Kotloff, K.L.; Levine, M.M.; Sow, S.; Tamboura, B.; et al. Genomic characterization of enteroaggregative Escherichia coli from children in Mali. J. Infect. Dis. 2012, 205, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Otomo, Y.; Ahsan, C.R. A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli. J. Microbiol. Methods 2013, 92, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST-The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0. Available online: http://www.eucast.org (accessed on 4 October 2022).
- Grimont, P.A.D.; Weill, F.X. Antigenic formulae of the Salmonella serovars. In WHO Collaborating Centre for Reference and Research on Salmonella, 9th ed.; WHO Collaborating Centre for reference and research on Salmonella, Institute Pasteur: Paris, France, 2007; pp. 1–166. [Google Scholar]
- EUCAST-The European Committee on Antimicrobial Susceptibility Testing. Comité de l’antibiogramme de la Société Française de Microbiologie. Recommandations V.1.1 Avril. Available online: sfm-microbiologie.org (accessed on 4 October 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llarena, A.-K.; Ribeiro-Gonçalves, B.F.; Silva, D.N.; Halkilahti, J.; Machado, M.P.; Da Silva, M.S.; Jaakkonen, A.; Isidro, J.; Hämäläinen, C.; Joenperä, J.; et al. INNUENDO: A Cross-sectoral Platform for the Integration of Genomics in the Surveillance of Food-borne Pathogens. EFSA Support. Publ. 2018, 15, 1498E. [Google Scholar] [CrossRef] [Green Version]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Langmead, B. Aligning Short Sequencing Reads with Bowtie. Curr. Protoc. Bioinform. 2010, 32, 11.7.1–11.7.4. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; Machado, M.P.; Silva, D.N.; Rossi, M.; Moran-Gilad, J.; Santos, S.; Ramirez, M.; Carriço, J.A. chewBBACA: A Complete Suite for Gene-by-Gene Schema Creation and Strain Identification. Microb. Genom. 2018, 4, e000166. [Google Scholar] [CrossRef] [PubMed]
- Mamede, R.; Vila-Cerqueira, P.; Silva, M.; Carriço, J.A.; Ramirez, M. Chewie Nomenclature Server (chewie-NS): A Deployable Nomenclature Server for Easy Sharing of Core and Whole Genome MLST Schemas. Nucleic Acids Res. 2020, 49, D660–D666. [Google Scholar] [CrossRef] [PubMed]
- Mixão, V.; Pinto, M.; Sobral, D.; Di Pasquale, A.; Gomes, J.P.; Borges, V. ReporTree: A Surveillance-Oriented Tool to Strengthen the Linkage between Pathogen Genetic Clusters and Epidemiological Data. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of Core Genomic Relationships among 100,000 Bacterial Pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Hofer, E.; Cernela, N.; Stephan, R. Shiga toxin subtypes associated with Shiga toxin-producing Escherichia coli strains isolated from red deer, roe deer, chamois, and ibex. Foodborne Pathog. Dis. 2012, 9, 792–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemper, N.; Aschfalk, A.; Höller, C. Campylobacter spp., Enterococcus spp., Escherichia coli, Salmonella spp., Yersinia spp., and Cryptosporidium oocysts in semi-domesticated reindeer (Rangifer tarandus tarandus) in Northern Finland and Norway. Acta Vet. Scand. 2006, 48, 7. [Google Scholar] [CrossRef] [Green Version]
- Lillehaug, A.; Bergsjø, B.; Schau, J.; Bruheim, T.; Vikøren, T.; Handeland, K. Campylobacter spp., Salmonella spp., verocytotoxic Escherichia coli, and antibiotic resistance in indicator organisms in wild cervids. Acta Vet. Scand. 2005, 46, 23–32. [Google Scholar] [CrossRef]
- Schierack, P.; Römer, A.; Jores, J.; Kaspar, H.; Guenther, S.; Filter, M.; Eichberg, J.; Wieler, L.H. Isolation and characterization of intestinal Escherichia coli clones from wild boars in Germany. Appl. Environ. Microbiol. 2009, 75, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Cilia, G.; Turchi, B.; Fratini, F.; Bilei, S.; Bossù, T.; De Marchis, M.L.; Cerri, D.; Pacini, M.I.; Bertelloni, F. Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens 2021, 10, 93. [Google Scholar] [CrossRef]
