Incidence and Microbiology of Hospital-Acquired Infections in COVID-19 Patients between the First and the Second Outbreak of the SARS-CoV-2 Pandemic: A Retrospective, Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Ethics
2.2. Study Cohort
- -
- All cases were confirmed via viral nucleic acid detection using RT-PCR of upper (nasopharyngeal) and/or lower (bronchoalveolar lavage [BAL]) respiratory tract specimens.
- -
- Testing was carried out in the microbiology laboratory at Humanitas Clinical and Research Hospital.
2.3. Screening for MDROs
2.4. Data Collection
- -
- The patients’ age (with stratification by age-group) and sex.
- -
- The number of days between symptom onset and hospital admission, followed by the length of hospital stay and the days spent in ICU for those patients who required intensive care measures.
- -
- The Charlson Comorbidity Index (CCI) was calculated for each patient. The CCI is a score in which the sum of different comorbid conditions predicts the 10-year survival for a patient. It includes different items, such as myocardial infarction, congestive heart failure, peripheral vascular disease, previous stroke, dementia, chronic obstructive pulmonary disease (COPD), peptic ulcer disease, mild and moderate-to-severe liver disease, diabetes mellitus, hemiplegia, moderate-to-severe chronic kidney disease, localized or metastatic solid tumor, leukemia, lymphoma, and acquired immunodeficiency syndrome (AIDS).
- -
- The administration of active therapies against COVID-19 (namely steroids and remdesivir) was considered for both cohorts, although a small proportions of patients from the first population was exposed to either agent.
- -
- Empirical antibiotic therapy for CAP (i.e., either third-generation cephalosporins or piperacillin/tazobactam, representing the first- and second-line therapeutic options, respectively) was included in the analysis. The administration of azithromycin was instead considered only for the first cohort of patients. Description of antibiotic options for MDR-associated infections (vancomycin, teicoplanin, linezolid, gentamycin, meropenem, ceftazidime/avibactam and ceftolozane/tazobactam) was also described and reported in the analysis.
- -
- The incidence of co-infections, defined as bacterial infection diagnosed at the time of hospital admission (CAP) and secondary infections, defined as bacterial infection diagnosed during hospital stay (namely HAP, VAP, BSI, and/or UTI) and the isolated microorganism, as well as the consequent development of sepsis and septic shock.
- -
- The outcome: discharged or deceased.
2.5. Data Analysis
2.6. Study Definitions
- -
- The date of disease onset was the day when symptoms were first noticed.
- -
- The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) was used as a reference of sepsis definition [29].
- -
- Secondary infections were considered if clinical suspicion was confirmed with both laboratory alterations of inflammatory indices and microbiological isolation from blood, urinary, and/or respiratory specimens; coinfections are defined as bacterial infections diagnosed at hospital admission; secondary infections are defined as bacterial infection diagnosed during hospital stay.
- -
- Pathogens were considered multi-drug resistant according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria for antimicrobial susceptibility [28].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA-J. Am. Med. Assoc. 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Million, M.; Jarrot, P.A.; Camoin-Jau, L.; Colson, P.; Fenollar, F.; Leone, M.; La Scola, B.; Devaux, C.; Gaubert, J.Y.; et al. Natural history of COVID-19 and therapeutic options. Expert Rev. Clin. Immunol. 2020, 16, 1159–1184. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arborus, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Greco, M.; Zanella, A.; Alabano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N.; et al. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Ngandu, N.K.; Mmotsa, T.M.; Dassaye, R.; Thabetha, A.; Odendaal, W.; Langdown, N.; Ndwandwe, D. Hospital acquired COVID-19 infections amongst patients before the rollout of COVID-19 vaccinations, a scoping review. BMC Infect. Dis. 2022, 22, 140. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J. Antimicrob. Chemother. 2020, 76, 1078–1084. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.H.; Dugas, A. The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis. Influenza Other Respir. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakih, M.G.; Bufalino, A.; Sturm, L.; Huang, R.H.; Ottenbacher, A.; Saake, K.; Winegar, A.; Fogel, R.; Cacchione, J. Coronavirus disease 2019 (COVID-19) pandemic, central-line-associated bloodstream infection (CLABSI), and catheter-associated urinary tract infection (CAUTI): The urgent need to refocus on hardwiring prevention efforts. Infect. Control Hosp. Epidemiol. 2022, 43, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Battaglini, D.; Ball, L.; Brunetti, I.; Bruzzone, B.; Codda, G.; Crea, F.; Dentone, C.; Di Biagio, A. Bloodstream infections in critically ill patients with COVID-19. Eur. J. Clin. Investig. 2020, 50, e13319. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef]
- Bonazzetti, C.; Morena, V.; Giacomelli, A.; Oreni, L.; Casalini, G.; Galimberti, L.R.; Bolis, M.; Rimoldi, M.; Ballone, E.; Colombo, R.; et al. Unexpectedly High Frequency of Enterococcal Bloodstream Infections in Coronavirus Disease 2019 Patients Admitted to an Italian ICU: An Observational Study. Crit. Care Med. 2021, 49, e31–e40. [Google Scholar] [CrossRef]
- Ceparano, M.; Baccolini, V.; Migliara, G.; Isonne, C.; Renzi, E.; Tufi, D.; De Vito, C.; De Giusti, M.; Trancassini, M.; Alessandri, F.; et al. Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms 2022, 10, 722. [Google Scholar] [CrossRef]
- Möllers, M.; von Wahlde, M.K.; Schuler, F.; Mellmann, A.; Böing, C.; Schwierzeck, V.; Schneider, J.S.; Kampmeier, S. Outbreak of MRSA in a Gynecology/Obstetrics Department during the COVID-19 Pandemic: A Cautionary Tale. Microorganisms 2022, 10, 689. [Google Scholar] [CrossRef]
- Bazaid, A.S.; Barnawi, H.; Qanash, H.; Alsaif, G.; Aldarhami, A.; Gattan, H.; Alharbi, B.; Alrashidi, A.; Al-Soud, W.A.; Moussa, S.; et al. Bacterial Coinfection and Antibiotic Resistance Profiles among Hospitalised COVID-19 Patients. Microorganisms 2022, 10, 495. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically Ill Patients With COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef]
- Perez, S.; Innes, G.K.; Walters, M.S.; Mehr, S.; Arias, J.; Greeley, R.; Chew, D. Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions—New Jersey, February–July 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1827–1831. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- ECDC; WHO. Antimicrobial Resistance Surveillance in Europe (2016–2020); WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, H.J.; Kim, T.; Lee, E.; Park, S.Y.; Yu, S.; Hong, H.L.; Kim, M.C.; Hong, S.I.; Bae, S.; Kim, M.J.; et al. Risk factors for isolation of multi-drug resistant organisms in coronavirus disease 2019 pneumonia: A multicenter study. Am. J. Infect. Control 2021, 49, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Baena, Z.R.; Giannella, M.; Manissero, D.; Rodrìguez-Bano, J.; Viale, P.; Lopes, S.; Wilson, K.; McCool, R.; Longshaw, C. Risk factors for carbapenem-resistant Gram-negative bacterial infections: A systematic review. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- WHO. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected; WHO: Geneva, Switzerland, 2020; pp. 1–19. [Google Scholar]
- SIMIT. Vademecum per La Cura Delle Persone Con Malattia Da COVID-19; Ver. 2.0 13.03.2020; SMIT: Rotterdam, The Netherlands, 2020; pp. 1–15. [Google Scholar]
- WHO. Home Care for Patients with Suspected or Confirmed COVID-19 and Management of Their Contacts. World Health Organization. 2020. Available online: https://www.who.int/publications-detail/home-care-for-patients-with-suspected-novel-coronavirus-(ncov)-infection-presenting-with-mild-symptoms-and-management-of-contacts (accessed on 1 January 2021).
