Technical Evaluation of qPCR Multiplex Assays for the Detection of Ixodes ricinus-Borne Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. Plasmids
2.3. Primer Pairs and TaqMan Probes Used for the LightCycler qPCR Assays
2.4. qPCR
2.5. Technical Evaluation of the qPCR Multiplex Assays
2.5.1. Sensitivity of the qPCRs
2.5.2. Evaluation of Specificity
2.5.3. Reproducibility and Repeatability
3. Results
3.1. qPCR Assay Performance (Sensitivity, Robustness and Precision)
3.2. Specificity of the qPCRs
3.3. Reproducibility and Repeatability of the qPCRs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granquist, E.G.; Aleksandersen, M.; Bergström, K.; Dumler, S.J.; Torsteinbø, W.O.; Stuen, S. A morphological and molecular study of Anaplasma phagocytophilum transmission events at the time of Ixodes ricinus tick bite. Acta Veter. Scand. 2010, 52, 43. [Google Scholar] [CrossRef] [Green Version]
- Øines, Ø.; Radzijevskaja, J.; Paulauskas, A.; Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasites Vectors 2015, 5, 156. [Google Scholar] [CrossRef] [Green Version]
- Kazimirova, M.; Hamsikova, Z.; Spitalska, E.; Minichova, L.; Mahrikova, L.; Caban, R.; Sprong, H.; Fonville, M.; Schnittger, L.; Kocianová, E. Diverse tick-borne microor-ganisms identified in free-living ungulates in Slovakia. Parasites Vectors 2018, 11, 495. [Google Scholar] [CrossRef]
- Hovius, J.W.; de Wever, B.; Sohne, M.; Brouwer, M.C.; Coumou, J.; Wagemakers, A.; Oei, A.; Knol, H.; Narasimhan, S.; Hodiamont, C.J.; et al. A case of meningoencephalitis by the relapsing fever spirochaete Borrelia miyamotoi in Europe. Lancet 2013, 382, 658. [Google Scholar] [CrossRef] [Green Version]
- Jahfari, S.; Fonville, M.; Hengeveld, P.; Reusken, C.; Scholte, E.-J.; Takken, W.; Heyman, P.; Medlock, J.M.; Heylen, D.; Kleve, J.; et al. Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasites Vectors 2012, 5, 74. [Google Scholar] [CrossRef] [Green Version]
- Matet, A.; Le Fleche-Mateos, A.; Doz, F.; Dureau, P.; Cassoux, N. Ocular Spiroplasma ixodetis in newborns, France. Emerg. Infect. Dis. 2020, 26, 340. [Google Scholar] [CrossRef] [Green Version]
- Heylen, D.; Fonville, M.; van Leeuwen, A.D.; Sprong, H. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds. Environ. Microbiol. 2016, 18, 988. [Google Scholar] [CrossRef]
- Stenos, J.; Unsworth, N.B.; Graves, S.R. A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am. J. Trop. Med. Hyg. 2005, 73, 1083–1085. [Google Scholar] [CrossRef]
- Azagi, T.; Hoornstra, D.; Kremer, K.; Hovius, J.W.R.; Sprong, H. Evaluation of Disease Causality of Rare Ixodes ricinus-Borne Infections in Europe. Pathogens 2020, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Markowicz, M.; Schötta, A.-M.; Höss, D.; Kundi, M.; Schray, C.; Stockinger, H.; Stanek, G. Infections with Tickborne Pathogens after Tick Bite, Austria, 2015–2018. Emerg. Infect. Dis. 2021, 27, 1048–1056. [Google Scholar] [CrossRef]