- Sannö, A.; Rosendal, T.; Aspán, A.; Backhans, A.; Jacobson, M. Distribution of enteropathogenic Yersinia spp. and Salmonella spp. in the Swedish wild boar population, and assessment of risk factors that may affect their prevalence. Acta Vet. Scand. 2018, 60, 40. [Google Scholar]
- Zottola, T.; Montagnaro, S.; Magnapera, C.; Sasso, S.; De Martino, L.; Bragagnolo, A.; D’Amici, L.; Condoleo, R.; Pisanelli, G.; Iovane, G.; et al. Prevalence and antimicrobial susceptibility of Salmonella in European wild boar (Sus scrofa); Latium Region-Italy. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Molino, M.G.; Sánchez, A.G.; Pérez, D.R.; Blanco, P.G.; Molina, A.Q.; Pérez, J.R.; Cano, F.E.M.; Horrillo, R.C.; Salcedo, J.H.-M.; Llario, P.F. Prevalence of Salmonella spp. in tonsils, mandibular lymph nodes and faeces of wild boar from Spain and genetic relationship between isolates. Transbound. Emerg. Dis. 2019, 66, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gonzalez, N.; Mentaberre, G.; Porrero, C.M.; Serrano, E.; Mateos, A.; López-Martín, J.M.; Lavín, S.; Domínguez, L. Effect of cattle on Salmonella carriage, diversity and antimicrobial resistance in free-ranging wild boar (Sus scrofa) in northeastern Spain. PLoS ONE 2012, 7, e51614. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gonzalez, N.; Ugarte-Ruiz, M.; Porrero, M.C.; Zamora, L.; Mentaberre, G.; Serrano, E.; Mateos, A.; Lavín, S.; Domínguez, L. Campylobacter shared between free-ranging cattle and sympatric wild ungulates in a natural environment (NE Spain). Ecohealth 2014, 11, 333–342. [Google Scholar] [CrossRef]
- Carbonero, A.; Paniagua, J.; Torralbo, A.; Arenas-Montes, A.; Borge, C.; García-Bocanegra, I. Campylobacter infection in wild artiodactyl species from southern Spain: Occurrence, risk factors and antimicrobial susceptibility. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 115–121. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Collis, R.M.; Biggs, P.J.; Midwinter, A.C.; Browne, A.S.; Wilkinson, D.A.; Irshad, H.; French, N.P.; Brightwell, G.; Cookson, A.L. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS ONE 2020, 15, e0235066. [Google Scholar] [CrossRef]
- Beutin, L.; Gleier, K.; Kontny, I.; Echeverria, P.; Scheutz, F. Origin and characteristics of enteroinvasive strains of Escherichia coli (EIEC) isolated in Germany. Epidemiol. Infect. 1997, 118, 199–205. [Google Scholar] [CrossRef]
- Foster, M.A.; Iqbal, J.; Zhang, C.; McHenry, R.; Cleveland, B.E.; Romero-Herazo, Y.; Fonnesbeck, C.; Payne, D.C.; Chappell, J.D.; Halasa, N.; et al. Enteropathogenic and enteroaggregative E. coli in stools of children with acute gastroenteritis in Davidson County, Tennessee. Diagn. Microbiol. Infect. Dis. 2015, 83, 319–324. [Google Scholar] [CrossRef] [Green Version]
- STEC Infection: Annual Epidemiological Report for 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/STEC-infection-AER-2020-JD-FINAL.pdf (accessed on 4 October 2022).
- Guard-Petter, J. The chicken, the egg and Salmonella Enteritidis. Environ. Microbiol. 2001, 3, 421–430. [Google Scholar] [CrossRef]
- ECDC and EFSA (European Centre for Disease Prevention and Control, European Food Safety Authority). Multi-Country Outbreak of Salmonella Enteritidis Sequence Type (ST)11 Infections Linked to Poultry Products in the EU/EEA and the United Kingdom–25 February Stockholm: ECDC/EFSA. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2021.EN-6486 (accessed on 4 October 2022).
- ECDC and EFSA (European Centre for Disease Prevention and Control, European Food Safety Authority). Multi-Country Outbreak of Salmonella Enteritidis Sequence Type (ST)11 Infections Linked to Eggs and Egg Products –8 February. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/ROA_Salmonella-Enteritidis-ST11_2022_final.pdf (accessed on 4 October 2022).
