Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases
Abstract
:1. Introduction
2. Protozoa
2.1. Leishmaniasis
2.2. Enteric Protozoa
3. Arthropods
3.1. Fleas
3.2. Ticks
4. Mosquitoes and Flies
4.1. Phlebotomus
4.2. Culicoides
4.3. Triatomines
4.4. Lice
5. Pathogen-Harbouring Vectors
6. Other Applications
7. MALDI-TOF MS Cost
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anhalt, J.P.; Fenselau, C. Identification of bacteria using mass spectrometry. Anal. Chem. 1975, 47, 219–225. [Google Scholar] [CrossRef]
- Fenselau, C.; Demirev, P.A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 2001, 20, 157–171. [Google Scholar] [CrossRef]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.-E.; Rolain, J.M.; Raoult, D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef]
- Claydon, M.A.; Davey, S.N.; Edwards-Jones, V.; Gordon, D.B. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 1996, 14, 1584–1586. [Google Scholar] [CrossRef]
- Mellmann, A.; Cloud, J.; Maier, T.; Keckevoet, U.; Ramminger, I.; Iwen, P.; Dunn, J.; Hall, G.; Wilson, D.; LaSala, P.; et al. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry in Comparison to 16S rRNA Gene Sequencing for Species Identification of Nonfermenting Bacteria. J. Clin. Microbiol. 2008, 46, 1946–1954. [Google Scholar] [CrossRef] [Green Version]
- Porras, I.; Cañueto, J.; Ferreira, L.; García, M.I. Dermatofilosis humana. Primera descripción en España y diagnóstico mediante EM MALDI-TOF. Enferm. Infecc. Microbiol. Clin. 2010, 28, 747–748. [Google Scholar] [CrossRef]
- Ferreira, L.; Vega, S.; Sánchez-Juanes, F.; González, M.; Herrero, A.; Muñiz, M.C.; González-Buitrago, J.M.; Muñoz, J.L. Identificación bacteriana mediante espectrometría de masas MALDI-TOF. Comparación con la metodología habitual en los laboratorios de Microbiología Clínica. Enferm. Infecc. Microbiol. Clin. 2010, 28, 492–497. [Google Scholar] [CrossRef]
- Stevenson, L.G.; Drake, S.K.; Murray, P.R. Rapid identification of bacteria in positive blood culture broths by MALDI-TOF MS. J. Clin. Microbiol. 2010, 48, 444–447. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Sánchez-Juanes, F.; González-Avila, M.; Cembrero-Fuciños, D.; Herrero-Hernández, A.; González-Buitrago, J.M.; Muñoz-Bellido, J.L. Direct identification of urinary tract pathogens from urine samples by MALDI-TOF mass spectrometry. J. Clin. Microbiol. 2010, 48, 2110–2115. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Sánchez-Juanes, F.; Porras-Guerra, I.; García-García, M.I.; García-Sánchez, J.E.; González-Buitrago, J.M.; Muñoz-Bellido, J.L. Microorganisms direct identification from blood culture by MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2011, 17, 546–551. [Google Scholar] [CrossRef]
- McEllistrem, M.C. Genetic diversity of the pneumococcal capsule: Implications for molecular-based serotyping. Future Microbiol. 2009, 4, 857–865. [Google Scholar] [CrossRef]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-pathogen interactions and vector competence: Identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin Microbiol Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef]
- Graves, S.R.; Stenos, J. Tick-borne infectious diseases in Australia. Med. J. Aust. 2017, 206, 320–324. [Google Scholar] [CrossRef]
- Hall-Mendelin, S.; Craig, S.B.; Hall, R.A.; O’Donoghue, P.; Atwell, R.B.; Tulsiani, S.M.; Graham, G.C. Tick paralysis in Australia caused by Ixodes holocyclus Neumann. Ann. Trop. Med. Parasitol. 2011, 105, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129 (Suppl. 1), S3–S14. [Google Scholar] [CrossRef]
