Therapy and Prevention for Human Toxocariasis
Abstract
:1. Introduction
2. Anthelmintics for Human Toxocariasis
2.1. Experimental Studies on the Sensitivity of Toxocara spp. Larvae to Anthelmintics
2.2. Efficacy of Available Anthelmintics for Therapy of Human Toxocariasis
2.2.1. Benzimidazole Derivatives
Albendazole (ABZ)
Mebendazole (MBZ)
Thiabendazole (TBZ)
2.2.2. Diethylcarbamazinze (DEC)
2.2.3. Ivermectin
2.2.4. Levamisole
2.2.5. Nitazoxanide
2.2.6. Future of Anthelmintic Therapy for Human Toxocariasis
3. Adjunctive Therapies
4. Indications for Anthelmintic Therapy
5. Drug of Choice, Treatment Regimens and Therapeutic Monitoring
6. Prevention of Toxocariasis
6.1. In Humans
6.2. In Definitive Canine or Felid Host
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ma, G.; Holland, C.V.; Wang, T.; Hofmann, A.; Fan, C.K.; Maizels, R.M.; Hotez, P.J.; Gasser, R.B. Human toxocariasis. Lancet Infect. Dis. 2018, 18, e14–e24. [Google Scholar] [CrossRef]
- Glickman, L.T.; Schantz, P.M. Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiol Rev. 1981, 3, 230–250. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Ma, G.; Wang, T.; Koehler, A.V.; Hofmann, A.; Chang, B.C.H.; Macpherson, C.N.; Gasser, R.B. Human toxocariasis—A look at a neglected disease through an epidemiological ‘prism’. Infect. Genet. Evol. 2019, 74, 104002. [Google Scholar] [CrossRef] [PubMed]
- Morimatsu, Y.; Akao, N.; Akiyoshi, H.; Kawazu, T.; Okabe, Y.; Aizawa, H. A familial case of visceral larva migrans after ingestion of raw chicken livers: Appearance of specific antibody in bronchoalveolar lavage fluid of the patients. Am. J. Trop. Med. Hyg. 2006, 75, 303–306. [Google Scholar] [CrossRef]
- Choi, D.; Lim, J.H.; Choi, D.C.; Paik, S.W.; Kim, S.H.; Huh, S. Toxocariasis and ingestion of raw cow liver in patients with eosinophilia. Korean J. Parasitol. 2008, 46, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmeister, B.; Glaeser, S.; Flick, H.; Pornschlegel, S.; Suttorp, N.; Bergmann, F. Cerebral toxocariasis after consumption of raw duck liver. Am. J. Trop. Med. Hyg. 2007, 76, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Salem, G.; Schantz, P. Toxocaral visceral larva migrans after ingestion of raw lamb liver. Clin. Infect. Dis. 1992, 15, 743–744. [Google Scholar] [CrossRef] [PubMed]
- Stürchler, D.; Weiss, N.; Gassner, M. Transmission of toxocariasis. J. Infect. Dis. 1990, 162, 571. [Google Scholar] [CrossRef]
- Noh, Y.; Hong, S.T.; Yun, J.Y.; Park, H.K.; Oh, J.H.; Kim, Y.E.; Jeon, B.S. Meningitis by Toxocara canis after ingestion of raw ostrich liver. J. Korean Med. Sci. 2012, 27, 1105–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprent, J.F. On the migratory behavior of the larvae of various Ascaris species in white mice. II. Longevity of encapsulated larvae and their resistance to freezing and putrefaction. J. Infect. Dis. 1953, 92, 114–117. [Google Scholar] [CrossRef]
- Maizels, R.M. Toxocara canis: Molecular basis of immune recognition and evasion. Vet. Parasitol. 2013, 193, 365–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, C.M.; Yoshida, A.; Pinelli, E.; Holland, C.V. Toxocariasis. In Helminth Infections and their Impact on Global Public Health; Bruschi, F., Ed.; Springer: Wien, Austria, 2014; pp. 425–455. [Google Scholar]
- Beaver, P.C.; Snyder, C.H.; Carrera, G.M. Chronic eosinophilia due to visceral larva migrans. Pediatrics 1952, 9, 7–19. [Google Scholar] [CrossRef]
- Ehrard, T.; Kernbaum, S. Toxocara canis et toxocarose humaine. Bull. Inst. Pasteur. 1979, 77, 225–287. [Google Scholar]
- Glickman, L.T.; Magnaval, J.F.; Domanski, L.M.; Shofer, F.S.; Lauria, S.S.; Gottstein, B.; Brochier, B. Visceral larva migrans in French adults: A new disease syndrome? Am. J. Epidemiol. 1987, 125, 1019–1034. [Google Scholar] [CrossRef]
- Taylor, M.; Keane, C.; O’Connor, P.; Mulvihill, E.; Holland, C. The expanded spectrum of toxocaral disease. Lancet 1988, 1, 692–695. [Google Scholar] [CrossRef]
- Magnaval, J.F.; Glickman, L.T.; Dorchies, P.; Morassin, B. Highlights of human toxocariasis. Korean J. Parasitol. 2001, 39, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Auer, H.; Walochnik, J. Toxocariasis and the clinical spectrum. Adv. Parasitol. 2020, 109, 111–130. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Baek, S.; Park, S.Y.; Shin, B.; Kwon, H.S.; Cho, Y.S.; Moon, H.B.; Kim, T.B. Clinical course and treatment outcomes of toxocariasis-related eosinophilic disorder. Medicine 2018, 97, e12361. [Google Scholar] [CrossRef]