- Dionisio, D.; Esperti, F.; Vivarelli, A.; Fabbri, C.; Apicella, P.; Meola, N.; Lencioni, P.; Vannucci, R. Acute terminal ileitis mimicking Crohn’s disease caused by Salmonella veneziana. Int. J. Infect. Dis. 2001, 5, 225–227. [Google Scholar] [CrossRef] [Green Version]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, D.A.; O’Donnell, A.J.; Akhter, R.N.; Fayaz, A.; Mack, H.J.; Rogers, L.E.; Biggs, P.J.; French, N.P.; Midwinter, A.C. Updating the genomic taxonomy and epidemiology of Campylobacter hyointestinalis. Sci. Rep. 2018, 8, 2393. [Google Scholar] [CrossRef] [PubMed]
- The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2017. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2018.5500 (accessed on 4 October 2022).
- Bielaszewska, M.; Mellmann, A.; Bletz, S.; Zhang, W.; Köck, R.; Kossow, A.; Prager, R.; Fruth, A.; Orth-Höller, D.; Marejková, M.; et al. Enterohemorrhagic Escherichia coli O26:H11/H: A new virulent clone emerges in Europe. Clin. Infect. Dis. 2013, 56, 1373–1381. [Google Scholar] [CrossRef]
- Zweifel, C.; Cernela, N.; Stephan, R. Detection of the emerging Shiga toxin-producing Escherichia coli O26:H11/H- sequence type 29 (ST29) clone in human patients and healthy cattle in Switzerland. Appl. Environ. Microbiol. 2013, 79, 5411–5413. [Google Scholar] [CrossRef] [Green Version]
- Mellmann, A.; Bielaszewska, M.; Karch, H. Intrahost genome alterations in enterohemorrhagic Escherichia coli. Gastroenterology 2009, 136, 1925–1938. [Google Scholar] [CrossRef]
- Szczerba-Turek, A.; Siemionek, J.; Socha, P.; Bancerz-Kisiel, A.; Platt-Samoraj, A.; Lipczynska-Ilczuk, K.; Szweda, W. Shiga toxin-producing Escherichia coli isolates from red deer (Cervus elaphus), roe deer (Capreolus capreolus) and fallow deer (Dama dama) in Poland. Food Microbiol. 2020, 86, 103352. [Google Scholar] [CrossRef]
- Fuller, C.A.; Pellino, C.A.; Flagler, M.J.; Strasser, J.E.; Weiss, A.A. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 2011, 79, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- de Boer, R.F.; Ferdous, M.; Ott, A.; Scheper, H.R.; Wisselink, G.J.; Heck, M.E.; Rossen, J.W.; Kooistra-Smid, A.M.D. Assessing the public health risk of Shiga toxin-producing Escherichia coli by use of a rapid diagnostic screening algorithm. J. Clin. Microbiol. 2015, 53, 1588–1598. [Google Scholar] [CrossRef] [Green Version]
- Fierz, L.; Cernela, N.; Hauser, E.; Nüesch-Inderbinen, M.; Stephan, R. Characteristics of Shigatoxin-Producing Escherichia coli Strains Isolated during 2010–2014 from Human Infections in Switzerland. Front. Microbiol. 2017, 8, 1471. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Yao, F.; Zhu, G. Major virulence factors of enterotoxigenic Escherichia coli in pigs. Ann. Microbiol. 2012, 62, 7–14. [Google Scholar] [CrossRef]
- Mellmann, A.; Fruth, A.; Friedrich, A.W.; Wieler, L.H.; Harmsen, D.; Werber, D.; Middendorf, B.; Bielaszewska, M.; Karch, H. Phylogeny and disease association of Shiga toxin-producing Escherichia coli O91. Emerg. Infect. Dis. 2009, 15, 1474–1477. [Google Scholar] [CrossRef] [PubMed]
TNM | CRFPBG | Total | |||||
---|---|---|---|---|---|---|---|
Wild Boar | Fallow Deer | Red Deer | Hedgehog | Genet | |||
Samples tested for E. coli | 51 | 50 | 12 | 18 | 1 | 132 | |
E. coli isolates | STEC No. (% +ve samples) | 3 (5.9) | 29 (56.0 a) | 5 (41.7) | 0 | 0 | 37 (27.3 a) |
EPEC No. (% +ve samples) | 3 (5.9) | 7 (14.0) | 1 (8.3) | 1 (5.6) | 0 | 12 (9.1) | |
ETEC No. (% +ve samples) | 3 (5.9) | 0 | 0 | 0 | 0 | 3 (2.3) | |
Total No. (% +ve samples) | 9 (17.6) | 36 (68.0 a) | 6 (50.0) | 1 (5.5) | 0 | 52 (37.9 a) | |
