Clinical Challenges of Emerging and Re-Emerging Yeast Infections in the Context of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Influence of Drugs on Host Defense: Corticosteroids (Glucocorticoids, GCs)
3. COVID-19 in the Perspective of Immunosuppression
4. Emerging and Re-emerging Yeasts in the Context of Immunosuppressed Hosts
4.1. Non-Albicans Candida (NAC)
4.2. Cryptococcus Spp.
4.3. Rhodotorula mucilaginosa
4.4. Trichosporon spp.
4.5. Pneumocystis jirovecii
4.6. Saccharomyces cerevisiae
4.7. Malassezia spp.
5. Dimorphic Fungal Yeast Infection
5.1. Histoplasma capsulatum
5.2. Coccidioides spp.
5.3. Paracoccidioides spp.
5.4. Geotrichum klebahnii
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Margulis, L.; Chapman, M.J. Kingdom Fungi. In Kingdoms and Domains; Academic Press: Cambridge, MA, USA, 2009; pp. 379–409. ISBN 978-0-12-373621-5. [Google Scholar]
- Robert, V.A.; Casadevall, A. Vertebrate Endothermy Restricts Most Fungi as Potential Pathogens. J. Infect. Dis. 2009, 200, 1623–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, A.; Casadevall, A. Mammalian Endothermy Optimally Restricts Fungi and Metabolic Costs. mBio 2010, 1, e00212-10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, F.; Brown, G.D. Antifungal Innate Immunity: A Perspective from the Last 10 Years. J. Innate. Immun. 2018, 10, 373–397. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, G.S. Disease Mechanisms of Fungi. In Medical Microbiology; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 0963117211. [Google Scholar]
- Jenks, J.D.; Cornely, O.A.; Chen, S.C.A.; Thompson, G.R.; Hoenigl, M. Breakthrough Invasive Fungal Infections: Who Is at Risk? Mycoses 2020, 63, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Naveen, K.V.; Saravanakumar, K.; Sathiyaseelan, A.; MubarakAli, D.; Wang, M.-H. Human Fungal Infection, Immune Response, and Clinical Challenge-a Perspective during COVID-19 Pandemic. Appl. Biochem. Biotechnol. 2022, 194, 4244–4257. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal Diseases as Neglected Pathogens: A Wake-up Call to Public Health Officials. PLoS Negl. Trop. Dis. 2020, 14, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.; Kontoyiannis, D.P.; Harrison, T.; Ruhnke, M. Advances in the Diagnosis and Treatment of Fungal Infections of the CNS. Lancet Neurol. 2018, 17, 362–372. [Google Scholar] [CrossRef]
- Suleyman, G.; Alangaden, G.J. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infect. Dis. Clin. N. Am. 2021, 35, 1027–1053. [Google Scholar] [CrossRef]
- Van Rhijn, N.; Bromley, M. The Consequences of Our Changing Environment on Life Threatening and Debilitating Fungal Diseases in Humans. J. Fungi 2021, 7, 367. [Google Scholar] [CrossRef]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. Environmental Candida Auris and the Global Warming Emergence Hypothesis. mBio 2021, 12, e00360-21. [Google Scholar] [CrossRef]
- Meuleman, J.; Katz, P. The Immunologic Effects, Kinetics, and Use of Glucocorticosteroids. Med. Clin. N. Am. 1985, 69, 805–816. [Google Scholar] [CrossRef]
- McGee, S.; Hirschmann, J. Use of Corticosteroids in Treating Infectious Diseases. Arch. Intern. Med. 2008, 168, 1034–1046. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids: Mechanisms of Action in Health and Disease. Rheum. Dis. Clin. N. Am. 2016, 42, 15–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, P.J. Corticosteroids: The Drugs to Beat. Eur. J. Pharm. 2006, 533, 2–14. [Google Scholar] [CrossRef]
- Taves, M.D.; Gomez-Sanchez, C.E.; Soma, K.K. Extra-Adrenal Glucocorticoids and Mineralocorticoids: Evidence for Local Synthesis, Regulation, and Function. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E11–E24. [Google Scholar] [CrossRef] [Green Version]