- Nava, S.; Guglielmone, A.A.; Mangold, A.J. An overview of systematics and evolution of ticks. Front. Biosci. 2009, 14, 2857–2877. [Google Scholar] [CrossRef]
- Adl, S.M.; Mathison, B.A. Taxonomy and Classification of Human Eukaryotic Parasites. In Manual of Clinical Microbiology, 12th ed.; ASM Press: Washington, DC, USA, 2019; pp. 2379–2388. [Google Scholar]
- Shingal, N.; Kumal, M.; Virdi, J.S. MALDI-TOF MS in clinical parasitology: Applications, constraints and prospects. Parasitology 2016, 143, 1491–1500. [Google Scholar] [CrossRef]
- Fréalle, E.; Valot, S.; Piarroux, R.; Menotti, J.; Lachaud, L.; Persat, F.; Izri, A.; Villard, O.; Yera, H.; Dannaoui, E.; et al. Update on the diagnosis of parasitic and fungal infections. Ann. Biol. Clin. 2020, 78, 299–313. [Google Scholar] [CrossRef]
- Dacal, E.; Köster, P.C.; Carmena, D. Diagnóstico molecular de parasitosis intestinales. Enferm. Infecc. Microbiol. Clin. 2020, 38 (Suppl. 1), 24–31. [Google Scholar] [CrossRef]
- Yssouf, A.; Almeras, L.; Raoult, D.; Parola, P. Emerging tools for identification of arthropod vectors. Future Microbiol. 2016, 11, 549–566. [Google Scholar] [CrossRef]
- Vega-Rúa, A.; Pagès, N.; Fontaine, A.; Nuccio, C.; Hery, L.; Goindin, D.; Gustave, J.; Almeras, L. Improvement of mosquito identification by MALDI-TOF MS biotyping using protein signatures from two body parts. Parasites Vectors 2018, 11, 574. [Google Scholar] [CrossRef] [Green Version]
- Burza, S.; Croft, S.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Akhoundi, A.; Downing, T.; Votypka, J.; Kuhls, K.; Lukes, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017, 57, 1–29. [Google Scholar] [CrossRef]
- De Almeida, M.E.; Koru, O.; Steurer, F.; Herwaldt, B.L.; da Silva, A.J. Detection and differentiation of Leishmania spp. in clinical specimens by use of a SYBR green-based real-time PCR assay. J. Clin. Microbiol. 2017, 55, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.M.; Cesetti, M.V.; de Paula, N.A.; Vernal, S.; Gupta, G.; Sampaio, R.N.; Roselino, A.M. Field validation of SYBR green- and TaqMan-based real-time PCR using biopsy and swab samples to diagnose American tegumentary leishmaniasis in an area where Leishmania (Viannia) braziliensis is endemic. J. Clin. Microbiol. 2017, 55, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Siriyasatien, P.; Chusri, S.; Kraivichian, K.; Jariyapan, N.; Hortiwakul, T.; Silpapojakul, K.; Pym, A.M.; Phumee, A. Early detection of novel Leishmania species DNA in the saliva of two HIV-infected patients. BMC Infect. Dis. 2016, 16, 89. [Google Scholar] [CrossRef] [Green Version]
- Neitzke-Abreu, H.C.; Venazzi, M.S.; Bernal, M.V.Z.; Reinhold-Castro, K.R.; Vagetti, F.; Mota, C.A.; Silva, N.R.; Aristides, S.M.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Detection of DNA from Leishmania (Viannia): Accuracy of Polymerase Chain Reaction for the Diagnosis of Cutaneous Leishmaniasis. PLoS ONE 2013, 8, e62473. [Google Scholar] [CrossRef]
- Paiva-Cavalcanti, M.; Morais, R.C.; Pessoa-e-Sivla, R.; Trajano-Silva, L.A.; Albuquerque, S.C.; Tavares, D.H.; Castro, M.C.; Silva, R.F.; Pereira, V.R. Leishmaniasis diagnosis: An update on the use of immunological and molecular tools. Cell Biosci. 2015, 5, 31. [Google Scholar] [CrossRef]
- Mary, C.; Faraut, F.; Lascombe, L.; Dumon, H. Quantification of Leishmania infantum DNA by a Real-Time PCR Assay with High Sensitivity. J. Clin. Microbiol. 2004, 42, 5249–5255. [Google Scholar] [CrossRef] [Green Version]