- Rostami, A.; Riahi, S.M.; Holland, C.V.; Taghipour, A.; Khalili-Fomeshi, M.; Fakhri, Y.; Omrani, V.F.; Hotez, P.J.; Gasser, R.B. Seroprevalence estimates for toxocariasis in people worldwide: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007809. [Google Scholar] [CrossRef] [PubMed]
- Wilder, H.C. Nematode endophthalmitis. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1950, 55, 99–109. [Google Scholar]
- Nichols, R.L. The etiology of visceral larva migrans. I. Diagnostic morphology of infective second-stage Toxocara larvae. J. Parasitol. 1956, 42, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Schneier, A.J.; Durand, M.L. Ocular toxocariasis: Advances in diagnosis and treatment. Int. Ophthalmol. Clin. 2011, 51, 135–144. [Google Scholar] [CrossRef]
- Badri, M.; Eslahi, A.V.; Olfatifar, M.; Dalvand, S.; Houshmand, E.; Abdoli, A.; Majidiani, H.; Eslami, A.; Zibaei, M.; Johkool, M.G.; et al. Keys to unlock the enigma of ocular toxocariasis: A systematic review and meta-analysis. Ocul. Immunol. Inflamm. 2021, 28, 1–12. [Google Scholar] [CrossRef]
- Deshayes, S.; Bonhomme, J.; de La Blanchardière, A. Neurotoxocariasis: A systematic literature review. Infection 2016, 44, 565–574. [Google Scholar] [CrossRef]
- Finsterer, J.; Auer, H. Neurotoxocarosis. Rev. Inst. Med. Trop. Sao Paulo 2007, 49, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, A. Neurotoxocariasis. Adv. Parasitol. 2020, 109, 219–231. [Google Scholar] [CrossRef]
- Fillaux, J.; Magnaval, J.F. Laboratory diagnosis of human toxocariasis. Vet. Parasitol. 2013, 193, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, T.; Altmann, H.W. Parasitenlarven als Ursache umschriebener Leberherde. Morphologie und Differentialdiagnose. Pathologe 1987, 8, 31–36. [Google Scholar] [PubMed]
- Marty, A.M. Toxocariasis. In Pathology of Infectious Diseases; Meyers, W.M., Neafie, R.C., Marty, A.M., Wear, D.J., Eds.; Armed Forces Institute of Pathology: Washington, DC, USA, 2000; pp. 411–421. [Google Scholar]
- Meyer-Riemann, W.; Petersen, J.; Vogel, M. Extraktionsversuch einer intraretinalen Nematode im papillomakularen Bundel. Klin. Monatsbl. Augenheilkd. 1999, 214, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, C.Y.; Chan, P.H.; Preston, P.; Chau, P.Y. Transverse myelitis associated with larva migrans. Finding of a larva in cerebrospinal fluid. Lancet 1983, 1, 42. [Google Scholar] [CrossRef]
- Lynch, N.R.; Wilkes, L.K.; Hodgen, A.N.; Turner, K.J. Specificity of Toxocara ELISA in tropical populations. Parasite Immunol. 1988, 10, 323–337. [Google Scholar] [CrossRef]
- Raulf, M.-K.; Jordan, D.; Auer, H.; Warnecke, J.M.; Lepenies, B.; Strube, C. A new ELISA and western blot technique based on recombinant TES antigen and/or larval antigen for the detection of toxocariasis in humans. Parasitology 2021, 148, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Magnaval, J.F.; Laurent, G.; Gaudré, N.; Fillaux, J.; Berry, A. A diagnostic protocol designed for determining allergic causes in patients with blood eosinophilia. Mil. Med. Res. 2017, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- De Visser, L.; Rothova, A.; de Boer, J.H.; van Loon, A.M.; Kerkhoff, F.T.; Canninga-van Dijk, M.R.; Weersink, A.Y.L.; de Groot-Mijnes, J.D.F. Diagnosis of ocular toxocariasis by establishing intraocular antibody production. Am. J. Ophthalmol. 2008, 145, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Satou, T.; Horiuchi, A.; Akao, N.; Koike, K.; Fujita, K.; Nikaido, T. Toxocara canis: Search for a potential drug amongst beta-carboline alkaloids—In vitro and mouse studies. Exp. Parasitol. 2005, 110, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Mata-Santos, T.; D’Oca, C.D.R.M.; Mata-Santos, H.A.; Fenalti, J.; Pinto, N.; Coelho, T.; Berne, M.E.; da Silva, P.E.A.; D’Oca, M.G.M.; Scaini, C.J. Toxocara canis: Larvicidal activity of fatty acid amides. Bioorg. Med. Chem. Lett. 2016, 26, 739–741. [Google Scholar] [CrossRef]