Samples tested for Salmonella spp. | 51 | 50 | 12 | 18 | 1 | 132 | |
Salmonella isolates | S. Enteritidis No. (% + ve samples) | 1 (2.0) | 0 | 0 | 0 | 0 | 1 (0.8) |
S. Schleissheim No. (% +ve samples) | 1 (2.0) | 0 | 1 (8.3) | 0 | 0 | 2 (1.5) | |
S. Veneziana No. (% +ve samples) | 0 | 0 | 0 | 1 (5.6) | 0 | 1 (0.8) | |
Total No. (% +ve samples) | 2 (3.9) | 0 | 1 (8.3) | 1 (5.6) | 0 | 4 (3.0) | |
Samples tested for Campylobacter spp. | 39 | 50 | 12 | 16 | 1 | 118 b | |
Campylobacter isolates | C. hyointestinalis No. (% +ve samples) | 7 (17.9) | 0 | 0 | 0 | 0 | 7 (5.9) |
C. coli No. (% +ve samples) | 0 | 0 | 0 | 0 | 1 (100) | 1 (0.8) | |
Total No. (% +ve samples) | 7 (17.9) | 0 | 0 | 0 | 1 (100) | 8 (6.8) |
O Antigen | O146 | O75 | O27 | OND | O110 | OND | OND | O121 | O156 | O70 | O108 | O145 | O26 | O35 | O167 | OND | O28ac/O42 | O98 | O182 | Total (%) | ||
H Antigen | H21 | H28 | H8 | H30 | H8 | H31 | H21 | H28 | HND | H25 | H11 | H9 | HND | H11 | H31 | H9 | HND | H8 | H5 | H19 | ||
ST | 442 | 738 | 13 | 753 | 13 | 812 | 11692-like | 738 | 655 | 300 | 29 | 302 | 137 | 29 | 123 | 2538 | 137 | 109 | 2951 | 10 | ||
Pathotype | STEC | EPEC | ETEC | |||||||||||||||||||
No. isolates | 10 | 8 | 10 | 5 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 * | 1 ** | 1 | 1 | 1 | 1 | 1 * | 1 | 1 | 52 | |
Animals | Wild boar | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 9 (17.3) |
Fallow deer | 8 | 7 | 10 | 2 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 36 (69.2) | |
Red deer | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 (11.5) | |
Hedgehog | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 (1.9) | |
Toxin | astA | 0 | 8 | 0 | 5 | 0 | 0 | 0 | 1 | 3 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 26 (50.0) |
ehxa | 9 | 8 | 10 | 0 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 40 (76.9) | |
mchF | 10 | 8 | 0 | 5 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 (51.9) | |
sta1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 (1.9) | |
sTb | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 (5.8) | |
stx1 | 0 | 0 | 10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 (21.2) | |
stx2 | 10 | 8 | 10 | 5 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 (71.2) | |
subA | 8 | 7 | 8 | 4 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 (59.6) | |
Adhe | eae | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 12 (23.07) |
iha | 10 | 6 | 10 | 5 | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 42 (80.8) | |
lpfA | 10 | 7 | 10 | 0 | 1 | 0 | 1 | 1 | 3 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 39 (75.0) | |
Other | elt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 (5.8) |
espl | 10 | 0 | 10 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 (48.1) | |
gad | 10 | 8 | 10 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 47 (90.4) | |
ireA | 10 | 8 | 10 | 5 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 (71.2) | |
iss | 10 | 7 | 8 | 5 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 40 (76.9) | |
ompT | 10 | 8 | 8 | 5 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 47 (90.4) |
Global cgMLST Analysis (n = 2567 loci) a | ST-Specific cgMLST Analysis b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cluster | Cluster Length | Isolates | Animal Species | Timespan (Days) | Pathotype | MLST_ST | Serotype | Antibiotic Resistance Phenotype | Extended Schema Size | Cluster Confirmation |
cluster_5 | 7 | Ec-TM1,Ec-TM28,Ec-TM29-4,Ec-TM31,Ec-TM56,Ec-TM87,Ec-TM92 | fallow deer (100.0%) | 120 | STEC | 13 | O75:H8 (71.4%), OND:H8 (28.6%) | Susceptible (100.0%) | 3321 | Yes. Cluster isolates connected by ≤ 9 ADs (0.27%) |