- Rotureau, B.; Ravel, C.; Couppié, P.; Pratlong, F.; Nacher, M.; Dedet, J.-P.; Carme, B. Use of PCR-Restriction Fragment Length Polymorphism Analysis to Identify the Main New World Leishmania Species and Analyze Their Taxonomic Properties and Polymorphism by Application of the Assay to Clinical Samples. J. Clin. Microbiol. 2006, 44, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Montalvo, A.M.; Fraga, J.; Monzote, L.; Montano, I.; DE Doncker, S.; Dujardin, J.C.; VAN DER Auwera, G. Heat-shock protein 70 PCR-RFLP: A universal simple tool for Leishmania species discrimination in the New and Old World. Parasitology 2010, 137, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Foulet, F.; Botterel, F.; Buffet, P.; Morizot, G.; Rivollet, D.; Deniau, M.; Pratlong, F.; Costa, J.-M.; Bretagne, S. Detection and Identification of Leishmania Species from Clinical Specimens by Using a Real-Time PCR Assay and Sequencing of the Cytochrome b Gene. J. Clin. Microbiol. 2007, 45, 2110–2115. [Google Scholar] [CrossRef] [Green Version]
- Cassagne, C.; Pratlong, F.; Jeddi, F.; Benikhlef, R.; Aoun, K.; Normand, A.-C.; Faraut, F.; Bastien, P.; Piarroux, R. Identification of Leishmania at the species level with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 2014, 20, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Culha, G.; Akyar, I.; Zeyrek, F.Y.; Özgür, K.U.R.T.; Gündüz, C.; Töz, S.Ö.; Östan, I.; Cavus, I.; Gülkan, B.; Kocagöz, T.; et al. Leishmaniasis in Turkey: Determination of Leishmania Species by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). Iran. J. Parasitol. 2014, 9, 239–248. [Google Scholar]
- Mouri, O.; Morizot, G.; Van Der Auwera, G.; Ravel, C.; Passet, M.; Chartrel, N.; Joly, I.; Thellier, M.; Jauréguiberry, S.; Caumes, E.; et al. Easy Identification of Leishmania Species by Mass Spectrometry. PLoS Negl. Trop. Dis. 2014, 8, e2841. [Google Scholar] [CrossRef]
- Villegas, E.N.; Glassmeyer, S.T.; Ware, M.W.; Hayes, S.L.; Schaefer, F.W., 3rd. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based analysis of Giardia lamblia and Giardia muris. J. Eukaryot. Microbiol. 2006, 53 (Suppl. 1), S179–S181. [Google Scholar] [CrossRef]
- Magnuson, M.L.; Owens, J.H.; Kelty, C.A. Characterization of Cryptosporidium parvum by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Appl. Environ. Microbiol. 2000, 66, 4720–4724. [Google Scholar] [CrossRef] [Green Version]
- Glassmeyer, S.T.; Ware, M.W.; Schaefer, F.W., 3rd; Shoemaker, J.A.; Kryak, D.D. An improved method for the analysis of Cryptosporidium parvum oocysts by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J. Eukaryot. Microbiol. 2007, 54, 479–481. [Google Scholar] [CrossRef]
- Gathercole, R.; Tranfield, E.; Xia, D.; Perez-Cordon, G.; Robinson, G.; Timofte, D.; Zendri, F.; Chalmers, R.M. Analysis of Cryptosporidium spp. from clinical samples by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. J. Appl. Microbiol. 2021, 131, 1840–1847. [Google Scholar] [CrossRef]
- Martiny, D.; Bart, A.; Vandenberg, O.; Verhaar, N.N.; Wentink-Bonnema, E.E.; Moens, C.; Van Gool, T. Subtype determination of Blastocystis isolates by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 529–536. [Google Scholar] [CrossRef]
- Scanlan, P.D.; Knight, R.; Song, S.J.; Ackermann, G.; Cotter, P.D. Prevalence and genetic diversity of Blastocystis in family units living in the United States. Infect. Genet. Evol. 2016, 45, 95–97. [Google Scholar] [CrossRef]
- Tan, K.S. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin. Microbiol. Rev. 2008, 21, 639–665. [Google Scholar] [CrossRef] [Green Version]