- Mata-Santos, T.; Mata-Santos, H.A.; Carneiro, P.F.; De Moura, K.C.; Fenalti, J.M.; Klafke, G.B.; Cruz, L.A.; Martins, L.H.; Pinto, N.F.; Pinto, M.C.F.R.; et al. Toxocara canis: Anthelmintic activity of quinone derivatives in murine toxocarosis. Parasitology 2016, 143, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Goto, Y.; Akao, N.; Kiuchi, F.; Kondo, K.; Tsuda, Y. Mobility inhibition and nematocidal activity of asarone and related phenylpropanoids on second-stage larvae of Toxocara canis. Biol. Pharm. Bull. 1995, 18, 605–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, M.; Trinca, A.; Ferreira, M.J.U.; Monsalve-Puello, A.R.; Grácio, M.A.A. Toxocara canis: Potential activity of natural products against second-stage larvae in vitro and in vivo. Exp. Parasitol. 2010, 126, 191–197. [Google Scholar] [CrossRef]
- Sinott, F.A.; Sena-Lopes, Â.; Leal, K.S.; Thais de Oliveira Silva, M.; Cardoso de Freitas, M.; Quintana de Moura, M.; Aires Berne, M.E.; Borsuk, S. Essential oil from Brazilian red propolis exhibits anthelmintic activity against larvae of Toxocara cati. Exp. Parasitol. 2019, 200, 37–41. [Google Scholar] [CrossRef]
- Márquez-Navarro, A.; Nogueda-Torres, B.; Hernández-Campos, A.; Soria-Arteche, O.; Castillo, R.; Rodríguez-Morales, S.; Yépez-Mulia, L.; Hernández-Luis, F. Anthelmintic activity of benzimidazole derivatives against Toxocara canis second-stage larvae and Hymenolepis nana adults. Acta Trop. 2009, 109, 232–235. [Google Scholar] [CrossRef]
- Pike, E.H. Effect of diethylcarbamazine, oxophenarsine hydrochloride and piperazine citrate on Toxocara canis larvae in mice. Exp. Parasitol. 1960, 9, 223–232. [Google Scholar] [CrossRef]
- Dafalla, A.A. Study of the effect of diethylcarbamazine and thiabendazole on experimental Toxocara canis infection in mice. J. Trop. Med. Hyg. 1972, 75, 158–159. [Google Scholar]
- Nicholas, W.L.; Stewart, A.C. The action of benzimidazoles on the larval stage of Toxocara canis in the mouse. Ann. Trop. Med. Parasitol. 1979, 73, 57–62. [Google Scholar] [CrossRef]
- Wiseman, R.A.; Woodruff, A.W.; Pettitt, L.E. The treatment of toxocaral infection: Some experimental and clinical observations. Trans. R Soc. Trop. Med. Hyg. 1971, 65, 591–598. [Google Scholar] [CrossRef]
- Holt, P.E.; Clarkson, M.J.; Kerslake, M. Anthelmintic tests on Toxocara canis infection in mice. Vet. Rec. 1981, 108, 308–309. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, A.A. Effects of benzimidazole anthelmintics on the survival and migratory behavior of Toxocara canis larvae in the mouse. Am. J. Vet. Res. 1984, 45, 1430–1433. [Google Scholar]
- Abo-Shehada, M.N.; Herbert, I.V. Anthelmintic effect of levamisole, ivermectin, albendazole and fenbendazole on larval Toxocara canis infection in mice. Res. Vet. Sci. 1984, 36, 87–91. [Google Scholar] [CrossRef]
- Delgado, O.; Botto, C.; Mattei, R.; Escalante, A. Effect of albendazole in experimental toxocariasis of mice. Ann. Trop. Med. Parasitol. 1989, 83, 621–624. [Google Scholar] [CrossRef]
- Fisher, M.A.; Jacobs, D.E.; Hutchinson, M.J.; Abbott, E.M. Efficacy of fenbendazole and piperazine against developing stages of Toxocara and Toxascaris in dogs. Vet. Rec. 1993, 132, 473–475. [Google Scholar] [CrossRef]
- Fok, E.; Kassai, T. Toxocara canis infection in the paratenic host: A study on the chemosusceptibility of the somatic larvae in mice. Vet. Parasitol. 1998, 74, 243–259. [Google Scholar] [CrossRef]
- Horiuchi, A.; Satou, T.; Akao, N.; Koike, K.; Fujita, K.; Nikaido, T. The effect of free and polyethylene glycol-liposome-entrapped albendazole on larval mobility and number in Toxocara canis infected mice. Vet. Parasitol. 2005, 129, 83–87. [Google Scholar] [CrossRef]
- Leonardi, D.; Echenique, C.; Lamas, M.C.; Salomon, C.J. High efficacy of albendazole-PEG 6000 in the treatment of Toxocara canis larva migrans infection. J. Antimicrob. Chemother. 2009, 64, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Barrera, M.G.; Leonardi, D.; Bolmaro, R.E.; Echenique, C.G.; Olivieri, A.C.; Salomon, C.J.; Lamas, M.C. In vivo evaluation of albendazole microspheres for the treatment of Toxocara canis larva migrans. Eur. J. Pharm. Biopharm. 2010, 75, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.N.; Saha, T.K. Tropical eosinophilia experiments with Toxocara canis. Lancet 1959, 2, 493–494. [Google Scholar] [CrossRef]
- Ghafoor, S.Y.; Smith, H.V.; Lee, W.R.; Quinn, R.; Girdwood, R.W. Experimental ocular toxocariasis: A mouse model. Br. J. Ophthalmol. 1984, 68, 89–96. [Google Scholar] [CrossRef]
- Watzke, R.C.; Oaks, J.A.; Folk, J.C. Toxocara canis infection of the eye. Correlation of clinical observations with developing pathology in the primate model. Arch. Ophthalmol. 1984, 102, 282–291. [Google Scholar] [CrossRef]
