Acanthamoeba Mannose and Laminin Binding Proteins Variation across Species and Genotypes
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. 18S rDNA Phylogeny
3.2. Recovery of Mannose and Laminin Binding Protein Genes: General Features
3.3. Molecular Phylogeny of Binding Proteins
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.K.; Sharma, P.; Shyam, K.; Tejan, N.; Ghoshal, U. Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp. Parasitol. 2020, 208, 107788. [Google Scholar] [CrossRef]
- Niederkorn, J.Y. The biology of Acanthamoeba keratitis. Exp. Eye Res. 2021, 202, 108365. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.W.; Niederkorn, J.Y. The pathophysiology of Acanthamoeba keratitis. Trends Parasitol. 2006, 22, 175–180. [Google Scholar] [CrossRef]
- Siddiqui, R.; Emes, R.; Elsheikha, H.; Khan, N.A. Area 51: How do Acanthamoeba invade the central nervous system? Trends Parasitol. 2011, 27, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cao, Z.; Panjwani, N. Pathogenesis of Acanthamoeba keratitis: Carbohydrate-mediated host-parasite interactions. Infect. Immun. 1997, 65, 439–445. [Google Scholar] [CrossRef]
- Garate, M.; Cao, Z.; Bateman, E.; Panjwani, N. Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. J. Biol. Chem. 2004, 279, 29849–29856. [Google Scholar] [CrossRef]
- Garate, M.; Cubillos, I.; Marchant, J.; Panjwani, N. Biochemical characterization and functional studies of Acanthamoeba mannose-binding protein. Infect. Immun. 2005, 73, 5775–5781. [Google Scholar] [CrossRef]
- Panjwani, N. Pathogenesis of Acanthamoeba keratitis. Ocul. Surf. 2010, 8, 70–79. [Google Scholar] [CrossRef]
- Hong, Y.-C.; Lee, W.-M.; Kong, H.-H.; Jeong, H.-J.; Chung, D.-I. Molecular cloning and characterization of a cDNA encoding a laminin-binding protein (AhLBP) from Acanthamoeba healyi. Exp. Parasitol. 2004, 106, 95–102. [Google Scholar] [CrossRef]
- Rocha-Azevedo, B.D.; Jamerson, M.; Cabral, G.A.; Silva-Filho, F.C.; Marciano-Cabral, F. Acanthamoeba interaction with extracellular matrix glycoproteins: Biological and biochemical characterization and role in cytotoxicity and invasiveness. J. Eukaryot. Microbiol. 2009, 56, 270–278. [Google Scholar] [CrossRef] [PubMed]
- DiGiacomo, V.; Meruelo, D. Looking into laminin receptor: Critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol. Rev. 2016, 91, 288–310. [Google Scholar] [CrossRef] [PubMed]
- Ardini, E.; Pesole, G.; Tagliabue, E.; Magnifico, A.; Castronovo, V.; Sobel, M.E.; Colnaghi, M.I.; Ménard, S. The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution. Mol. Biol. Evol. 1998, 15, 1017–1025. [Google Scholar] [CrossRef]
- Castronovo, V.; Taraboletti, G.; Sobel, M.E. Functional domains of the 67-kDa laminin receptor precursor. J. Biol. Chem. 1991, 266, 20440–20446. [Google Scholar] [CrossRef]
- Pussard, M.; Pons, R. Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 1977, 13, 557–598. [Google Scholar]
- Page, F.C. A New Key to Freshwater and Soil Gymnamoebae; Freshwater Biological Association: Ambleside, UK, 1988; pp. 92–97. [Google Scholar]