cluster_7 | 2 | Ec-TM15,Ec-TM74 | fallow deer (100.0%) | 112 | STEC | 13 | O75:H8 (100.0%) | Susceptible (100.0%) | 3321 | Yes. Cluster isolates differ by 11 ADs (0.33%) |
cluster_9 | 2 | Ec-TM26,Ec-TM69 | fallow deer (50.0%), wild boar (50.0%) | 112 | EPEC | 137 | O145:HND (50.0%), OND:HND (50.0%) | AMP, CHL, SMX (50.0%), Susceptible (50.0%) | 3333 | Yes. Cluster isolates differ by 5 ADs (0.15%) |
cluster_3 | 2 | Ec-TM30-2,Ec-TM101 | fallow deer (100.0%) | 106 | EPEC | 300 | O156:H25 (100.0%) | Susceptible (100.0%) | 3387 | Yes. Cluster isolates differ by 5 ADs (0.15%) |
cluster_6 | 6 | Ec-TM2,Ec-TM3,Ec-TM23,Ec-TM73,Ec-TM82,Ec-TM95 | fallow deer (83.3%), wild boar (16.7%) | 120 | STEC | 442 c | O146:H21 (100.0%) | Susceptible (100.0%) | 3248 | Yes, consolidating the potential link with cluster_4 (12 ADs/0.37%). Ec-TM95 slightly split apart (15 ADs/0.46%) |
cluster_4 | 4 | Ec-TM27,Ec-TM84,Ec-TM97,Ec-TM99 | fallow deer (75.0%), wild boar (25.0%) | 106 | STEC | 442 c | O146:H21 (100.0%) | Susceptible (100.0%) | 3248 | Yes, consolidating the potential link with cluster_6 (12 ADs/0.37%). Ec-TM99 slightly split apart (12 ADs/0.37%) |
cluster_1 | 3 | Ec-TM14,Ec-TM55,Ec-TM64 | fallow deer (66.7%), red deer (33.3%) | 105 | EPEC | 655 | O121:HND (100.0%) | Susceptible (100.0%) | 3349 | Yes. Cluster isolates connected by 5 ADs (0.15%) |
cluster_2 | 2 | Ec-TM25,Ec-TM30-1 | red deer (50.0%), fallow deer (50.0%) | 7 | STEC | 738 | O146:H28 (50.0%), OND:H28 (50.0%) | Susceptible (100.0%) | 3334 | Yes. Cluster isolates differ by 7 ADs (0.21%) |
cluster_8 | 2 | Ec-TM81,Ec-TM96 | fallow deer (50.0%), wild boar (50.0%) | 1 | STEC | 753 | O27:H30 (100.0%) | Susceptible (100.0%) | 3208 | Yes. Cluster isolates differ by 8 ADs (0.25%). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pista, A.; Silveira, L.; Ribeiro, S.; Fontes, M.; Castro, R.; Coelho, A.; Furtado, R.; Lopes, T.; Maia, C.; Mixão, V.; et al. Pathogenic Escherichia coli, Salmonella spp. and Campylobacter spp. in Two Natural Conservation Centers of Wildlife in Portugal: Genotypic and Phenotypic Characterization. Microorganisms 2022, 10, 2132. https://doi.org/10.3390/microorganisms10112132
Pista A, Silveira L, Ribeiro S, Fontes M, Castro R, Coelho A, Furtado R, Lopes T, Maia C, Mixão V, et al. Pathogenic Escherichia coli, Salmonella spp. and Campylobacter spp. in Two Natural Conservation Centers of Wildlife in Portugal: Genotypic and Phenotypic Characterization. Microorganisms. 2022; 10(11):2132. https://doi.org/10.3390/microorganisms10112132
Chicago/Turabian StylePista, Angela, Leonor Silveira, Sofia Ribeiro, Mariana Fontes, Rita Castro, Anabela Coelho, Rosália Furtado, Teresa Lopes, Carla Maia, Verónica Mixão, and et al. 2022. "Pathogenic Escherichia coli, Salmonella spp. and Campylobacter spp. in Two Natural Conservation Centers of Wildlife in Portugal: Genotypic and Phenotypic Characterization" Microorganisms 10, no. 11: 2132. https://doi.org/10.3390/microorganisms10112132
APA StylePista, A., Silveira, L., Ribeiro, S., Fontes, M., Castro, R., Coelho, A., Furtado, R., Lopes, T., Maia, C., Mixão, V., Borges, V., Sá, A., Soeiro, V., Correia, C. B., Gomes, J. P., Saraiva, M., Oleastro, M., & Batista, R. (2022). Pathogenic Escherichia coli, Salmonella spp. and Campylobacter spp. in Two Natural Conservation Centers of Wildlife in Portugal: Genotypic and Phenotypic Characterization. Microorganisms, 10(11), 2132. https://doi.org/10.3390/microorganisms10112132