- Gandhi, P.; Schmitt, E.K.; Chen, C.W.; Samantray, S.; Venishetty, V.K.; Hughes, D. Triclabendazole in the treatment of human fascioliasis: A review. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Lacey, E. Mode of action of benzimidazoles. Parasitol Today 1990, 6, 112–115. [Google Scholar] [CrossRef]
- Prichard, R.K. Mode of action of the anthelminthic thiabendazole in Haemonchus contortus. Nature 1970, 228, 684–685. [Google Scholar] [CrossRef]
- Horton, J. Albendazole: A review of anthelmintic efficacy and safety in humans. Parasitology 2000, 121, S113–S132. [Google Scholar] [CrossRef] [PubMed]
- Dupouy-Camet, J.; Kociecka, W.; Bruschi, F.; Bolas-Fernandez, F.; Pozio, E. Opinion on the diagnosis and treatment of human trichinellosis. Expert Opin. Pharmacother. 2002, 3, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; Hoerauf, A.; Bockarie, M. Lymphatic filariasis and onchocerciasis. Lancet 2010, 376, 1175–1185. [Google Scholar] [CrossRef]
- Lange, H.; Eggers, R.; Bircher, J. Increased systemic availability of albendazole when taken with a fatty meal. Eur. J. Clin. Pharmacol. 1988, 34, 315–317. [Google Scholar] [CrossRef]
- Sarin, R.; Dash, A.P.; Dua, V.K. Albendazole sulphoxide concentrations in plasma of endemic normals from a lymphatic filariasis endemic region using liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 799, 233–238. [Google Scholar] [CrossRef]
- Stürchler, D.; Schubarth, P.; Gualzata, M.; Gottstein, B.; Oettli, A. Thiabendazole vs. albendazole in treatment of toxocariasis: A clinical trial. Ann. Trop. Med. Parasitol. 1989, 83, 473–478. [Google Scholar] [CrossRef]
- Altcheh, J.; Nallar, M.; Conça, M.; Biancardi, M.; Freilij, H. Toxocariasis: Aspectos clínicos y de laboratorio en 54 pacientes. An. Pediatr. 2003, 58, 425–431. [Google Scholar] [CrossRef]
- Turrientes, M.C.; Perez de Ayala, A.; Norman, F.; Navarro, M.; Perez-Molina, J.A.; Rodriquez-Ferrer, M.; Garate, T.; Lopez-Velez, R. Visceral larva migrans in immigrants from Latin America. Emerg. Infect. Dis. 2011, 17, 1263–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroten, A.; Toczylowski, K.; Oldak, E.; Sulik, A. Toxocarosis in children: Poor hygiene habits and contact with dogs is related to longer treatment. Parasitol. Res. 2018, 117, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Hombu, A.; Yoshida, A.; Kikuchi, T.; Nagayasu, E.; Kuroki, M.; Maruyama, H. Treatment of larva migrans syndrome with long-term administration of albendazole. J. Microbiol. Immunol. Infect. 2019, 52, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Seo, J.W.; Lee, J.H.; Choi, B.S.; Park, S.G. Evaluation of the prevalence and clinical impact of toxocariasis in patients with eosinophilia of unknown origin. Korean J. Intern. Med. 2017, 32, 523–529. [Google Scholar] [CrossRef]
- Jung, H.; Hurtado, M.; Sanchez, M.; Medina, M.T.; Sotelo, J. Plasma and CSF levels of albendazole and praziquantel in patients with neurocysticercosis. Clin. Neuropharmacol. 1990, 13, 559–564. [Google Scholar] [CrossRef]
- Barisani-Asenbauer, T.; Maca, S.M.; Hauff, W.; Kaminski, S.L.; Domanovits, H.; Theyer, I.; Auer, H. Treatment of ocular toxocariasis with albendazole. J. Ocul. Pharmacol. Ther. 2001, 17, 287–294. [Google Scholar] [CrossRef]
- Ahn, S.J.; Woo, S.J.; Jin, Y.; Chang, Y.S.; Kim, T.W.; Ahn, J.; Heo, J.W.; Yu, H.G.; Chung, H.; Park, K.H.; et al. Clinical features and course of ocular toxocariasis in adults. PLoS Negl. Trop. Dis. 2014, 8, e2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, H.H. Neurocysticercosis. Neurol. Clin. 2018, 36, 851–864. [Google Scholar] [CrossRef]
- Sotelo, J.; Jung, H. Pharmacokinetic optimisation of the treatment of neurocysticercosis. Clin. Pharmacokinet. 1998, 34, 503–515. [Google Scholar] [CrossRef]
- Bach, T.; Galbiati, S.; Kennedy, J.K.; Deye, G.; Nomicos, E.Y.H.; Codd, E.E.; Garcia, H.H.; Horton, J.; Gilman, R.H.; Gonzalez, A.E.; et al. Pharmacokinetics, Safety, and Tolerability of oxfendazole in healthy adults in an open-label phase 1 multiple ascending dose and food effect study. Antimicrob. Agents Chemother. 2020, 64, e01018–e01020. [Google Scholar] [CrossRef] [PubMed]
- Keystone, J.S.; Murdoch, J.K. Mebendazole. Ann. Intern. Med. 1979, 91, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Dayan, A.D. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop. 2003, 86, 141–159. [Google Scholar] [CrossRef]