- Noël, C.; Dufernez, F.; Gerbod, D.; Edgcomb, V.P.; Delgado-Viscogliosi, P.; Ho, L.C.; Singh, M.; Wintjens, R.; Sogin, M.L.; Capron, M.; et al. Molecular phylogenies of Blastocystis isolates from different hosts: Implications for genetic diversity, identification of species, and zoonosis. J. Clin. Microbiol. 2005, 43, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Leelayoova, S.; Rangsin, R.; Taamasri, P.; Naaglor, T.; Thathaisong, U.; Mungthin, M. Evidence of waterborne transmission of Blastocystis hominis. Am. J. Trop. Med. Hyg. 2004, 70, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, H.; Abe, N.; Iwasawa, M.; Kitano, S.; Nagano, I.; Wu, Z.; Takahashi, Y. Genomic Analysis of Blastocystis hominis Strains Isolated from Two Long-Term Health Care Facilities. J. Clin. Microbiol. 2000, 38, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Souppart, L.; Moussa, H.; Cian, A.; Sanciu, G.; Poirier, P.; El Alaoui, H.; Delbac, F.; Boorom, K.; Delhaes, L.; Dei-Cas, E.; et al. Subtype analysis of Blastocystis isolates from symptomatic patients in Egypt. Parasitol. Res. 2010, 106, 505–511. [Google Scholar] [CrossRef]
- Ferreira, L.; Sánchez-Juanes, F.; Muñoz-Bellido, J.L.; González-Buitrago, J.M. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Intact cell vs. extraction method. Clin. Microbiol. Infect. 2011, 17, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Tanyuksel, M.; Petri, W.A., Jr. Laboratory Diagnosis of Amebiasis. Clin. Microbiol. Rev. 2003, 16, 713–729. [Google Scholar] [CrossRef] [Green Version]
- Calderaro, A.; Gorrini, C.; Bommezzadri, S.; Piccolo, G.; Dettori, G.; Chezzi, C. Entamoeba histolytica and Entamoeba dispar: Comparison of two PCR assays for diagnosis in a non-endemic setting. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 450–457. [Google Scholar] [CrossRef]
- Calderaro, A.; Piergianni, M.; Buttrini, M.; Montecchini, S.; Piccolo, G.; Gorrini, C.; Rossi, S.; Chezzi, C.; Arcangeletti, M.C.; Medici, M.C.; et al. MALDI-TOF Mass Spectrometry for the Detection and Differentiation of Entamoeba histolytica and Entamoeba dispar. PLoS ONE 2015, 10, e0122448. [Google Scholar] [CrossRef]
- Bitam, I.; Dittmar, K.; Parola, P.; Whiting, M.F.; Raoult, D. Fleas and flea-borne diseases. Int. J. Infect. Dis. 2010, 14, e667–e676. [Google Scholar] [CrossRef] [Green Version]
- Yssouf, A.; Socolovschi, C.; Leulmi, H.; Kernif, T.; Bitam, I.; Audoly, G.; Almeras, L.; Raoult, D.; Parola, P. Identification of flea species using MALDI-TOF/MS. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 153–157. [Google Scholar] [CrossRef]
- Nebbak, A.; EL Hamzaoui, B.; Berenger, J.-M.; Bitam, I.; Raoult, D.; Almeras, L.; Parola, P. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS. Med. Vet. Èntomol. 2017, 31, 438–448. [Google Scholar] [CrossRef]
- Zurita, A.; Djeghar, R.; Callejón, R.; Cutillas, C.; Parola, P.; Laroche, M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a useful tool for the rapid identification of wild flea vectors preserved in alcohol. Med Vet. Èntomol. 2019, 33, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Parola, P.; Raoult, D. Ticks and Tickborne Bacterial Diseases in Humans: An Emerging Infectious Threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef] [Green Version]
- Hubálek, Z.; Rudolf, I. Tick-borne viruses in Europe. Parasitol. Res. 2012, 111, 9–36. [Google Scholar] [CrossRef]
- Gray, J.; Zintl, A.; Hildebrandt, A.; Hunfeld, K.-P.; Weiss, L. Zoonotic babesiosis: Overview of the disease and novel aspects of pathogen identity. Ticks Tick-Borne Dis. 2010, 1, 3–10. [Google Scholar] [CrossRef]