- Franchimont, D.; Galon, J.; Gadina, M.; Visconti, R.; Zhou, Y.-J.; Aringer, M.; Frucht, D.M.; Chrousos, G.P.; O’Shea, J.J. Inhibition of Th1 Immune Response by Glucocorticoids: Dexamethasone Selectively Inhibits IL-12-Induced Stat4 Phosphorylation in T Lymphocytes. J. Immunol. 2000, 164, 1768–1774. [Google Scholar] [CrossRef] [Green Version]
- Maneechotesuwan, K.; Yao, X.; Ito, K.; Jazrawi, E.; Usmani, O.S.; Adcock, I.M.; Barnes, P.J. Suppression of GATA-3 Nuclear Import and Phosphorylation: A Novel Mechanism of Corticosteroid Action in Allergic Disease. PLoS Med. 2009, 6, e1000076. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, J.W. Dexamethasone-Induced Ras-Related Protein 1 Is a Potential Regulatory Protein in B Lymphocytes. Int. Immunol. 2007, 19, 583–590. [Google Scholar] [CrossRef]
- Ai, F.; Zhao, G.; Lv, W.; Liu, B.; Lin, J. Dexamethasone Induces Aberrant Macrophage Immune Function and Apoptosis. Oncol. Rep. 2020, 43, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Anka, A.U.; Tahir, M.I.; Abubakar, S.D.; Alsabbagh, M.; Zian, Z.; Hamedifar, H.; Sabzevari, A.; Azizi, G. Coronavirus Disease 2019 (COVID-19): An Overview of the Immunopathology, Serological Diagnosis and Management. Scand. J. Immunol. 2021, 93, e12998. [Google Scholar] [CrossRef]
- Van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.; Pickkers, P.; Derde, L.; Leavis, H.; van Crevel, R.; Engel, J.J.; Wiersinga, W.J.; Vlaar, A.P.J.; Shankar-Hari, M.; et al. A Guide to Immunotherapy for COVID-19. Nat. Med. 2022, 28, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus Infections-More than Just the Common Cold. JAMA 2020, 323, 707–708. [Google Scholar] [CrossRef] [Green Version]
- Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clin. Rheumatol. 2020, 39, 2085–2094. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH Interim Guidance on Recognition and Management of Coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Bansal, R.; Kollimuttathuillam, S.; Gowda, A.M.; Singh, B.; Mehta, D.; Maroules, M. The Looming Storm: Blood and Cytokines in COVID-19. Blood Rev. 2021, 46, 100743. [Google Scholar] [CrossRef]
- McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The Role of Cytokines Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage Activation Syndrome-like Disease. Autoimmun. Rev. 2020, 19, 102537. [Google Scholar] [CrossRef]
- Keam, S.; Megawati, D.; Patel, S.K.; Tiwari, R.; Dhama, K.; Harapan, H. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection. Rev. Med. Virol. 2020, 30, e2123. [Google Scholar] [CrossRef]
- Parasher, A. COVID-19: Current Understanding of Its Pathophysiology, Clinical Presentation and Treatment. Postgrad. Med. J. 2021, 97, 312–320. [Google Scholar] [CrossRef]
- Klassen, S.A.; Senefeld, J.W.; Senese, K.A.; Johnson, P.W.; Wiggins, C.C.; Baker, S.E.; van Helmond, N.; Bruno, K.A.; Pirofski, L.A.; Shoham, S.; et al. Convalescent Plasma Therapy for COVID-19: A Graphical Mosaic of the Worldwide Evidence. Front. Med. 2021, 8, 684151. [Google Scholar] [CrossRef]
- Sinha, S.; Rosin, N.L.; Arora, R.; Labit, E.; Jaffer, A.; Cao, L.; Farias, R.; Nguyen, A.P.; de Almeida, L.G.N.; Dufour, A.; et al. Dexamethasone Modulates Immature Neutrophils and Interferon Programming in Severe COVID-19. Nat. Med. 2022, 28, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Vinetz, J.M. Dexamethasone in the Management of COVID-19. BMJ 2020, 370, m2648. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Leite, D.P.; Yamamoto, A.C.A.; Martins, E.R.; Teixeira, A.F.R.; Hahn, R.C. Leveduras Do Gênero Candida Isoladas de Sítios Anatomicamente Distintos de Profissionais Ilitares Em Cuiabá (MT), Brasil. Bras. Derm. 2011, 86, 675–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neppelenbroek, K.H.; Seó, R.S.; Urban, V.M.; Silva, S.; Dovigo, L.N.; Jorge, J.H.; Campanha, N.H. Identification of Candida Species in the Clinical Laboratory: A Review of Conventional, Commercial, and Molecular Techniques. Oral Dis. 2014, 20, 329–344. [Google Scholar] [CrossRef]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida Glabrata, Candida Parapsilosis and Candida Tropicalis: Biology, Epidemiology, Pathogenicity and Antifungal Resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Lara, M.F.; Ostrosky-Zeichner, L. Invasive Candidiasis. Semin. Respir. Crit. Care Med. 2020, 41, 3–12. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Maraolo, A.E.; Simeon, V.; Magnè, F.; Pace, M.C.; Gentile, I.; Chiodini, P.; Viscoli, C.; Sanguinetti, M.; Mikulska, M.; et al. Changes in the Relative Prevalence of Candidaemia Due to Non-Albicans Candida Species in Adult in-Patients: A Systematic Review, Meta-Analysis and Meta-Regression. Mycoses 2020, 63, 334–342. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; Hong Nguyen, M.; Hedayati, M.T.; Netea, M.G.; Perlin, D.S.; Hoenigl, M. COVID-19-Associated Candidiasis (Cac): An Underestimated Complication in the Absence of Immunological Predispositions? J. Fungi 2020, 6, 211. [Google Scholar] [CrossRef]
- Krcmery, V.; Barnes, A.J. Non-albicans Candida spp. causing fungaemia: Pathogenicity and antifungal resistance. J. Hosp. Infect. 2002, 50, 243–260. [Google Scholar] [CrossRef]
- Quarti, A.G.; Egidy Assenza, G.; Mangerini, V.F.; Petridis, F.D.; D’Amario, D.; Careddu, L.; Angeli, E.; Gargiulo, G.D. Bentall Endocarditis by C. Lusitaniae after COVID-19: The Finger Covers the Moon. World J. Pediatr. Congenit. Heart Surg. 2022, 13, 523–525. [Google Scholar] [CrossRef]
- Mirchin, R.; Czeresnia, J.M.; Orner, E.P.; Chaturvedi, S.; Murphy, K.; Nosanchuk, J.D. The Continuing Emergence of Candida Blankii as a Pathogenic Fungus: A New Case of Fungemia in a Patient Infected with SARS-CoV-2. J. Fungi 2022, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Posteraro, B.; Torelli, R.; Vella, A.; Leone, P.M.; de Angelis, G.; de Carolis, E.; Ventura, G.; Sanguinetti, M.; Fantoni, M. Pan-Echinocandin-Resistant Candida Glabrata Bloodstream Infection Complicating Covid-19: A Fatal Case Report. J. Fungi 2020, 6, 163. [Google Scholar] [CrossRef] [PubMed]
- Brothers, E.M.; Lidsky, K.; Simmons, J.; Nakagawa, T. A Child with COVID-19, Type 1 Diabetes, and Candida Glabrata: A Case Report and Literature Review. Clin. Pediatr. 2021, 60, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Spivak, E.S.; Hanson, K.E. Candida Auris: An Emerging Fungal Pathogen. J. Clin. Microbiol. 2018, 56, e01588-17. [Google Scholar] [CrossRef] [Green Version]
- Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida Auris Sp. Nov., a Novel Ascomycetous Yeast Isolated from the External Ear Canal of an Inpatient in a Japanese Hospital. Microbiol. Immunol. 2009, 53, 41–44. [Google Scholar] [CrossRef]
- Vaseghi, N.; Sharifisooraki, J.; Khodadadi, H.; Nami, S.; Safari, F.; Ahangarkani, F.; Meis, J.F.; Badali, H.; Morovati, H. Global Prevalence and Subgroup Analyses of Coronavirus Disease (COVID-19) Associated Candida Auris Infections (CACa): A Systematic Review and Meta-Analysis. Mycoses 2022, 65, 683–703. [Google Scholar] [CrossRef]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Browna, C.S. Candida Auris: A Review of the Literature. Clin. Microbiol. Rev. 2018, 31, e00029-17. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida Auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Calvo, B.; Melo, A.S.A.; Perozo-Mena, A.; Hernandez, M.; Francisco, E.C.; Hagen, F.; Meis, J.F.; Colombo, A.L. First Report of Candida Auris in America: Clinical and Microbiological Aspects of 18 Episodes of Candidemia. J. Infect. 2016, 73, 369–374. [Google Scholar] [CrossRef]