- Luder, P.J.; Siffert, B.; Witassek, F.; Meister, F.; Bircher, J. Treatment of hydatid disease with high oral doses of mebendazole. Long-term follow-up of plasma mebendazole levels and drug interactions. Eur. J. Clin. Pharmacol. 1986, 31, 443–448. [Google Scholar] [CrossRef]
- Magnaval, J.F.; Alvinerie, M.; Houin, G. Etude des concentrations sériques médicamenteuses au cours du traitement des “larva migrans” viscérales par le mébendazole. Med. Mal. Infect. 1989, 19, 121–124. [Google Scholar] [CrossRef]
- Magnaval, J.F.; Charlet, J.P. Efficacité comparée du thiabendazole et du mébendazole dans le traitement de la toxocarose. Therapie 1987, 42, 541–544. [Google Scholar]
- Magnaval, J.F. Comparative efficacy of diethylcarbamazine and mebendazole for the treatment of human toxocariasis. Parasitology 1995, 110, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Magnaval, J.F.; Charlet, J.P. Etude double aveugle de l’efficacité du mébendazole dans le traitement de la toxocarose humaine. Therapie 1992, 47, 145–148. [Google Scholar] [PubMed]
- Arundel, J.H. Recent advances in anthelmintics. Aust. Vet. J. 1967, 43, 455–460. [Google Scholar] [CrossRef]
- Brown, H.W. Anthelmintics, new and old. Clin. Pharmacol. Ther. 1969, 10, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.J.; Phares, H.F.; Graessle, O.E. The toxicological and antifungal properties of thiabendazole. Ecotoxicol. Environ. Saf. 1978, 1, 471–476. [Google Scholar] [CrossRef]
- Campbell, W.C. Anti-inflammatory and analgesic properties of thiabendazole. JAMA 1971, 216, 2143. [Google Scholar] [CrossRef] [PubMed]
- Dumancas, G.G.; Hikkaduwa Koralege, R.S.; Mojica, E.R.E.; Murdianti, B.S.; Pham, P.J. Thiabendazole. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 533–536. [Google Scholar] [CrossRef]
- Tocco, D.J.; Rosenblum, C.; Martin, C.M.; Robinson, H.J. Absorption, metabolism, and excretion of thiabendazole in man and laboratory animals. Toxicol. Appl. Pharmacol. 1966, 9, 31–39. [Google Scholar] [CrossRef]
- Phuc, L.D.V.; Hai, T.X.; Loi, C.B.; Quang, H.H.; Vinh, L.D.; Le, T.A. The kinetic profile of clinical and laboratory findings and treatment outcome of patients with toxocariasis. Trop. Med. Int. Health 2021, 26, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.J.; Graessle, O.E.; Lehman, E.G.; Kelley, K.L.; Geoffroy, R.F.; Rosenblum, C. Ocular absorption of thiabendazole-14 -C by the rabbit. Am. J. Ophthalmol. 1966, 62, 710–715. [Google Scholar] [CrossRef]
- Maguire, A.M.; Zarbin, M.A.; Connor, T.B.; Justin, J. Ocular penetration of thiabendazole. Arch. Ophthalmol. 1990, 108, 1675. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Ivankovich-Escoto, G.; Wu, L. Pediatric ocular toxocariasis in Costa Rica: 1998–2018 experience. Ocul. Immunol. Inflamm. 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Arroyo, J.C.; Brown, A. Concentrations of thiabendazole and parasite-specific IgG antibodies in the cerebrospinal fluid of a patient with disseminated strongyloidiasis. J. Infect. Dis. 1987, 156, 520–523. [Google Scholar] [CrossRef]
- Moreira-Silva, S.F.; Rodrigues, M.G.; Pimenta, J.L.; Gomes, C.P.; Freire, L.H.; Pereira, F.E. Toxocariasis of the central nervous system: With report of two cases. Rev. Soc. Bras. Med. Trop. 2004, 37, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawking, F. Diethylcarbamazine and new compounds for the treatment of filariasis. Adv. Pharmacol. Chemother. 1979, 16, 129–194. [Google Scholar] [CrossRef] [PubMed]
- Bolla, S.; Boinpally, R.R.; Poondru, S.; Devaraj, R.; Jasti, B.R. Pharmacokinetics of diethylcarbamazine after single oral dose at two different times of day in human subjects. J. Clin. Pharmacol. 2002, 42, 327–331. [Google Scholar] [CrossRef]
- Peixoto, C.A.; Silva, B.S. Anti-inflammatory effects of diethylcarbamazine: A review. Eur. J. Pharmacol. 2014, 734, 35–41. [Google Scholar] [CrossRef]
- Müllner, A.; Helfer, A.; Kotlyar, D.; Oswald, J.; Efferth, T. Chemistry and pharmacology of neglected helminthic diseases. Curr. Med. Chem. 2011, 18, 767–789. [Google Scholar] [CrossRef]
- Cesbron, J.; Capron, A.; Vargaftig, B.; Legarde, M.; Pincemail, J.; Braquet, P.; Taelman, H.; Joseph, M. Platelets mediate the action of diethylcarbamazine on microfilariae. Nature 1987, 325, 533–536. [Google Scholar] [CrossRef]
- Peixoto, C.A.; Santos, A.C.; Ayres, C.F. Molecular evidence for apoptosis in microfilariae of Wuchereria bancrofti induced by diethylcarbamazine. Parasitol. Res. 2008, 103, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Shrand, H. Visceral larva migrans. Toxocara canis infection. Lancet 1964, 1, 1357–1359. [Google Scholar] [CrossRef]