- Marques, A.R.; Strle, F.; Wormser, G.P. Comparison of Lyme Disease in the United States and Europe. Emerg. Infect. Dis. 2021, 27, 2017–2024. [Google Scholar] [CrossRef]
- Sprong, H.; Azagi, T.; Hoornstra, D.; Nijhof, A.M.; Knorr, S.; Baarsma, M.E.; Hovius, J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors 2018, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Stanek, G.; Strle, F. Lyme borreliosis–from tick bite to diagnosis and treatment. FEMS Microbiol. Rev. 2018, 42, 233–258. [Google Scholar] [CrossRef] [Green Version]
- Geebelen, L.; Lernout, T.; Tersago, K.; Terryn, S.; Hovius, J.W.; van Leeuwen, A.D.; Van Gucht, S.; Speybroeck, N.; Sprong, H. No molecular detection of tick-borne pathogens in the blood of patients with erythema migrans in Belgium. Parasites Vectors 2022, 15, 27. [Google Scholar] [CrossRef]
- Ocias, L.F.; Wilhelmsson, P.; Sjöwall, J.; Henningsson, A.J.; Nordberg, M.; Jørgensen, C.S.; Krogfelt, K.A.; Forsberg, P.; Lindgren, P.E. Emerging tick-borne patho-gens in the Nordic countries: A clinical and laboratory follow-up study of high-risk tick-bitten individuals. Ticks Tick Borne Dis. 2020, 11, 101303. [Google Scholar] [CrossRef]
- Jahfari, S.; Hofhuis, A.; Fonville, M.; Van Der Giessen, J.; Van Pelt, W.; Sprong, H. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands. PLoS Negl. Trop. Dis. 2016, 10, e0005042. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk, A.I.; Van Duijvendijk, G.L.A.; Swart, A.; Heylen, D.; Jaarsma, R.I.; Jacobs, F.H.H.; Fonville, M.; Sprong, H.; Takken, W. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasites Vectors 2020, 13, 34. [Google Scholar] [CrossRef] [Green Version]
- Hoornstra, D.; Azagi, T.; van Eck, J.A.; Wagemakers, A.; Koetsveld, J.; Spijker, R.; Platonov, A.E.; Sprong, H.; Hovius, J.W. Prevalence and clinical manifestation of Borrelia miyamotoi in Ixodes ticks and humans in the northern hemisphere: A systematic review and meta-analysis. Lancet Microbe 2022, 3, e772–e786. [Google Scholar] [CrossRef]
- Azagi, T.; Harms, M.; Swart, A.; Fonville, M.; Hoornstra, D.; Mughini-Gras, L.; Hovius, J.W.; Sprong, H.; van den Wijngaard, C. Self-reported symptoms and health com-plaints associated with exposure to Ixodes ricinus-borne pathogens. Parasites Vectors 2022, 15, 93. [Google Scholar] [CrossRef]
- Jahfari, S.; De Vries, A.; Rijks, J.M.; Van Gucht, S.; Vennema, H.; Sprong, H.; Rockx, B. Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands. Emerg. Infect. Dis. 2017, 23, 1028–1030. [Google Scholar] [CrossRef]
- Hing, M.; Woestyn, S.; Van Bosterhaut, B.; Desbonnet, Y.; Heyman, P.; Cochez, C.; Silaghi, C.; Sprong, H.; Fournier, P.E.; Raoult, D.; et al. Letter to the Editor: Diagnosis of human granulocytic anaplasmosis in Belgium by combining molecular and serological methods. New Microbes New Infect. 2014, 2, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Vicente, S.; Tagliafierro, T.; Coleman, J.L.; Benach, J.L.; Tokarz, R. Polymicrobial Nature of Tick-Borne Diseases. mBio 2019, 10, e02055-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azagi, T.; Jaarsma, R.; van Leeuwen, A.D.; Fonville, M.; Maas, M.; Franssen, F.; Kik, M.; Rijks, J.; Montizaan, M.; Groenevelt, M.; et al. Circulation of Babesia Species and Their Exposure to Humans through Ixodes ricinus. Pathogens 2021, 10, 386. [Google Scholar] [CrossRef]