- Magobo, R.E.; Corcoran, C.; Seetharam, S.; Govender, N.P. Candida Auris-Associated Candidemia, South Africa. Emerg. Infect. Dis. 2014, 20, 1250–1252. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Sharma, C.; Duggal, S.; Agarwal, K.; Prakash, A.; Singh, P.K.; Jain, S.; Kathuria, S.; Randhawa, H.S.; Hagen, F.; et al. New Clonal Strain of Candida Auris, Delhi, India. Emerg. Infect. Dis. 2013, 19, 1670–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araúz, A.B.; Caceres, D.H.; Santiago, E.; Armstrong, P.; Arosemena, S.; Ramos, C.; Espinosa-Bode, A.; Borace, J.; Hayer, L.; Cedeño, I.; et al. Isolation of Candida Auris from 9 Patients in Central America: Importance of Accurate Diagnosis and Susceptibility Testing. Mycoses 2018, 61, 44–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lone, S.A.; Ahmad, A. Candida Auris—The Growing Menace to Global Health. Mycoses 2019, 62, 620–637. [Google Scholar] [CrossRef] [Green Version]
- De Cássia Orlandi Sardi, J.; Silva, D.R.; Soares Mendes-Giannini, M.J.; Rosalen, P.L. Candida Auris: Epidemiology, Risk Factors, Virulence, Resistance, and Therapeutic Options. Microb. Pathog. 2018, 125, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Saris, K.; Meis, J.F.; Voss, A. Candida Auris. Curr. Opin. Infect. Dis. 2018, 31, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Omrani, A.S.; Koleri, J.; Ben Abid, F.; Daghfel, J.; Odaippurath, T.; Peediyakkal, M.Z.; Baiou, A.; Sarsak, E.; Elayana, M.; Kaleeckal, A.; et al. Clinical characteristics and risk factors for COVID-19-associated Candidemia. Med. Mycol. 2021, 59, 1262–1266. [Google Scholar] [CrossRef]
- Yamin, D.H.; Husin, A.; Harun, A. Risk Factors of Candida Parapsilosis Catheter-Related Bloodstream Infection. Front. Public Health 2021, 9, 631865. [Google Scholar] [CrossRef]
- Paumgartten, F.J.R.; de Oliveira, A.C.A.X. Off Label, Compassionate and Irrational Use of Medicines in Covid-19 Pandemic, Health Consequences and Ethical Issues. Cien. Saude Colet. 2020, 25, 3413–3419. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of Co-Infections and Superinfections in Hospitalized Patients with COVID-19: A Retrospective Cohort Study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Janniger, E.J.; Kapila, R. Public Health Issues with Candida Auris in COVID-19 Patients. World Med. Health Policy 2021, 13, 766–772. [Google Scholar] [CrossRef]
- Andes, D.; Pascua, A.; Marchetti, O. Antifungal Therapeutic Drug Monitoring: Established and Emerging Indications. Antimicrob. Agents Chemother. 2009, 53, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Tarai, B.; Singh, A.; Sharma, A. Multidrug-Resistant Candida Auris Infections in Critically Ill Coronavirus Disease Patients, India, April–July 2020. Emerg. Infect. Dis. 2020, 26, 2694–2696. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef] [Green Version]
- Brikman, S.; Dori, G.; Kasher, C.; Yanovskay, A.; Strauss, M.; Colodner, R.; Bisharat, N.; Chazan, B. Candida Bloodstream Infection, a Dire Complication in Hospitalized COVID-19 Patients: Three Cases from a Single Center in Northern Israel. Isr. Med. Assoc. J. 2021, 23, 615–617. [Google Scholar]
- Hope, W.W.; Walsh, T.J.; Denning, D.W. Laboratory Diagnosis of Invasive Aspergillosis. Lancet Infect. Dis. 2005, 5, 609–622. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Höfling, J.F.; Tavares, F.C.; Duarte, K.M.; Gonçalves, R.B.; Azevedo, R.A. Evaluation of Biochemical and Serological Methods to Identify and Clustering Yeast Cells of Oral Candida Species by CHROMagar Test, SDS-PAGE and ELISA. Braz. J. Biol. 2004, 64, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Wohlmeister, D.; Vianna, D.R.B.; Helfer, V.E.; Calil, L.N.; Buffon, A.; Fuentefria, A.M.; Corbellini, V.A.; Pilger, D.A. Differentiation of Candida Albicans, Candida Glabrata, and Candida Krusei by FT-IR and Chemometrics by CHROMagarTM Candida. J. Microbiol. Methods 2017, 141, 121–125. [Google Scholar] [CrossRef]