- Moura, H.; Wallace, S.; Visvesvara, G.S. Acanthamoeba healyi n. sp. and the isozyme and immunoblot profiles of Acanthamoeba spp. Groups 1 and 3. J. Protozool. 1992, 39, 573–583. [Google Scholar] [CrossRef]
- Stothard, D.R.; Schroeder-Diedrich, J.M.; Awwad, M.H.; Gast, R.J.; Ledee, D.R.; Rodriguez-Zaragoza, S.; Dean, C.L.; Fuerst, P.A.; Byers, T.J. The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. J. Eukaryot. Microbiol. 1998, 45, 45–54. [Google Scholar] [CrossRef]
- Corsaro, D.; Walochnik, J.; Köhsler, M.; Rott, M.B. Acanthamoeba misidentification and multiple labels: Redefining genotypes T16, T19 and T20, and proposal for Acanthamoeba micheli sp. nov. (genotype T19). Parasitol. Res. 2015, 114, 2481–2490. [Google Scholar] [CrossRef]
- Putaporntip, C.; Kuamsab, N.; Nuprasert, W.; Rojrung, R.; Pattanawong, U.; Tia, T.; Yanmanee, S.; Jongwutiwes, S. Analysis of Acanthamoeba genotypes from public freshwater sources in Thailand reveals a new genotype, T23 Acanthamoeba bangkokensis sp. nov. Sci. Rep. 2021, 11, 17290. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, D. Update on Acanthamoeba phylogeny. Parasitol. Res. 2020, 119, 3327–3338. [Google Scholar] [CrossRef]
- Burge, C.; Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997, 268, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003, 19, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, J.S.; Agarwala, R. COBALT: Constraint-based alignment tool for multiple protein sequences. Bioinformatics 2007, 23, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Jobb, G.; von Haeseler, A.; Strimmer, K. TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 2004, 4, 18. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Campanella, J.J.; Bitincka, L.; Smalley, J. MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform. 2003, 4, 29. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 2002, 7, 310–322. [Google Scholar]
- Corsaro, D.; Venditti, D. Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitol. Res. 2010, 107, 233–238. [Google Scholar] [CrossRef]
- Corsaro, D. Exploring LSU and ITS rDNA sequences for Acanthamoeba identification and phylogeny. Microorganisms 2022, 10, 1776. [Google Scholar] [CrossRef]
- Lewis, E.J.; Sawyer, T.K. Identificationoffree-living amoebae (Protozoa: Acanthamoebidae) from a fresh- to salt-water gradient in the St. Martin River, Ocean City, Maryland (Abstr). Trans. Am. Microsc. Soc. 1979, 98, 152–153. [Google Scholar]
- Ledee, D.R.; Booton, G.C.; Awwad, M.H.; Sharma, S.; Aggarwal, R.K.; Niszl, I.A.; Markus, M.B.; Fuerst, P.A.; Byers, T.J. Advantages of using mitochondrial 16S rDNA sequences to classify clinical isolates of Acanthamoeba. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.I.; Yu, H.S.; Hwang, M.Y.; Kim, T.H.; Kim, T.O.; Yun, H.C.; Kong, H.H. Subgenus classification of Acanthamoeba by riboprinting. Korean J. Parasitol. 1998, 36, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Hwang, M.Y.; Kim, T.O.; Yun, H.C.; Kim, T.H.; Kong, H.H.; Chung, D.I. Phylogenetic relationships among Acanthamoeba spp. based on PCR-RFLP analyses of mitochondrial small subunit rRNA gene. Korean J. Parasitol. 1999, 37, 181–188. [Google Scholar] [CrossRef][Green Version]