- Monsalve Arteaga, L.; Muñoz Bellido, J.L.; Negredo, A.I.; García Criado, J.; Vieira Lista, M.C.; Sánchez Serrano, J.Á.; Vicente Santiago, M.B.; López Bernús, A.; de Ory Manchón, F.; Sánchez Seco, M.P.; et al. New circulation of genotype V of Crimean-Congo haemorrhagic fever virus in humans from Spain. PLoS Negl. Trop. Dis. 2021, 15, e0009197. [Google Scholar] [CrossRef]
- Monsalve Arteaga, L.; Muñoz Bellido, J.L.; Vieira Lista, M.C.; Vicente Santiago, M.B.; Fernández Soto, P.; Bas, I.; Leralta, N.; de Ory Manchón, F.; Negredo, A.I.; Sánchez Seco, M.P.; et al. Crimean-Congo haemorrhagic fever (CCHF) virus-specific antibody detection in blood donors, Castile-León, Spain, summer 2017 and 2018. Eurosurveillance 2020, 25, 1900507. [Google Scholar] [CrossRef]
- Monsalve-Arteaga, L.; Alonso-Sardón, M.; Muñoz Bellido, J.L.; Vicente Santiago, M.B.; Vieira Lista, M.C.; López Abán, J.; Muro, A.; Belhassen-García, M. Seroprevalence of Crimean-Congo hemorrhagic fever in humans in the World Health Organization European region: A systematic review. PLoS Negl. Trop. Dis. 2020, 14, e0008094. [Google Scholar] [CrossRef] [Green Version]
- Sevestre, J.; Diarra, A.Z.; Laroche, M.; Almeras, M.; Parola, P. MALDI-TOF mass spectrometry: An emerging tool for studying the vectors of human infectious diseases. Future Microbiol. 2021, 16, 323–340. [Google Scholar] [CrossRef]
- Karger, A.; Kampen, H.; Bettin, B.; Dautel, H.; Ziller, M.; Hoffmann, B.; Süss, J.; Klaus, C. Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks Tick-Borne Dis. 2012, 3, 78–89. [Google Scholar] [CrossRef]
- Yssouf, A.; Flaudrops, C.; Drali, R.; Kernif, T.; Socolovschi, C.; Berenger, J.-M.; Raoult, D.; Parola, P. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Identification of Tick Vectors. J. Clin. Microbiol. 2013, 51, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Yssouf, A.; Almeras, L.; Terras, J.; Socolovschi, C.; Raoult, D.; Parola, P. Detection of Rickettsia spp. in Ticks by MALDI-TOF MS. PLoS Negl. Trop. Dis. 2015, 9, e0003473. [Google Scholar] [CrossRef] [Green Version]
- Yssouf, A.; Almeras, L.; Berenger, J.-M.; Laroche, M.; Raoult, D.; Parola, P. Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks Tick-Borne Dis. 2015, 6, 579–586. [Google Scholar] [CrossRef]
- Rothen, J.; Githaka, N.; Kanduma, E.G.; Olds, C.; Pflüger, V.; Mwaura, S.; Bishop, R.P.; Daubenberger, C. Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species. Parasites Vectors 2016, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Diarra, A.Z.; Almeras, L.; Laroche, M.; Berenger, J.-M.; Koné, A.K.; Bocoum, Z.; Dabo, A.; Doumbo, O.; Raoult, D.; Parola, P. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl. Trop. Dis. 2017, 11, e0005762. [Google Scholar] [CrossRef]
- Huynh, L.N.; Diarra, A.Z.; Pham, Q.L.; Le-Viet, N.; Berenger, J.M.; Ho, V.H.; Nguyen, X.Q.; Parola, P. Morphological, molecular and MAILDI-TOF identification of ticks and tick-associated pathogens in Vietnam. PLoS Negl. Trop. Dis. 2021, 15, e0009813. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention. Development of Aedes albopictus Risk Maps; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2009. [Google Scholar]
- European Centre for Disease Prevention. The Climatic Suitability for Dengue Transmission in Continental Europe; ECDC: Stockholm, Sweden, 2012. [Google Scholar]
- Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121. [Google Scholar] [CrossRef]
- ECDC. Aedes albopictus. Factsheet for Experts. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-albopictus (accessed on 3 October 2022).