- Adler, H.; Ball, R.; Fisher, M.; Mortimer, K.; Vardhan, M.S. Low rate of bacterial co-infection in patients with COVID-19. The Lancet Microbe. 2020, 1, e62. [Google Scholar] [CrossRef]
- Yu, D.; Ininbergs, K.; Hedman, K.; Giske, C.G.; Strålin, K.; Özenci, V. Low prevalence of bloodstream infection and high blood culture contamination rates in patients with COVID-19. PLoS ONE 2020, 15, e0242533. [Google Scholar] [CrossRef]
- Musuuza, J.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and super-infection with SARS-CoV-2 and other pathogens: A Systematic Review and Meta-analysis. medRxiv 2020, 1–23. [Google Scholar] [CrossRef]
- Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fatouhi-Ardakani, R.; Koohpaei, A.; Doosti, Z.; Golzari, S.E. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020, 20, 646. [Google Scholar] [CrossRef] [PubMed]
- Möhlenkamp, S.; Thiele, H. Ventilation of COVID-19 patients in intensive care units. Herz 2020, 45, 329–331. [Google Scholar] [CrossRef]
- Reiichiro, O.; Tetsuro, M.; Dahlia, R.; Toshiki, K. Increased Secondary Infection in COVID-19 Patients Treated with Steroids in New York City. Jpn. J. Infect. Dis. 2021, 74, 307–315. [Google Scholar]
- Dupper, A.C.; Malik, Y.; Cusumano, J.A.; Nadkarni, D.; Banga, J.; Berbel Caban, A.; Twyman, K.; Obla, A.; Patel, D.; Mazo, D.; et al. Longer Steroid Treatment Increases Secondary Bloodstream Infection Risk Among Patients With COVID-19 Requiring Intensive Care. Infect. Dis. Clin. Pract. 2022, 30, 1–6. [Google Scholar] [CrossRef]
- Yang, S.; Hua, M.; Liu, X.; Du, C.; Pu, L.; Xiang, P. Bacterial and fungal co-infections among COVID-19 patients in Intensive Care Unit. Microbes Infect. 2021, 23, 104806. [Google Scholar] [CrossRef] [PubMed]
- Sreenath, K.; Batra, P.; Vinayaraj, E.V.; Bhatia, R.; SaiKiran, K.; Singh, V.; Singh, S.; Verma, N.; Singh, U.B.; Mohan, A.; et al. Coinfections with Other Respiratory Pathogens among Patients with COVID-19. Microbiol. Spectr. 2021, 9, e00163-21. [Google Scholar] [CrossRef]
- Shafran, N.; Shafran, I.; Ben-Zvi, H.; Sofer, S.; Sheena, L.; Krause, L.; Shlomai, A.; Goldberg, E.; Sklan, E.H. Secondary bacterial infection in COVID-19 patients is a stronger predictor for death compared to influenza patients. Sci. Rep. 2021, 11, 12703. [Google Scholar] [CrossRef]
- Guo, M.; Gao, M.; Gao, J.; Zhang, T.; Jin, X.; Fan, J.; Wang, Q.; Li, X.; Chen, J.; Zhu, Z. Identifying Risk Factors for Secondary Infection Post-SARS-CoV-2 Infection in Patients With Severe and Critical COVID-19. Front. Immunol. 2021, 12, 715023. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Wu, J.; Li, Y.; Zhou, X.; Li, X.; Chen, H.; Guo, M.; Chen, S.; Sun, F.; et al. Risks and features of secondary infections in severe and critical ill COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 1958–1964. [Google Scholar] [CrossRef]
No. (%) Total (n = 510) | No. (%) Total (n = 643) | p-Value | |
---|---|---|---|
Age, median (IQR) [min–max], y | 67 (56–76) [27–94] | 73 (61–81) [26–100] | <0.001 |
Sex | |||
Male | 343 (67.3) | 397 (61.7) | |
Female | 167 (32.7) | 246 (38.3) | |
Charlson Comorbidity Index Score, median (IQR) | 1 (0-2) | 4 (2–6) | <0.001 |
Therapeutic options | |||
Remdesivir | 2 (0.4) | 98 (15.3) | <0.001 |
Steroids | 71 (13.9) | 578 (90.2) | <0.001 |
Low molecular weight heparin | 407 (79.8) | 608 (94.9) | <0.001 |
Length from symptom onset to hospital admission, median (IQR), days | 6 (3–8) | 4 (2–7) | 0.724 |
Length of hospital stay, median (IQR), days | 9 (6–14) | 12 (8–21) | <0.001 |
Length of stay in hospital ward, median (IQR), days | 8 (6–13) | 11 (7–19) | <0.001 |
Length of stay in ICU, median (IQR), days | 9 (6–15) | 12 (6–22.2) | 0.036 |
ICU admission | 72 (14.1) | 60 (9.3) | |
Outcome | |||