- Hoornstra, D.; Harms, M.G.; Gauw, S.A.; Wagemakers, A.; Azagi, T.; Kremer, K.; Sprong, H.; Wijngaard, C.C.V.D.; Hovius, J.W. Ticking on Pandora’s box: A prospective case-control study into ‘other’ tick-borne diseases. BMC Infect. Dis. 2021, 21, 501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, A.; Wan, B.; Du, Y.; Wu, Y.; Zhang, A.; Jiang, D.; Ji, P.; Wei, Z.; Zhuang, G.; et al. Development of a Directly Visualized Recombinase Polymerase Amplification–SYBR Green I Method for the Rapid Detection of African Swine Fever Virus. Front. Microbiol. 2020, 11, 602709. [Google Scholar] [CrossRef] [PubMed]
- Courtney, J.W.; Kostelnik, L.M.; Zeidner, N.S.; Massung, R.F. Multiplex real-time PCR for detection of Anaplasma phag-ocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004, 42, 3164. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, G.; Sekeyova, Z.; Raoult, D.; Mediannikov, O. Multiple tick-associated bacteria in Ixodes ricinus from Slovakia. Ticks Tick Borne Dis. 2012, 3, 406. [Google Scholar] [CrossRef]
- Diaz, M.H.; Bai, Y.; Malania, L.; Winchell, J.M.; Kosoy, M.Y. Development of a Novel Genus-Specific Real-Time PCR Assay for Detection and Differentiation of Bartonella Species and Genotypes. J. Clin. Microbiol. 2012, 50, 1645–1649. [Google Scholar] [CrossRef] [Green Version]
- Hashish, A.; Sinha, A.; Mekky, A.; Sato, Y.; Macedo, N.R.; El-Gazzar, M. Development and Validation of Two Diagnostic Real-Time PCR (TaqMan) Assays for the Detection of Bordetella avium from Clinical Samples and Comparison to the Currently Available Real-Time TaqMan PCR Assay. Microorganisms 2021, 9, 2232. [Google Scholar] [CrossRef]
- Mackay, I.M.; Arden, K.E.; Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 2002, 30, 1292. [Google Scholar] [CrossRef]
- Buchan, B.W.; Jobe, D.A.; Mashock, M.; Gerstbrein, D.; Faron, M.L.; Ledeboer, N.A.; Callister, S.M. Evaluation of a Novel Multiplex High-Definition PCR Assay for Detection of Tick-Borne Pathogens in Whole-Blood Specimens. J. Clin. Microbiol. 2019, 57, e00513-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagemakers, A.; Sprong, H.; Platonov, A.; Hovius, J.W. Commentary: Borrelia miyamotoi: 43 Cases Diagnosed in France by Real-Time PCR in Patients With Persistent Polymorphic Signs and Symptoms. Front. Med. 2020, 7, 474. [Google Scholar] [CrossRef] [PubMed]
Microorganism | MPX I, II or III | Target | Insert Size (bp) | Target Sequences |
---|---|---|---|---|
A. phagocytophilum | MPX I | MSP2 | 85 | ATGGAAGGTAGTGTTGGTTATGGTATTATGTTCTGGTGCCAGGGTTGAGCTTGAGATTGGCAGACTACGAGCGCTTCAAGACCAA |