- Gonçalves, D.S.; Ferreira, M.D.S.; Gomes, K.X.; Rodríguez-de La Noval, C.; Liedke, S.C.; da Costa, G.C.V.; Albuquerque, P.; Cortines, J.R.; Saramago Peralta, R.H.; Peralta, J.M.; et al. Unravelling the interactions of the environmental host Acanthamoeba castellanii with fungi through the recognition by mannose-binding proteins. Cell. Microbiol. 2019, 21, e13066. [Google Scholar] [CrossRef]
- Niyyati, M.; Rezaie, S.; Rahimi, F.; Mohebali, M.; Maghsood, A.H.; Farnia, S.H.; Rezaeian, M. Molecular characterization and sequencing of a gene encoding Mannose Binding Protein in an Iranian isolate of Acanthamoeba castellanii as a major agent of Acanthamoeba keratitis. Iran. J. Public Health 2008, 37, 9–14. [Google Scholar]
- Niyyati, M.; Rezaie, S.; Babaei, Z.; Rezaeian, M. Molecular identification and sequencing of Mannose Binding Protein (MBP) gene of Acanthamoeba palestinensis. Iran. J. Parasitol. 2010, 5, 1–5. [Google Scholar]
- Allen, P.G.; Dawidowicz, E.A. Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J. Cell. Physiol. 1990, 145, 508–513. [Google Scholar] [CrossRef]
- Alsam, S.; Sissons, J.; Dudley, R.; Khan, N.A. Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Parasitol. Res. 2005, 96, 402–409. [Google Scholar] [CrossRef]
- Brindley, N.; Matin, A.; Khan, N.A. Acanthamoeba castellanii: High antibody prevalence in racially and ethnically diverse populations. Exp. Parasitol. 2009, 121, 254–256. [Google Scholar] [CrossRef]
- Griffin, J.L. Temperature tolerance of pathogenic and nonpathogenic free-living amoebas. Science 1972, 178, 869–870. [Google Scholar] [CrossRef]
- De Jonckheere, J.F. Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Appl. Environ. Microbiol. 1980, 39, 681–685. [Google Scholar] [CrossRef]
- Khan, N.A.; Jarroll, E.; Paget, T. Acanthamoeba can be differentiated by the Polymerase Chain Reaction and simple plating assays. Curr. Microbiol. 2001, 43, 204–208. [Google Scholar] [CrossRef]
- Walochnik, J.; Obwaller, A.; Aspöck, H. Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Appl. Environ. Microbiol. 2000, 66, 4408–4413. [Google Scholar] [CrossRef]
- Cursons, R.T.; Brown, T.J. Use of cell cultures as an indicator of pathogenicity of free-living amoebae. J. Clin. Pathol. 1978, 31, 1–11. [Google Scholar] [CrossRef]
- Garate, M.; Marchant, J.; Cubillos, I.; Cao, Z.; Khan, N.A.; Panjwani, N. In vitro pathogenicity of Acanthamoeba is associated with the expression of the mannose-binding protein. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1056–1062. [Google Scholar] [CrossRef]
- Ng, S.L.; Nordin, A.; Abd Ghafar, N.; Suboh, Y.; Ab Rahim, N.; Chua, K.H. Acanthamoeba-mediated cytopathic effect correlates with MBP and AhLBP mRNA expression. Parasit. Vectors 2017, 10, 625. [Google Scholar] [CrossRef]
- Hong, Y.C.; Kong, H.H.; Ock, M.S.; Kim, I.S.; Chung, D.I. Isolation and characterization of a cDNA encoding a subtilisin-like serine proteinase (ahSUB) from Acanthamoeba healyi. Mol. Biochem. Parasitol. 2000, 111, 441–446. [Google Scholar] [CrossRef]