- Juszko, J.; Marczyńska, M.; Zarnowska, H. Diagnostyka i leczenie postaci ocznej infekcji larwa glisty psiej Toxocara canis. Klin. Oczna 1994, 96, 275–280. [Google Scholar]
- Yokoi, K.; Goto, H.; Sakai, J.; Usui, M. Clinical features of ocular toxocariasis in Japan. Ocul. Immunol. Inflamm. 2003, 11, 269–275. [Google Scholar] [CrossRef]
- Hennessy, D.R.; Alvinerie, M.R. Pharmacokinetics of the macrocyclic lactones. In Macrocyclic Lactones in Antiparasitic Therapy; Vercruysse, R.J., Rew, R.S., Eds.; CABI Publishing: Wallingford, UK, 2002; pp. 97–124. [Google Scholar]
- Chandler, R.E. Serious neurological adverse events after ivermectin. Do they occur beyond the indication of onchocerciasis? Am. J. Trop. Med. Hyg. 2018, 98, 382–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.J.; Robertson, A.P.; Wolstenholme, A.J. Mode of action of macrocyclic lactones. In Macrocyclic Lactones in Antiparasitic Therapy; Vercruysse, R.J., Rew, R.S., Eds.; CABI Publishing: Wallingford, UK, 2002; pp. 125–140. [Google Scholar]
- Magnaval, J.F. Apparent weak efficacy of ivermectin for treatment of human toxocariasis. Antimicrob. Agents Chemother. 1998, 42, 2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouyer, C. Traitement des parasitoses intestinales par le lévamisole. Bull. Soc. Pathol. Exot. Filiales 1970, 63, 255–265. [Google Scholar] [PubMed]
- Miller, M.J. Use of levamisole in parasitic infections. Drugs 1980, 20, 122–130. [Google Scholar] [CrossRef]
- Reich, R.; Mulvaney, P.; Robinson-Bostom, L. Antihelminthic drugs. In Side Effects of Drugs Annual; Aronson, J.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 457–464. [Google Scholar] [CrossRef]
- Anderson, V.R.; Curran, M.P. Nitazoxanide: A review of its use in the treatment of gastrointestinal infections. Drugs 2007, 67, 1947–1967. [Google Scholar] [CrossRef] [PubMed]
- Lescano, S.A.; Santos, S.V.; Assis, J.M.; Chieffi, P.P. Efficacy of nitazoxanide against Toxocara canis: Larval recovery and humoral immune response in experimentally infected mice. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Hotez, P.J. Toxocariasis: A neglected infection for the Anthropocene epoch. Adv. Parasitol. 2020, 109, 879–883. [Google Scholar] [CrossRef]
- Toxocariasis, Orphanet. 2021. Available online: https://www.tinyurl.com/vjnchajc (accessed on 17 November 2021).
- Panic, G.; Duthalerm, U.; Speich, B.; Keiser, J. Repurposing drugs for the treatment and control of helminth infections. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 185–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullio Gamboa, G.V.; Pensel, P.E.; Elissondo, M.C.; Sanchez Bruni, S.F.; Benoit, J.P.; Palma, S.D.; Allemandi, D.A. Albendazole-lipid nanocapsules: Optimization, characterization and chemoprophylactic efficacy in mice infected with Echinococcus granulosus. Exp. Parasitol. 2019, 198, 79–86. [Google Scholar] [CrossRef]
- Fabbri, J.; Espinosa, J.P.; Pensel, P.E.; Medici, S.K.; Gamboa, G.U.; Benoit, J.P.; Elissondo, M.C. Do albendazole-loaded lipid nanocapsules enhance the bioavailability of albendazole in the brain of healthy mice? Acta Trop. 2020, 201, 105215. [Google Scholar] [CrossRef]
- Canton, C.; Ceballos, L.; Fiel, C.; Moreno, L.; Domingo Yagüez, P.; Bernat, G.; Lanusse, C.; Alvarez, L. Resistant nematodes in cattle: Pharmaco-therapeutic assessment of the ivermectin- ricobendazole combination. Vet. Parasitol. 2017, 234, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Megha, G.K.; Aulakh, R.S.; Singh, B.B. Effect of oxfendazole to control Taenia solium cysticercosis in pigs in Punjab state of India. J. Parasit. Dis. 2020, 44, 553–558. [Google Scholar] [CrossRef]
- Hübner, M.P.; Martin, C.; Specht, S.; Koschel, M.; Dubben, B.; Frohberger, S.J.; Ehrens, A.; Fendler, M.; Struever, D.; Mitre, E.; et al. Oxfendazole mediates macrofilaricidal efficacy against the filarial nematode Litomosoides sigmodontis in vivo and inhibits Onchocerca spec. motility in vitro. PLoS Negl. Trop. Dis. 2020, 14, e0008427. [Google Scholar] [CrossRef] [PubMed]
- Helminth Elimination Platform. Geneva, Switzerland: Drugs for Neglected Diseases Initiative. 2019. Available online: https://dndi.org/global-networks/helminth-elimination-platform/# (accessed on 18 November 2021).