- Medlock, J.M.; Hansford, K.M.; Versteirt, V.; Cull, B.; Kampen, H.; Fontenille, D.; Hendrickx, G.; Zeller, H.; Van Bortel, W.; Schaffner, F. An entomological review of invasive mosquitoes in Europe. Bull. Èntomol. Res. 2015, 105, 637–663. [Google Scholar] [CrossRef]
- Schaffner, F.; Bellini, R.; Petrić, D.; Scholte, E.-J.; Zeller, H.; Rakotoarivony, L.M. Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasites Vectors 2013, 6, 209–210. [Google Scholar] [CrossRef] [Green Version]
- Romi, R.; Sabatinelli, G.; Savelli, L.G.; Raris, M.; Zago, M.; Malatesta, R. Identification of a North American mosquito species, Aedes atropalpus (Diptera: Culicidae), in Italy. J. Am. Mosq. Control Assoc. 1997, 13, 245–246. [Google Scholar]
- Scholte, E.J.; Den Hartog, W.; Braks, M.; Reusken, C.; Dik, M.; Hessels, A. First report of a North American invasive mosquito species Ochlerotatus atropalpus (Coquillett) in the Netherlands, 2009. Eurosurveillance 2009, 14, 19400. [Google Scholar] [CrossRef] [Green Version]
- Turell, M.J.; Dohm, D.J.; Sardelis, M.R.; Oguinn, M.L.; Andreadis, T.G.; Blow, J.A. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 2005, 42, 57–62. [Google Scholar] [CrossRef]
- Versteirt, V.; de Clercq, E.M.; Fonseca, D.M.; Pecor, J.; Schaffner, F.; Coosemans, M.; Van Bortel, W. Bionomics of the Established Exotic Mosquito Species Aedes koreicus in Belgium, Europe. J. Med. Èntomol. 2012, 49, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Capelli, G.; Drago, A.; Martini, S.; Montarsi, F.; Soppelsa, M.; Delai, N.; Ravagnan, S.; Mazzon, L.; Schaffner, F.; Mathis, A.; et al. First report in italy of the exotic mosquito species Aedes (Finlaya) koreicus, a potential vector of arboviruses and filariae. Parasites Vectors 2011, 4, 188. [Google Scholar] [CrossRef] [Green Version]
- Beebe, N.W. DNA barcoding mosquitoes: Advice for potential prospectors. Parasitology 2018, 145, 622–633. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; Pflüger, V.; Wittwer, M.; Ziegler, D.; Chandre, F.; Simard, F.; Lengeler, C. Identification of Cryptic Anopheles Mosquito Species by Molecular Protein Profiling. PLoS ONE 2013, 8, e57486. [Google Scholar] [CrossRef]
- Yssouf, A.; Socolovschi, C.; Flaudrops, C.; Ndiath, M.O.; Sougoufara, S.; Dehecq, J.-S.; Lacour, G.; Berenger, J.-M.; Sokhna, C.S.; Raoult, D.; et al. Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry: An Emerging Tool for the Rapid Identification of Mosquito Vectors. PLoS ONE 2013, 8, e72380. [Google Scholar] [CrossRef] [Green Version]
- Tandina, F.; Niaré, S.; Laroche, M.; Koné, A.K.; Diarra, A.Z.; Ongoiba, A.; Berenger, J.M.; Doumbo, O.K.; Raoult, D.; Parola, P. Using MALDI-TOF MS to identify mosquitoes collected in Mali and their blood meals. Parasitology 2018, 145, 1170–1182. [Google Scholar] [CrossRef]
- Raharimalala, F.N.; Andrianinarivomanana, T.M.; Rakotondrasoa, A.; Collard, J.M.; Boyer, S. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. Med. Vet. Èntomol. 2017, 31, 289–298. [Google Scholar] [CrossRef]
- Diarra, A.Z.; Laroche, M.; Berger, F.; Parola, P. Use of MALDI-TOF MS for the Identification of Chad Mosquitoes and the Origin of Their Blood Meal. Am. J. Trop. Med. Hyg. 2019, 100, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Nebbak, A.; Koumare, S.; Willcox, A.C.; Berenger, J.-M.; Raoult, D.; Almeras, L.; Parola, P. Field application of MALDI-TOF MS on mosquito larvae identification. Parasitology 2018, 145, 677–687. [Google Scholar] [CrossRef]
- Dieme, C.; Yssouf, A.; Vega-Rúa, A.; Berenger, J.M.; Failloux, A.B.; Raoult, D.; Parola, P.; Almeras, L. Accurate identification of Culicidae at aquatic developmental stages by MALDI-TOF MS profiling. Parasites Vectors 2014, 7, 544. [Google Scholar] [CrossRef]
- Schaffner, F.; Kaufmann, C.; Pflüger, V.; Mathis, A. Rapid protein profiling facilitates surveillance of invasive mosquito species. Parasites Vectors 2014, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Horrillo, L.; San Martín, J.V.; Molina, L.; Madroñal, E.; Matía, B.; Castro, A.; García-Martínez, J.; Barrios, A.; Cabello, N.; Arata, I.G.; et al. Atypical presentation in adults in the largest community outbreak of leishmaniasis in Europe (Fuenlabrada, Spain). Clin. Microbiol. Infect. 2015, 21, 269–273. [Google Scholar] [CrossRef] [Green Version]
- ECDC. Phlebotomine Sand Flies—Factsheet for Experts. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/phlebotomine-sand-flies (accessed on 9 October 2022).