Ca. N. mikurensis | MPX I | GroEL | 105 | CCTTGAAAATATAGCAAGATCAGGTAGATGTTCCCTCTACTAATTATTGCTGAAGATGTAGAAGGTGAAGCGCAGACCTTTAGTGCTAAATAAGTTACGTGGTGG |
Babesia spp. 18S 1 | MPX I | 18S | 63 | CAGCTTGACGGTAGGGTATTGGCGAGGCAGCAACGGATGTTCTAACGGGGAATTAGGGTTCGA |
R. helvetica | MPX II | gltA | 89 | ATGATCCGTTTAGGTTAATAGGCTTCGGTCATGTTCCGATCCACGTGCCGCAGTGCAGACTTGTAAGAGCGGATTGTTTTCTAGCTGTC |
S. ixodetis | MPX II | rpoB | 72 | TGTTGGACCAAACGAAGTTGATGTTCGCTAACCGTGCTTTAATGGGATGTTCCCCCAAACACCAATTGTTGG |
B. microti | MPX II | ITS | 88 | CTCACACAACGATGAAGGACGCAATGTTCGCAGAATTTAGCAAATCAACAGGATGTTCTCTGAATGTATTGTACACACTGCCTCTGTT |
Bartonella spp. 2 | MPX III | ssrA | 79 | GCTATGGTAATAAATGGACAATGAAATAAATGTTCACCCCGCTTAAACCTGCGACGATGTTCCACCTGGCAACAGAAGC |
Rickettsia stenos 3 | MPX III | gltA | 84 | TCGCAAATGTTCACGGTACTTTATGTTCTGCAATAGCAAGAACCGTAGGCTGGATGGCAGACCACAATGGAAAGAAATGCACGA |
Microorganism | MPX I, II or III | Target Gene | Primer/Probe | Primer/Probe Sequences (5′-3′) | Ref |
---|---|---|---|---|---|
A. phagocytophilum | MPX I | msp2 | ApMSP2F | ATG GAA GGT AGT GTT GGT TAT GGT ATT | [26] |
ApMSP2R | TTG GTC TTG AAG CGC TCG TA | ||||
ApMSP2P | VICTM-TGG TGC CAG GGT TGA GCT TGA GAT TG-BHQ1 | ||||
Ca. N. mikurensis | MPX I | groEL | GroEL-F2a | CCT TGA AAA TAT AGC AAG ATC AGG TAG | [5] |
GroEL-R2a | CCA CCA CGT AAC TTA TTT AGC ACT AAA G | ||||
GroEL-P2a | TexRedTM-CCT CTA CTA ATT ATT GCT GAA GAT GTA GAA GGT GAA GC-BHQ2 | ||||
Babesia spp. (18S) 1 | MPX I | rRNA | Bab_18SrRNA-F_2016 | CAG CTT GAC GGT AGG GTA TTG G | [2] |
Bab_18SrRNA-R_2016 | TCG AAC CCT AAT TCC CCG TTA | ||||
Bab_18SrRNA-P_2016 | FAMTM-CGA GGC AGC AAC GG-MGB-BHQ2 | ||||
R. helvetica | MPX II | gltA | Rick_HelvgltA_F2 | ATG ATC CGT TTA GGT TAA TAG GCT TCG GTC | [7] |
Rick_HelvgltA_R2 | TTG TAA GAG CGG ATT GTT TTC TAG CTG TC | ||||
Rick_HelvgltA_pr3 | FAMTM-CGA TCC ACG TGC CGC AGT-BHQ1 | ||||
S. ixodetis | MPX II | rpoB | Spir_rpoB-F_2016 | TGT TGG ACC AAA CGA AGT TG | [27] |
Spir_rpoB-R_2016 | CCA ACA ATT GGT GTT TGG GG | ||||
Spir_rpoB-P_2016 | TexRedTM-GCT AAC CGT GCT TTA ATG GG-BHQ1 | ||||
Babesia microtii | MPX II | ITS | Bmicr_ITS_F1_6-2017 | CTC ACA CAA CGA TGA AGG ACG CA | [3] |
Bmicr_ITS_R1_6-2017 | AAC AGA GGC AGT GTG TAC AAT ACA TTC AGA | ||||
Bmicr_ITS_Px1_6-2017 | VICTM-GCA GAA TTT AGC AAA TCA ACA GG-BHQ1 | ||||
Bartonella spp. 2 | MPX III | ssrA | Bart_ssrA-F_2016 | GCT ATG GTA ATA AAT GGA CAA TGA AAT AA | [28] |
Bart_ssrA-R_2016 | GCT TCT GTT GCC AGG TG | ||||
Bart_ssrA-P_2016 | TexRedTM-ACC CCG CTT AAA CCT GCG ACG-BHQ1 | ||||
Rickettsia stenos 3 | MPX III | gltA | RickgltA-F-Stenos | TCG CAA ATG TTC ACG GTA CTT T | [8] |
RickgltA-R-Stenos | TCG TGC ATT TCT TTC CAT TGT G | ||||
Rickglt-probe-stenos | VICTM-TGC AAT AGC AAG AAC CGT AGG CTG GAT G-BHQ1 |
Microorganism | MPX I, MPX II, MPX III | Slope | Efficiency | Dynamic Range CT | R2 | 95% LOD (95% CI) 1 |
---|---|---|---|---|---|---|
A. phagocytophilum | MPX I | −3.292 | 101 % | 22.79–39.61 | 0.999 | 14.67 (11.82–19.76) |