- Lanusse, C.; Lifschitz, A.; Virkel, G.; Alvarez, L.; Sánchez, S.; Sutra, J.F.; Galtier, P.; Alvinerie, M. Comparative plasma disposition kinetics of ivermectin, moxidectin and doramectin in cattle. J. Vet. Pharmacol. Ther. 1997, 20, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Glucocorticoids (GCs). Basel, Switzerland: IRHEUMA®—UZR®—Swiss Ultrasound Center and Institute for Rheumatology. 2021. Available online: http://www.irheuma.com/rheumatology-a-z/a-1-3-1-1-1/glucocorticoids-gcs (accessed on 13 November 2021).
- Magnaval, J.F.; Berry, A.; Fabre, R.; Morassin, B. Eosinophil cationic protein as a possible marker of active human Toxocara infection. Allergy 2001, 56, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- Rudzińska, M.; Kowalewska, B.; Sikorska, K. Clinical usefulness of Western blotting and ELISA avidity for the diagnosis of human toxocariasis. Parasite Immunol. 2008, 30, 187–190. [Google Scholar] [CrossRef]
- Menu, E.; Kopec, L.; Luciani, L.; Legrand, S.; L’Ollivier, C. Measurement of the IgG avidity index in the diagnosis of clinical toxocariasis patients. Pathogens 2021, 10, 1086. [Google Scholar] [CrossRef]
- Vuitton, D.A. Benzimidazoles for the treatment of cystic and alveolar echinococcosis: What is the consensus? Expert Rev. Anti. Infect. Ther. 2009, 7, 145–149. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Cretu, C.; Dong, Y. Imaging of toxocariasis. Adv. Parasitol. 2020, 109, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, E.A.; Weller, P.F. Eosinophilia following treatment of patients with schistosomiasis mansoni and Bancroft’s filariasis. J. Infect. Dis. 1979, 139, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.L.; Mehta, K.A.; Glickman, L.T.; Blocker, R.; Eppes, B.M. Asymptomatic toxocariasis in children. A prospective study and treatment trial. Clin. Pediatr. 1987, 26, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Elefant, G.R.; Shimizu, S.H.; Sanchez, M.C.; Jacob, C.M.; Ferreira, A.W. A serological follow-up of toxocariasis patients after chemotherapy based on the detection of IgG, IgA, and IgE antibodies by enzyme-linked immunosorbent assay. J. Clin. Lab. Anal. 2006, 20, 164–172. [Google Scholar] [CrossRef]
- Rubinsky-Elefant, G.; Hoshino-Shimizu, S.; Jacob, C.M.; Sanchez, M.C.; Ferreira, A.W. Potential immunological markers for diagnosis and therapeutic assessment of toxocariasis. Rev. Inst. Med. Trop. Sao Paulo 2011, 53, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Roussel, C.; Drake, J.; Ariza, J.M. French national survey of dog and cat owners on the deworming behaviour and lifestyle of pets associated with the risk of endoparasites. Parasit Vectors 2019, 12, 480. [Google Scholar] [CrossRef] [Green Version]
- Hajipour, N.; Soltani, M.; Ketzis, J.; Hassanzadeh, P. Zoonotic parasitic organisms on vegetables: Impact of production system characteristics on presence, prevalence on vegetables in northwestern Iran and washing methods for removal. Food Microbiol. 2021, 95, 103704. [Google Scholar] [CrossRef]
- Healy, S.R.; Morgan, E.R.; Prada, J.M.; Betson, M. Brain food: Rethinking food-borne toxocariasis. Parasitology 2021, 25, 1–9. [Google Scholar] [CrossRef]
- Romeu, J.; Roig, J.; Bada, J.L.; Riera, C.; Muñoz, C. Adult human toxocariasis acquired by eating raw snails. J. Infect. Dis. 1991, 164, 438. [Google Scholar] [CrossRef] [PubMed]
- Reinemeyer, L.; McCall, J.W.; Young, D.R.; Epe, C. Evaluation of the efficacy of emodepside plus praziquantel topical solution against ascarid infections (Toxocara cati or Toxascaris leonina) in cats. Parasitol. Res. 2005, 97, S41–S50. [Google Scholar] [CrossRef] [PubMed]
- Wolken, S.; Schaper, R.; Mencke, N.; Kraemer, F.; Schnieder, T. Treatment and prevention of vertical transmission of Toxocara cati in cats with an emodepside/praziquantel spot-on formulation. Parasitol. Res. 2009, 105, S75–S81. [Google Scholar] [CrossRef] [PubMed]
- Worm Control in Dogs and Cats. Malvern, Worcestershire, United Kingdom: European Scientific Counsel for Companion Animal Parasites. 2021. Available online: https://www.esccap.org/uploads/docs/oc1bt50t_0778_ESCCAP_GL1_v15_1p.pdf (accessed on 18 November 2021).