- Hurt, M.; Neelam, S.; Niederkorn, J.; Alizadeh, H. Pathogenic Acanthamoeba spp. secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease. Infect. Immun. 2003, 71, 6243–6255. [Google Scholar] [CrossRef]
- Blaschitz, M.; Köhsler, M.; Aspöck, H.; Walochnik, J. Detection of a serine proteinase gene in Acanthamoeba genotype T6 (Amoebozoa: Lobosea). Exp. Parasitol. 2006, 114, 26–33. [Google Scholar] [CrossRef]
- Kim, W.T.; Kong, H.H.; Ha, Y.R.; Hong, Y.C.; Jeong, H.J.; Yu, H.S.; Chung, D.I. Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence. Korean J. Parasitol. 2006, 44, 321–330. [Google Scholar] [CrossRef]
- Sissons, J.; Alsam, S.; Goldsworthy, G.; Lightfoot, M.; Jarroll, E.L.; Khan, N.A. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol. 2006, 6, 42. [Google Scholar] [CrossRef]
- Tripathi, T.; Smith, A.D.; Abdi, M.; Alizadeh, H. Acanthamoeba-cytopathic protein induces apoptosis and proinflammatory cytokines in human corneal epithelial cells by cPLA2a activation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7973–7982. [Google Scholar] [CrossRef]
- Huth, S.; Reverey, J.F.; Leippe, M.; Selhuber-Unkel, C. Adhesion forces and mechanics in mannose-mediated Acanthamoeba interactions. PLoS ONE 2017, 12, e0176207. [Google Scholar] [CrossRef]
- Corsaro, D. On the diversity and clinical importance of Acanthamoeba spp. from Group 1. Parasitol. Res. 2021, 120, 2057–2064. [Google Scholar] [CrossRef]
- Schiller, B.; Makrypidi, G.; Razzazi-Fazeli, E.; Paschinger, K.; Walochnik, J.; Wilson, I.B. Exploring the unique N-glycome of the opportunistic human pathogen Acanthamoeba. J. Biol. Chem. 2012, 287, 43191–43204. [Google Scholar] [CrossRef]
- Ferreira, M.D.S.; Mendoza, S.R.; Gonçalves, D.S.; Rodríguez-de la Noval, C.; Honorato, L.; Nimrichter, L.; Ramos, L.F.C.; Nogueira, F.C.S.; Domont, G.B.; Peralta, J.M.; et al. Recognition of cell wall mannosylated components as a conserved feature for fungal entrance, adaptation and survival within trophozoites of Acanthamoeba castellanii and murine macrophages. Front. Cell. Infect. Microbiol. 2022, 12, 858979. [Google Scholar] [CrossRef]
- Lameignere, E.; Malinovská, L.; Sláviková, M.; Duchaud, E.; Mitchell, E.P.; Varrot, A.; Sedo, O.; Imberty, A.; Wimmerová, M. Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem. J. 2008, 411, 307–318. [Google Scholar] [CrossRef]
- Sulák, O.; Cioci, G.; Lameignère, E.; Balloy, V.; Round, A.; Gutsche, I.; Malinovská, L.; Chignard, M.; Kosma, P.; Aubert, D.F.; et al. Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog. 2011, 7, e1002238. [Google Scholar] [CrossRef]
- Kang, A.Y.; Park, A.Y.; Shin, H.J.; Khan, N.A.; Maciver, S.K.; Jung, S.Y. Production of a monoclonal antibody against a mannose-binding protein of Acanthamoeba culbertsoni and its localization. Exp. Parasitol. 2018, 192, 19–24. [Google Scholar] [CrossRef]
GT | Species | Strain | Sequence Source 1 | Mannose Binding Protein | Laminin Binding Protein | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gene | Protein | Gene | Protein | ||||||||