- Fujita, S.I.; Senda, Y.; Nakaguchi, S.; Hashimoto, T. Multiplex PCR Using Internal Transcribed Spacer 1 and 2 Regions for Rapid Detection and Identification of Yeast Strains. J. Clin. Microbiol. 2001, 39, 3617–3622. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.; Sharma, G.; Singla, S.; Garg, S. Case Report: Secondary Hemophagocytic Lymphohistiocytosis (SHLH) and Candida Auris Fungemia in Post-Acute COVID-19 Syndrome: A Clinical Challenge. Front. Med. 2022, 9, 835421. [Google Scholar] [CrossRef]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global Burden of Disease of HIV-Associated Cryptococcal Meningitis: An Updated Analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
- Momin, M.; Webb, G. The Environmental Effects on Virulence Factors and the Antifungal Susceptibility of Cryptococcus Neoformans. Int. J. Mol. Sci. 2021, 22, 6302. [Google Scholar] [CrossRef]
- Gushiken, A.C.; Saharia, K.K.; Baddley, J.W. Cryptococcosis. Infect. Dis. Clin. N. Am. 2021, 35, 493–514. [Google Scholar] [CrossRef]
- Pemán, J.; Ruiz-Gaitán, A.; García-Vidal, C.; Salavert, M.; Ramírez, P.; Puchades, F.; García-Hita, M.; Alastruey-Izquierdo, A.; Quindós, G. Fungal Co-Infection in COVID-19 Patients: Should We Be Concerned? Rev. Iberoam. Micol. 2020, 37, 41–46. [Google Scholar] [CrossRef]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Lavergne, V.; Baden, L.; Cheng, V.C.C.; Edwards, K.M.; Gandhi, R.; Muller, W.J.; O’Horo, J.C.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2020, 27, ciaa478. [Google Scholar] [CrossRef]
- Araújo, G.R.d.S.; Alves, V.; Martins-de-Souza, P.H.; Guimarães, A.J.; Honorato, L.; Nimrichter, L.; Takiya, C.M.; Pontes, B.; Frases, S. Dexamethasone and Methylprednisolone Promote Cell Proliferation, Capsule Enlargement, and in Vivo Dissemination of C. Neoformans. Front. Fungal Biol. 2021, 2, 643537. [Google Scholar] [CrossRef]
- Deepa, M.J.; Megharaj, C.; Patil, S.; Rani, P.K. Cryptococcus Laurentii Endogenous Endophthalmitis Post COVID-19 Infection. BMJ Case Rep. 2022, 15, e246637. [Google Scholar] [CrossRef]
- Tuon, F.F.; Costa, S.F. Rhodotorula Infection. A Systematic Review of 128 Cases from Literature. Rev. Iberoam. Micol. 2008, 25, 135–140. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Boekhout, T.; Akova, M.; Meis, J.F.; Cornely, O.A.; Lortholary, O.; Arikan-Akdagli, S.; Cuenca-Estrella, M.; Dannaoui, E.; van Diepeningen, A.D.; et al. ESCMID and ECMM Joint Clinical Guidelines for the Diagnosis and Management of Rare Invasive Yeast Infections. Clin. Microbiol. Infect. 2014, 20, 76–98. [Google Scholar] [CrossRef] [Green Version]
- Nunes, J.M.; Bizerra, F.C.; Carmona, E.; Ferreira, R.; Colombo, A.L. Molecular Identification, Antifungal Susceptibility Profile, and Biofilm Formation of Clinical and Environmental Rhodotorula Species Isolates. Antimicrob. Agents Chemother. 2013, 57, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, P.; Vamvoukaki, R.; Samonis, G. Rhodotorula Species Infections in Humans: A Systematic Review. Mycoses 2019, 62, 90–100. [Google Scholar] [CrossRef]
- Arastehfar, A.; Shaban, T.; Zarrinfar, H.; Roudbary, M.; Ghazanfari, M.; Hedayati, M.T.; Sedaghat, A.; Ilkit, M.; Najafzadeh, M.J.; Perlin, D.S. Candidemia among Iranian Patients with Severe COVID-19 Admitted to ICUs. J. Fungi 2021, 7, 280. [Google Scholar] [CrossRef]
- Chitasombat, M.N.; Kofteridis, D.P.; Jiang, Y.; Tarrand, J.; Lewis, R.E.; Kontoyiannis, D.P. Rare Opportunistic (Non-Candida, Non-Cryptococcus) Yeast Bloodstream Infections in Patients with Cancer. J. Infect. 2012, 64, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Hirano, R.; Mitsuhashi, T.; Osanai, K. Rhodotorula Mucilaginosa Fungemia, a Rare Opportunistic Infection without Central Venous Catheter Implantation, Successfully Treated by Liposomal Amphotericin B. Case Rep. Infect. Dis. 2022, 2022, 7830126. [Google Scholar] [CrossRef]
- Mehta, V.; Nayyar, C.; Gulati, N.; Singla, N.; Rai, S.; Chandar, J. A Comprehensive Review of Trichosporon Spp.: An Invasive and Emerging Fungus. Cureus 2021, 13, e17345. [Google Scholar] [CrossRef]