Year | Authors & Parameters | Type of the Study | ABZ a | MBZ a | TBZ a | DEC a | NT b | p |
---|---|---|---|---|---|---|---|---|
1987 | Magnaval et al. [84] | C, Rand c | ||||||
Number of patients | 42 | 30 | ||||||
Daily dose | 25 mg/kg | 25 mg/kg | ||||||
Duration (days) | 7 | 7 | ||||||
Minor side effects | 10 (23.8%) | 18 (60%) | 0.004 | |||||
Major side effects | none | none | ||||||
Number of cured patients | 24 (57%) | 15 (50%) | NS i | |||||
Variation in the eosinophil count | NA g | NA g | ||||||
1989 | Stürchler et al. [68] | C, Rand c | ||||||
Number of patients | 19 | 15 | ||||||
Daily dose | 10 mg/kg | 50 mg/kg | ||||||
Duration (days) | 5 | 5 | ||||||
Minor side effects | 7 (37%) | 4 (27%) | NS i | |||||
Major side effects | none | 1 (6.7%) | ||||||
Number of cured patients | 6 (31.6%) | 8 (53.3%) | NS i | |||||
Variation in the eosinophil count | NA g | NA g | ||||||
1992 | Magnaval et al. [86] | C, Rand c | ||||||
Number of patients | 45 | 43 | ||||||
Daily dose | 10–15 mg/kg | NA g | ||||||
Duration (days) | 3 × 6 | NA g | ||||||
Minor side effects | 26 (57.8%) | 13 (30.2%) | 0.01 | |||||
Major side effects | none | none | ||||||
Variation in the clinical score | −65.6% | −59.2% | NS i | |||||
Variation in the laboratory score | −17.7% | +0.7% | <0.001 | |||||
1995 | Magnaval [85] | C, Rand c | ||||||
Number of patients | 41 | 39 | ||||||
Daily dose | 20–25 mg/kg | 3–4 mg/kg | ||||||
Duration (days) | 21 | 21 | ||||||
Minor side effects | 7 (17.1%) | 12 (30.8%) | NS i | |||||
Mazzotti-like reaction f | none | 4 (10.25%) | 0.05 | |||||
Major side effects | none | 1 (2.6%) | NS i | |||||
Variation in the clinical score | −68.6% | −70.9% | NS i | |||||
Variation in the eosinophil count | −37.5% | −40.9% | NS i | |||||
2003 | Altcheh et al. [69] | O, Prosp d | ||||||
Number of patients | 16 (VLM) | |||||||
Daily dose | 15 mg/kg | |||||||
Duration (days) | 15 | |||||||
Minor side effects | NA g | |||||||
Major side effects | NA g | |||||||
Number of cured patients | 16 (100%) | |||||||
Variation in the eosinophil count | −70.4% | |||||||
2011 | Turrientes et al. [70] | O, Retr e | ||||||
Number of patients | 4 (VLM) | |||||||
Daily dose | 10–15 mg/kg | |||||||
Duration (days) | 5 | |||||||
Minor side effects | NA g | |||||||
Major side effects | NA g | |||||||
Number of cured patients | 4 (100%) | |||||||
Variation in the eosinophil count | −52.7% | |||||||
2017 | Kim et al. [73] | O, Retr e | ||||||
Number of patients | 34 | 11 | ||||||
Daily dose | 800 mg | NA g | ||||||
Duration (days) | 5 to 7 | NA g | ||||||
Minor side effects | NA g | NA g | ||||||
Major side effects | NA g | NA g | ||||||
Number of cured patients | NA g | NA g | ||||||
Normalization of the eosinophil count | 28 (82.3%) | 4 (36.4%) | 0.007 | |||||
2018 | Kroten et al. [71] | O, Retr e | ||||||
Number of patients | 66 | |||||||
Daily dose | 15 mg/kg | |||||||
Duration (days) | 10 × 2 | |||||||
Minor side effects | NA g | |||||||
Major side effects | NA g | |||||||
Number of cured patients | 47 (71%) | |||||||
Variation in the eosinophil count | NA g,h | |||||||
2018 | Yoon et al. [19] | O, Prosp d | ||||||
Number of patients | 141 | 12 | ||||||
Daily dose | 800 mg | None | ||||||
Duration (days) | Variable | NA g | ||||||
Minor side effects | NA g | NA g | ||||||
Major side effects | NA g | NA g | ||||||
Number of cured patients | 120/141 | 10/12 | NS i | |||||
(85.1%) | (83.3%) | |||||||
Variation in the eosinophil count | NA g | NA g | ||||||
2019 | Hombu et al. [72] | O, Prosp e | ||||||
Number of patients | 113 (VLM) | |||||||
Daily dose | 15 mg/kg | |||||||
Duration (days) | 28 × 2 | |||||||
Minor side effects | 2 (1.8%) | |||||||
Major side effects | 35 (31%) | |||||||
Number of cured patients | 91 (80.5%) | |||||||
Variation in the eosinophil count | NA g | |||||||
2021 | Phuc et al. [93] | O, Prosp d | ||||||
Number of patients | 80 | |||||||
Daily dose | 50 mg/kg | |||||||
Duration (days) | 5 | |||||||
Minor side effects | 27(33.8%) | |||||||
Major side effects | none | |||||||
Number of cured patients | 63 (78.8%) | |||||||
Variation in the eosinophil count | −41% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnaval, J.-F.; Bouhsira, E.; Fillaux, J. Therapy and Prevention for Human Toxocariasis. Microorganisms 2022, 10, 241. https://doi.org/10.3390/microorganisms10020241
Magnaval J-F, Bouhsira E, Fillaux J. Therapy and Prevention for Human Toxocariasis. Microorganisms. 2022; 10(2):241. https://doi.org/10.3390/microorganisms10020241
Chicago/Turabian StyleMagnaval, Jean-François, Emilie Bouhsira, and Judith Fillaux. 2022. "Therapy and Prevention for Human Toxocariasis" Microorganisms 10, no. 2: 241. https://doi.org/10.3390/microorganisms10020241
APA StyleMagnaval, J.-F., Bouhsira, E., & Fillaux, J. (2022). Therapy and Prevention for Human Toxocariasis. Microorganisms, 10(2), 241. https://doi.org/10.3390/microorganisms10020241