- Dvorak, V.; Halada, P.; Hlavackova, K.; Dokianakis, E.; Antoniou, M.; Volf, P. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasites Vectors 2014, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Mathis, A.; Depaquit, J.; Dvořák, V.; Tuten, H.; Bañuls, A.-L.; Halada, P.; Zapata, S.; Lehrter, V.; Hlavačková, K.; Prudhomme, J.; et al. Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasites Vectors 2015, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Lafri, I.; Almeras, L.; Bitam, I.; Caputo, A.; Yssouf, A.; Forestier, C.-L.; Izri, A.; Raoult, D.; Parola, P. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS. PLoS Negl. Trop. Dis. 2016, 10, e0004351. [Google Scholar] [CrossRef]
- Halada, P.; Hlavackova, K.; Risueño, J.; Berriatua, E.; Volf, P.; Dvorak, V. Effect of trapping method on species identification of phlebotomine sandflies by MALDI-TOF MS protein profiling. Med. Vet. Èntomol. 2018, 32, 388–392. [Google Scholar] [CrossRef]
- Halada, P.; Hlavackova, K.; Dvorak, V.; Volf, P. Identification of immature stages of phlebotomine sand flies using MALDI-TOF MS and mapping of mass spectra during sand fly life cycle. Insect Biochem. Mol. Biol. 2018, 93, 47–56. [Google Scholar] [CrossRef]
- Arfuso, F.; Gaglio, G.; Abbate, J.M.; Caracappa, G.; Lupia, A.; Napoli, E.; Giarratana, F.; Latrofa, M.S.; Giannetto, S.; Otranto, D.; et al. Identification of phlebotomine sand flies through MALDI-TOF mass spectrometry and in-house reference database. Acta Trop. 2019, 194, 47–52. [Google Scholar] [CrossRef]
- Chavy, A.; Nabet, C.; Normand, A.-C.; Kocher, A.; Ginouves, M.; Prévot, G.; dos Santos, T.V.; Demar, M.P.; Piarroux, R.; De Thoisy, B. Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new mass spectra library. PLoS Negl. Trop. Dis. 2019, 13, e0007031. [Google Scholar] [CrossRef] [Green Version]
- Sick, F.; Beer, M.; Kampen, H.; Wernike, K. Culicoides Biting Midges—Underestimated Vectors for Arboviruses of Public Health and Veterinary Importance. Viruses 2019, 11, 376. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, C.; Ziegler, D.; Schaffner, F.; Carpenter, S.; Pflüger, V.; Mathis, A. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med. Vet. Èntomol. 2011, 25, 32–38. [Google Scholar] [CrossRef]
- Kaufmann, C.; Schaffner, F.; Ziegler, D.; Pflüger, V.; Mathis, A. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 2012, 139, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, F.A.; Weirauch, C.; Felix, M.; Lazoski, C.; Abad-Franch, F. Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. Adv. Parasitol. 2018, 99, 265–344. [Google Scholar] [CrossRef]
- Chao, C.; Leone, J.L.; Vigliano, C.A. Chagas disease: Historic perspective. Biochim. Biophys. Acta—Mol. Basis Dis. 2020, 1866, 165689. [Google Scholar] [CrossRef]
- Gascon, J.; Bern, C.; Pinazo, M.J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 2010, 115, 22–27. [Google Scholar] [CrossRef]
- Laroche, M.; Bérenger, J.-M.; Gazelle, G.; Blanchet, D.; Raoult, D.; Parola, P. MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 2018, 145, 665–675. [Google Scholar] [CrossRef]