Ca. N. mikurensis | MPX I | −3.300 | 101 % | 19.65–38.28 | 0.996 | 10.79 (9.54–12.69) |
Babesia spp. 18S | MPX I | −3.359 | 98 % | 19.56–38.65 | 0.999 | 33.89 (26.65–47.35) |
R. helvetica | MPX II | −3.154 | 108 % | 31.66–45.28 | 0.946 | 51.41 (41.07–77.13) |
S. ixodetis | MPX II | −3.022 | 114 % | 17.29–43.82 | 0.992 | 41.98 (26.72–106.34) |
B. microti | MPX II | −3.103 | 110 % | 17.73–41.02 | 0.992 | 49.42 (30.13–136.79) |
Bartonella spp. | MPX III | −3.392 | 97 % | 16.63–40.95 | 0.994 | 79.26 (62.56–107.25) |
Rickettsia stenos | MPX III | −3.447 | 95 % | 16.66–37.80 | 0.991 | 11.62 (9.30–16.22) |
Microorganism | MPX I, MPX II, MPX III | p-Values | R2 |
---|---|---|---|
A. phagocytophilum | MPX I | 0.4190 | 0.998 |
Ca. N. mikurensis | MPX I | 0.1722 | 0.995 |
Babesia spp. 18S | MPX I | 0.1704 | 0.998 |
R. helvetica | MPX II | 0.2838 | 0.960 |
S. ixodetis | MPX II | 0.3312 | 0.999 |
B. microti | MPX II | 0.3641 | 0.999 |
Bartonella spp. | MPX III | 0.2223 | 0.997 |
Rickettsia stenos | MPX III | 0.3321 | 0.997 |
Microorganism | MPX I, MPX II, MPX III | Copy Number/µL | Mean CT | SD | %CV |
---|---|---|---|---|---|
A. phagocytophilum | MPX I | 101 | 38.31 | 0.81 | 2.11 |
102 | 35.87 | 0.99 | 2.77 | ||
Ca. N. mikurensis | MPX I | 101 | 38.28 | 0.73 | 1.90 |
102 | 35.68 | 0.66 | 1.84 | ||
Babesia spp. 18S | MPX I | 101 | 38.65 | 0.78 | 2.02 |
102 | 37.59 | 1.06 | 2.83 | ||
R. helvetica | MPX II | 101 | 45.17 | 2.04 | 4.51 |
102 | 43.30 | 1.31 | 3.03 | ||
S. ixodetis | MPX II | 101 | 41.00 | 2.10 | 5.11 |
102 | 39.36 | 1.39 | 3.53 | ||
B. microti | MPX II | 101 | 41.02 | 0.61 | 1.48 |
102 | 39.62 | 0.67 | 1.69 | ||
Bartonella spp. | MPX III | 101 | 40.95 | 4.72 | 11.52 |
102 | 37.79 | 0.80 | 2.12 | ||
Rickettsia stenos | MPX III | 101 | 37.80 | 3.62 | 9.56 |
102 | 35.78 | 1.07 | 2.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azagi, T.; Hoeve-Bakker, B.J.A.; Jonker, M.; Roelfsema, J.H.; Sprong, H.; Kerkhof, K. Technical Evaluation of qPCR Multiplex Assays for the Detection of Ixodes ricinus-Borne Pathogens. Microorganisms 2022, 10, 2222. https://doi.org/10.3390/microorganisms10112222
Azagi T, Hoeve-Bakker BJA, Jonker M, Roelfsema JH, Sprong H, Kerkhof K. Technical Evaluation of qPCR Multiplex Assays for the Detection of Ixodes ricinus-Borne Pathogens. Microorganisms. 2022; 10(11):2222. https://doi.org/10.3390/microorganisms10112222
Chicago/Turabian StyleAzagi, Tal, B. J. A. Hoeve-Bakker, Mark Jonker, Jeroen H. Roelfsema, Hein Sprong, and Karen Kerkhof. 2022. "Technical Evaluation of qPCR Multiplex Assays for the Detection of Ixodes ricinus-Borne Pathogens" Microorganisms 10, no. 11: 2222. https://doi.org/10.3390/microorganisms10112222
APA StyleAzagi, T., Hoeve-Bakker, B. J. A., Jonker, M., Roelfsema, J. H., Sprong, H., & Kerkhof, K. (2022). Technical Evaluation of qPCR Multiplex Assays for the Detection of Ixodes ricinus-Borne Pathogens. Microorganisms, 10(11), 2222. https://doi.org/10.3390/microorganisms10112222