nt 2 | exons | aa | kDa 3 | nt 2 | exons | aa | kDa 3 | ||||
T4A | A. quina | Vil3 | CDFN01 | 3104 | 6 | 833 | 85.2 | 1084 | 3 | 265 | 29.3 |
T4A | Acanthamoeba sp. | undet. | CDFL01 | 3106 | 6 | 833 | 85.3 | 1090 | 3 | 266 | 29.3 |
T4A | Acanthamoeba sp. | undet. | CDFJ01 | 3105 | 6 | 833 | 85.4 | 1090 | 3 | 266 | 29.3 |
T4A | Acanthamoeba sp. | undet. | CDFK01 | 3120 | 6 | 833 | 85.5 | 1092 | 3 | 248 | 27.2 |
T4A | A. lugdunensis | L3a | CDFB01 | 3112 | 6 | 833 | 85.1 | 1085 | 3 | 266 | 29.3 |
T4A | Acanthamoeba sp. | C3 | JAJGAO01 | 3151 | 6 | 833 | 85.2 | 1082 | 3 | 266 | 29.4 |
T4A | Acanthamoeba sp. | Linc-AP1 | LQHA01 | 3118 | 6 | 833 | 85.0 | 1085 | 3 | 266 | 29.3 |
T4C | Acanthamoeba sp. | MEEI 0184 | AY604039 1 | 3156 | 6 | 833 | 85.2 | not available | |||
T4D | A. rhysodes | Singh | CDFC01 | 3168 | 6 | 833 | 85.1 | 1066 | 3 | 266 | 29.3 |
T4D | A. mauritaniensis | 1652 | CDFE01 | 3218 | 6 | 834 | 84.9 | 1077 | 3 | 266 | 29.3 |
T4G | A. terricola | Neff | JAJGAP01 | 3159 | 6 | 834 | 85.1 | 1082 | 3 | 264 | 29.1 |
T4G | A. terricola | Neff | AEYA01 | 3159 | 6 | 834 | 85.1 | 1082 | 3 | 264 | 29.1 |
T4G | A. terricola | Neff | AHJI01 | no results 4 | 1082 | 3 | 264 | 29.1 | |||
T4F | A. triangularis | SH621 | CDFD01 | 3507 | 6 | 928 | 95.0 | 1063 | 3 | 265 | 29.3 |
T2 | A. palestinensis | Reich | CDFA01 | 3365 | 7 | 844 | 87.0 | 1043 | 2 | 265 | 29.4 |
T10 | A. culbertsoni | Lilly A1 | CDFF01 | 2520 | 5 | 716 | 74.5 | 1100 | 3 | 260 | 28.8 |
T12 | A. healyi | OC-3A | AY351649 1 | not available | 771 | 1 | 252 | 28.3 | |||
T22 | Acanthamoeba sp. | undet. | CDEZ01 | 3440 | 9 | 747 | 76.4 | 967 | 2 | 260 | 29.5 |
T5 | A. lenticulata | PD2S | CDFG01 | 3138 | 4 | 956 | 97.7 | 967 | 2 | 260 | 28.9 |
T5 | A. lenticulata | 72/2 | MSTW01 | 3152 | 4 | 956 | 97.8 | 967 | 2 | 260 | 28.9 |
T5 | A. lenticulata | PT14 | NAVB01 | 3150 | 4 | 956 | 97.8 | 967 | 2 | 260 | 28.9 |
T7 | A. astronyxis | undet. | CDFI01 | no results 4 | 1071 | 4 | 233 | 25.9 | |||
T7 | A. astronyxis | R&H | CDFH01 | no results 4 | 1071 | 4 | 233 | 25.9 | |||
T18 | A. byersi | Pb30/40 | MRZZ01 | no results 4 | 1072 | 4 | 232 | 25.9 | |||
Balamuthia mandrillaris | 2046 | LEOU01 | no results | 871 | 2 | 264 | 28.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsaro, D. Acanthamoeba Mannose and Laminin Binding Proteins Variation across Species and Genotypes. Microorganisms 2022, 10, 2162. https://doi.org/10.3390/microorganisms10112162
Corsaro D. Acanthamoeba Mannose and Laminin Binding Proteins Variation across Species and Genotypes. Microorganisms. 2022; 10(11):2162. https://doi.org/10.3390/microorganisms10112162
Chicago/Turabian StyleCorsaro, Daniele. 2022. "Acanthamoeba Mannose and Laminin Binding Proteins Variation across Species and Genotypes" Microorganisms 10, no. 11: 2162. https://doi.org/10.3390/microorganisms10112162
APA StyleCorsaro, D. (2022). Acanthamoeba Mannose and Laminin Binding Proteins Variation across Species and Genotypes. Microorganisms, 10(11), 2162. https://doi.org/10.3390/microorganisms10112162