- Cronyn, V.; Howard, J.; Chiang, L.; Le, L.; Tims-Cook, Z.; Gertz, A.M. Trichosporon Asahii Urinary Tract Infection in a Patient with Severe COVID-19. Case Rep. Infect. Dis. 2021, 2021, 6841393. [Google Scholar] [CrossRef]
- Nobrega de Almeida, J.; Moreno, L.; Francisco, E.C.; Noronha Marques, G.; Mendes, A.V.; Barberino, M.G.; Colombo, A.L. Trichosporon Asahii Superinfections in Critically Ill COVID-19 Patients Overexposed to Antimicrobials and Corticosteroids. Mycoses 2021, 64, 817–822. [Google Scholar] [CrossRef]
- Benelli, J.L.; Basso, R.P.; Grafulha, T.W.; Poester, V.R.; Munhoz, L.S.; Martins, K.B.; Zogbi, H.E.; von Groll, A.; Severo, C.B.; Stevens, D.A.; et al. Fungal Bloodstream Co-Infection by Trichosporon Asahii in a COVID-19 Critical Patient: Case Report and Literature Review. Mycopathologia 2022, 187, 397–404. [Google Scholar] [CrossRef]
- Segrelles-Calvo, G.; Araújo, G.R.D.S.; Llopis-Pastor, E.; Frasés, S. Trichosporon Asahii as Cause of Nosocomial Pneumonia in Patient with COVID-19: A Triple Co-Infection. Arch. Bronconeumol. 2021, 57, 46–48. [Google Scholar] [CrossRef]
- Ali, G.A.; Husain, A.; Salah, H.; Goravey, W. Trichosporon Asahii Fungemia and COVID-19 Co-Infection: An Emerging Fungal Pathogen; Case Report and Review of the Literature. IDCases 2021, 25, e01244. [Google Scholar] [CrossRef]
- Samaddar, A.; Diwakar, J.; Krishnan, P.; Veena Kumari, H.B.; Kavya, M.; Konar, S.; Sharma, D.A.; Nandeesh, B.N.; Goyal, A.; Nagarathna, S. COVID-19-Associated Brain Abscess Caused by Trichosporon Dohaense: A Case Report and Review of Literature. Med. Mycol. Case Rep. 2022, 35, 9–14. [Google Scholar] [CrossRef]
- De Almeida, J.N.; Hennequin, C. Invasive Trichosporon Infection: A Systematic Review on a Re-Emerging Fungal Pathogen. Front. Microbiol. 2016, 7, 1629. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, A.; Meena, S.; Nath, U.; Bakliwal, A.; Kaistha, N.; Gupta, P. Trichosporon Dohaense Causing Life-Threatening Fungemia in Acute Leukemia: First Case Report from India. Indian J. Pathol. Microbiol. 2021, 64, 619–621. [Google Scholar] [CrossRef]
- Chen, S.C.A.; Perfect, J.; Colombo, A.L.; Cornely, O.A.; Groll, A.H.; Seidel, D.; Albus, K.; de Almeida, J.N.; Garcia-Effron, G.; Gilroy, N.; et al. Global Guideline for the Diagnosis and Management of Rare Yeast Infections: An Initiative of the ECMM in Cooperation with ISHAM and ASM. Lancet Infect. Dis. 2021, 21, e375–e386. [Google Scholar] [CrossRef]
- Blaize, M.; Mayaux, J.; Luyt, C.E.; Lampros, A.; Fekkar, A. COVID-19-Related Respiratory Failure and Lymphopenia Do Not Seem Associated with Pneumocystosis. Am. J. Respir. Crit. Care Med. 2020, 202, 1734–1736. [Google Scholar] [CrossRef]
- Baddley, J.W.; Thompson, G.R.; Chen, S.C.A.; White, P.L.; Johnson, M.D.; Nguyen, M.H.; Schwartz, I.S.; Spec, A.; Ostrosky-Zeichner, L.; Jackson, B.R.; et al. Coronavirus Disease 2019–Associated Invasive Fungal Infection. Open Forum Infect. Dis. 2021, 8, ofab510. [Google Scholar] [CrossRef]
- Honore, P.M.; Redant, S.; Preseau, T.; Kaefer, K.; Barreto Gutierrez, L.; Anane, S.; Attou, R.; Gallerani, A.; de Bels, D. Study Find That COVID ARDS Was Associated with a Low Risk for Possible or Proven PCP: Still True after Dexamethasone Use. Crit. Care 2022, 26, 41. [Google Scholar] [CrossRef]
- Menon, A.A.; Berg, D.D.; Brea, E.J.; Deutsch, A.J.; Kidia, K.K.; Thurber, E.G.; Polsky, S.B.; Yeh, T.; Duskin, J.A.; Holliday, A.M.; et al. A Case of COVID-19 and Pneumocystis Jirovecii Coinfection. Am. J. Respir. Crit. Care Med. 2020, 202, 136–138. [Google Scholar] [CrossRef]