- Dos Santos Souza, É.; Fernandes, R.P.; Galvão, C.; de Paiva, V.F.; da Rosa, J.A. Distinguishing two species of Cavernicola (Hemiptera, Reduviidae, Triatominae) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Acta Trop. 2019, 198, 105071. [Google Scholar] [CrossRef]
- Dos Santos Souza, É.; Fernandes, R.P.; Guedes, W.N.; Dos Santos, F.N.; Eberlin, M.N.; Lopes, N.P.; Padovani, V.D.; da Rosa, J.A. Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools. Anal. Bioanal. Chem. 2020, 412, 1431–1439. [Google Scholar] [CrossRef]
- Ouarti, B.; Laroche, M.; Righi, S.; Meguini, M.N.; Benakhla, A.; Raoult, D.; Parola, P. Development of MALDI-TOF mass spectrometry for the identification of lice isolated from farm animals. Parasite 2020, 27, 28. [Google Scholar] [CrossRef]
- Laroche, M.; Almeras, L.; Pecchi, E.; Bechah, Y.; Raoult, D.; Viola, A.; Parola, P. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malar. J. 2017, 16, 5. [Google Scholar] [CrossRef]
- El Hamzaoui, B.; Laroche, M.; Almeras, L.; Bérenger, J.M.; Raoult, D.; Parola, P. Detection of Bartonella spp. in fleas by MALDI-TOF MS. PLoS Negl. Trop. Dis. 2018, 12, e0006189. [Google Scholar] [CrossRef]
- Kloehn, J.; Boughton, B.A.; Saunders, E.C.; O’Callaghan, S.; Binger, K.J.; McConville, M.J. Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio 2021, 12, e00129-21. [Google Scholar] [CrossRef]
- Tans, R.; Dey, S.; Dey, N.S.; Cao, J.H.; Paul, P.S.; Calder, G.; Kaye, P.M.; Heeren, R.M.A. Mass spectrometry imaging identifies altered hepatic lipid signatures during experimental Leishmania donovani infection. Front. Immunol. 2022, 13, 862104. [Google Scholar] [CrossRef]
- Rakotonirina, A.; Caruzzo, C.; Ballan, V.; Kainiu, M.; Marin, M.; Colot, J.; Richard, V.; Dupont-Rouzeyrol, M.; Selmaoui-Folcher, N.; Pocquet, N. Wolbachia detection in Aedes aegypti using MALDI-TOF MS coupled to artificial intelligence. Sci. Rep. 2021, 11, 21355. [Google Scholar] [CrossRef]
- Lachaud, L.; Fernández-Arévalo, A.; Normand, A.-C.; Lami, P.; Nabet, C.; Donnadieu, J.L.; Piarroux, M.; Djenad, F.; Cassagne, C.; Ravel, C.; et al. Identification of Leishmania by Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry Using a Free Web-Based Application and a Dedicated Mass-Spectral Library. J. Clin. Microbiol. 2017, 55, 2924–2933. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Juanes, F.; Calvo Sánchez, N.; Belhassen García, M.; Vieira Lista, C.; Román, R.M.; Álamo Sanz, R.; Muro Álvarez, A.; Muñoz Bellido, J.L. Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms 2022, 10, 2300. https://doi.org/10.3390/microorganisms10112300
Sánchez-Juanes F, Calvo Sánchez N, Belhassen García M, Vieira Lista C, Román RM, Álamo Sanz R, Muro Álvarez A, Muñoz Bellido JL. Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms. 2022; 10(11):2300. https://doi.org/10.3390/microorganisms10112300
Chicago/Turabian StyleSánchez-Juanes, Fernando, Noelia Calvo Sánchez, Moncef Belhassen García, Carmen Vieira Lista, Raul Manzano Román, Rufino Álamo Sanz, Antonio Muro Álvarez, and Juan Luis Muñoz Bellido. 2022. "Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases" Microorganisms 10, no. 11: 2300. https://doi.org/10.3390/microorganisms10112300