Discharged alive | 390 (76.5) | 484 (75.3) | 0.667 |
Died in hospital | 120 (23.5) | 159 (24.7) | 0.617 |
No. (%) Total (n = 510) | No. (%) Total (n = 643) | p-Value | |
---|---|---|---|
Secondary infections | 42 (8.2) | 151 (23.5) | <0.001 |
Isolated multi-drug resistant organisms (MDROs) | |||
Extended spectrum β-lactamase E. coli | 1 (2.3) | 3 (2.0) | |
Carbapenem-resistant K. pneumoniae | 9 (21.4) | 7 (4.6) | |
Difficult-to-treat resistant P. aeruginosa | 3 (7.1) | 5 (3.3) | |
Methicillin-resistant S. aureus (MRSA) | 3 (7.1) | 11 (7.3) | |
Vancomycin-resistant Enterococcus (VRE) | 4 (9.5) | 9 (6.0) | |
Site of infection | |||
Community-acquired pneumonia, CAP | 6 (14.3) | 10 (6.6) | |
Hospital-acquired pneumonia, HAP | 3 (7.1) | 4 (2.6) | |
Ventilator-associated pneumonia, VAP | 10 (23.8) | 32 (21.2) | |
Bloodstream infection, BSI | 11 (26.2) | 47 (31.1) | |
Urinary tract infection, UTI | 12 (28.6) | 58 (38.4) | |
Sepsis/septic shock | 39 (7.6) | 60 (9.3) | 0.4678 |
No (%) Treated Isolated | Antibiotic Used | No. (%) of Combination Therapy | No. (%) of MDR-Associated Deaths | |
---|---|---|---|---|
Extended spectrum β-lactamase E. coli | 1 (100%) | Gentamycin | 0% | 1 (100%) |
Carbapenem-resistant K. pneumoniae | 2 (22%) | Ceftazidime/avibactam | 2 (100%) | 0% |
Difficult-to-treat resistant P. aeruginosa | 2 (67%) | Ceftolozane/tazobactam | 2 (100%) | 0% |
Methicillin-resistant S. aureus (MRSA) | 2 (50%) | Linezolid; teicoplanin | 0% | 0% |
Vancomycin-resistant Enterococcus (VRE) | 3 (75%) | Linezolid | 0% | 0% |
No (%) Treated Isolated | Antibiotic Used | No. (%) of Combination Therapy | No. (%) of MDR-Associated Deaths | |
---|---|---|---|---|
Extended spectrum β-lactamase E. coli | 3 (100%) | Meropenem | 0% | 2 (67%) |
Carbapenem-resistant K. pneumoniae | 7 (100%) | Ceftazidime/avibactam | 7 (100%) | 3 (43%) |
Difficult-to-treat resistant P. aeruginosa | 3 (60%) | Ceftolozane/tazobactam | 3 (100%) | 3 (75%) |
Methicillin-resistant S. aureus (MRSA) | 11 (100%) | Linezolid | 0% | 3 (27%) |
Vancomycin-resistant Enterococcus (VRE) | 6 (67%) | Linezolid | 0% | 2 (22%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolò, C.; Federica, T.; De Nadai, G.; Sarah, M.; Cecilia, G.; Daria, P.; Maddalena, C.; Paolo, B.; Paola, M. Incidence and Microbiology of Hospital-Acquired Infections in COVID-19 Patients between the First and the Second Outbreak of the SARS-CoV-2 Pandemic: A Retrospective, Observational Study. Microorganisms 2022, 10, 2372. https://doi.org/10.3390/microorganisms10122372
Nicolò C, Federica T, De Nadai G, Sarah M, Cecilia G, Daria P, Maddalena C, Paolo B, Paola M. Incidence and Microbiology of Hospital-Acquired Infections in COVID-19 Patients between the First and the Second Outbreak of the SARS-CoV-2 Pandemic: A Retrospective, Observational Study. Microorganisms. 2022; 10(12):2372. https://doi.org/10.3390/microorganisms10122372
Chicago/Turabian StyleNicolò, Corti, Tordato Federica, Guendalina De Nadai, Mapelli Sarah, Garlanda Cecilia, Pocaterra Daria, Casana Maddalena, Bonfanti Paolo, and Morelli Paola. 2022. "Incidence and Microbiology of Hospital-Acquired Infections in COVID-19 Patients between the First and the Second Outbreak of the SARS-CoV-2 Pandemic: A Retrospective, Observational Study" Microorganisms 10, no. 12: 2372. https://doi.org/10.3390/microorganisms10122372
APA StyleNicolò, C., Federica, T., De Nadai, G., Sarah, M., Cecilia, G., Daria, P., Maddalena, C., Paolo, B., & Paola, M. (2022). Incidence and Microbiology of Hospital-Acquired Infections in COVID-19 Patients between the First and the Second Outbreak of the SARS-CoV-2 Pandemic: A Retrospective, Observational Study. Microorganisms, 10(12), 2372. https://doi.org/10.3390/microorganisms10122372