- Peter Donnelly, J.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Casalini, G.; Giacomelli, A.; Ridolfo, A.; Gervasoni, C.; Antinori, S. Invasive Fungal Infections Complicating Covid-19: A Narrative Review. J. Fungi 2021, 7, 921. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Chopra, A. Narrative Review of the Relationship between COVID-19 and PJP: Does It Represent Coinfection or Colonization? Infection 2021, 49, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Dellière, S.; Voicu, S.; Bretagne, S.; Mégarbane, B. The Presence of Pneumocystis Jirovecii in Critically Ill Patients with COVID-19. J. Infect. 2021, 82, 84–123. [Google Scholar] [CrossRef] [PubMed]
- Gioia, F.; Albasata, H.; Hosseini-Moghaddam, S.M. Concurrent Infection with SARS-CoV-2 and Pneumocystis Jirovecii in Immunocompromised and Immunocompetent Individuals. J. Fungi 2022, 8, 585. [Google Scholar] [CrossRef] [PubMed]
- D’agostin, M.; Squillaci, D.; Lazzerini, M.; Barbi, E.; Wijers, L.; da Lozzo, P. Invasive Infections Associated with the Use of Probiotics in Children: A Systematic Review. Child 2021, 8, 924. [Google Scholar] [CrossRef]
- Pinto, G.; Lima, L.; Pedra, T.; Assumpção, A.; Morgado, S.; Mascarenhas, L. Bloodstream Infection by Saccharomyces Cerevisiae in a COVID-19 Patient Receiving Probiotic Supplementation in the ICU in Brazil. Access Microbiol. 2021, 3, 000250. [Google Scholar] [CrossRef]
- Enache-Angoulvant, A.; Hennequin, C. Invasive Saccharomyces Infection: A Comprehensive Review. Clin. Infect. Dis. 2005, 41, 1559–1568. [Google Scholar] [CrossRef]
- Ventoulis, I.; Sarmourli, T.; Amoiridou, P.; Mantzana, P.; Exindari, M.; Gioula, G.; Vyzantiadis, T.A. Bloodstream Infection by Saccharomyces Cerevisiae in Two Covid-19 Patients after Receiving Supplementation of Saccharomyces in the Icu. J. Fungi 2020, 6, 98. [Google Scholar] [CrossRef]
- Prindaville, B.; Belazarian, L.; Levin, N.A.; Wiss, K. Pityrosporum Folliculitis: A Retrospective Review of 110 Cases. J. Am. Acad. Derm. 2018, 78, 511–514. [Google Scholar] [CrossRef]
- Peres, F.L.X.; Bonamigo, R.R.; Bottega, G.B.; Staub, F.L.; Cartell, A.S.; Bakos, R.M. Pityrosporum Folliculitis in Critically Ill COVID-19 Patients. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e186–e188. [Google Scholar] [CrossRef]
- Gonzalez, A.; Taborda, C.P. Editorial: Pathogenesis of Dimorphic Fungal Infections. Front. Cell Infect. Microbiol. 2021, 11, 793245. [Google Scholar] [CrossRef]
- Wheat, L.J.; Azar, M.M.; Bahr, N.C.; Spec, A.; Relich, R.F.; Hage, C. Histoplasmosis. Infect. Dis. Clin. N. Am. 2016, 30, 207–227. [Google Scholar] [CrossRef] [PubMed]
- Basso, R.P.; Poester, V.R.; Benelli, J.L.; Stevens, D.A.; Zogbi, H.E.; Vasconcellos, I.C.d.S.; Pasqualotto, A.C.; Xavier, M.O. COVID-19-Associated Histoplasmosis in an AIDS Patient. Mycopathologia 2021, 186, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, I.; Elisiri, M.E.; Fernández-Canigia, L.; Sánchez, A.V.; López, L.; Toranzo, A.I.; López-Joffre, C.; González-Fraga, S.; Canteros, C.E. COVID-19 Associated with Disseminated Histoplasmosis in a Kidney Transplant Patient. Rev. Argent. Microbiol. 2022, 54, 209–214. [Google Scholar] [CrossRef]
- De Macedo, P.M.; Freitas, A.D.; Bártholo, T.P.; Bernardes-Engemann, A.R.; Almeida, M.D.A.; Almeida-Silva, F.; Zancopé-Oliveira, R.M.; Almeida-Paes, R. Acute Pulmonary Histoplasmosis Following Covid-19: Novel Laboratorial Methods Aiding Diagnosis. J. Fungi 2021, 7, 346. [Google Scholar] [CrossRef] [PubMed]
- Ide, S.; Kutsuna, S.; Yamada, G.; Hashimoto, K.; Abe, M.; Nagi, M.; Ujiie, M.; Hayakawa, K.; Ohmagari, N. Pulmonary Histoplasmosis Diagnosed in a Japanese Woman after Traveling to Central and South America: A Case Report. J. Infect. Chemother. 2021, 27, 1658–1661. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Ghodasara, A.; Ismail, A.; Gauhar, U.; El-Kersh, K. Disseminated Histoplasmosis in an Immunocompetent Patient after COVID-19 Pneumonia. Cureus 2021, 13, e17269. [Google Scholar] [CrossRef]
- Perez Del Nogal, G.; Mata, A.; Ernest, P.; Salinas, I. Disseminated Histoplasmosis in an Immunocompetent Patient with COVID-19 Pneumonia. BMJ Case Rep. 2022, 15, e247617. [Google Scholar] [CrossRef]
- Boro, R.; Iyer, P.C.; Walczak, M.A. Current Landscape of Coccidioidomycosis. J. Fungi 2022, 8, 413. [Google Scholar] [CrossRef]
- Huff, D.; Ampel, N.M.; Blair, J.E. Coccidioidomycosis and COVID-19 Infection. An Analysis from a Single Medical Center within the Coccidioidal Endemic Area. Mycopathologia 2022, 187, 199–204. [Google Scholar] [CrossRef]
- Krauth, D.S.; Jamros, C.M.; Rivard, S.C.; Olson, N.H.; Maves, R.C. Accelerated Progression of Disseminated Coccidioidomycosis Following SARS-CoV-2 Infection: A Case Report. Mil. Med. 2021, 186, 1254–1256. [Google Scholar] [CrossRef]
- Chang, C.C.; Senining, R.; Kim, J.; Goyal, R. An Acute Pulmonary Coccidioidomycosis Coinfection in a Patient Presenting With Multifocal Pneumonia With COVID-19. J. Investig. Med. High. Impact. Case Rep. 2020, 8, 2324709620972244. [Google Scholar] [CrossRef]
- Chen, J.C.; Wong, D.; Rabi, S.; Worswick, S.; Declerck, B.; Gibb, J. All That Coughs Is Not COVID-19: A Delayed Diagnosis of Disseminated Coccidioidomycosis Following Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Open Forum Infect. Dis. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.C.; Reynoso, D.; Ren, P. Closing the Brief Case: A Fatal Case of SARS-CoV-2 Coinfection with Coccidioides in Texas-Another Challenge We Face. J. Clin. Microbiol. 2021, 59, e0016421. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.A.; James, S.; Uche, I.U.; Sharer, R.; Radhakrishnan, P. Cutaneous and Pulmonary Manifestations: COVID-19 Virus or Coccidioidomycosis? Cureus 2021, 13, ofab246. [Google Scholar] [CrossRef]
- De Macedo, P.M.; Freitas, D.F.S.; Varon, A.G.; Lamas, C.D.C.; Ferreira, L.C.F.; Freitas, A.D.; Ferreira, M.T.; Nunes, E.P.; Siqueira, M.M.; Veloso, V.G.; et al. COVID-19 and Acute Juvenile Paracoccidioidomycosis Coinfection. PLoS Negl. Trop. Dis. 2020, 14, e0008559. [Google Scholar] [CrossRef]
- Wagner, G.; Moertl, D.; Glechner, A.; Mayr, V.; Klerings, I.; Zachariah, C.; van den Nest, M.; Gartlehner, G.; Willinger, B. Paracoccidioidomycosis Diagnosed in Europe-a Systematic Literature Review. J. Fungi 2021, 7, 157. [Google Scholar] [CrossRef] [PubMed]
- Selvan, K.; Mutlu, G. Geotrichum Infection in an Immunocompetent Host with Sars-Cov-2 Infection. Tuberk Toraks 2021, 69, 421–424. [Google Scholar] [CrossRef]
- Durán Graeff, L.; Seidel, D.; Vehreschild, M.J.G.T.; Hamprecht, A.; Kindo, A.; Racil, Z.; Demeter, J.; de Hoog, S.; Aurbach, U.; Ziegler, M.; et al. Invasive Infections Due to Saprochaete and Geotrichum Species: Report of 23 Cases from the FungiScope Registry. Mycoses 2017, 60, 273–279. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrêa-Junior, D.; Andrade, I.B.d.; Alves, V.; Araújo, G.R.d.S.; Frases, S. Clinical Challenges of Emerging and Re-Emerging Yeast Infections in the Context of the COVID-19 Pandemic. Microorganisms 2022, 10, 2223. https://doi.org/10.3390/microorganisms10112223
Corrêa-Junior D, Andrade IBd, Alves V, Araújo GRdS, Frases S. Clinical Challenges of Emerging and Re-Emerging Yeast Infections in the Context of the COVID-19 Pandemic. Microorganisms. 2022; 10(11):2223. https://doi.org/10.3390/microorganisms10112223
Chicago/Turabian StyleCorrêa-Junior, Dario, Iara Bastos de Andrade, Vinicius Alves, Glauber R. de S. Araújo, and Susana Frases. 2022. "Clinical Challenges of Emerging and Re-Emerging Yeast Infections in the Context of the COVID-19 Pandemic" Microorganisms 10, no. 11: 2223. https://doi.org/10.3390/microorganisms10112223
APA StyleCorrêa-Junior, D., Andrade, I. B. d., Alves, V., Araújo, G. R. d. S., & Frases, S. (2022). Clinical Challenges of Emerging and Re-Emerging Yeast Infections in the Context of the COVID-19 Pandemic. Microorganisms, 10(11), 2223. https://doi.org/10.3390/microorganisms10112223