Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases
Abstract
:1. Introduction: The Microbiome in Healthy Patients
2. The Microbiome and Gallstone Disease
3. Microbiome and Biliary Cancer
3.1. Cholangiocarcinoma
3.2. Gallbladder Cancer
4. Microbiome and Autoimmune and Cholestatic Liver Diseases
4.1. Microbiota and Primary Biliary Cholangitis
4.2. Microbiota and Autoimmune Hepatitis
4.3. Microbiota and Primary Sclerosing Cholangitis
5. Microbiome and Liver Transplantation
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinagra, E.; Utzeri, E.; Morreale, G.C.; Fabbri, C.; Pace, F.; Anderloni, A. Microbiota-gut-brain axis and its affect in-flammatory bowel disease: Pathophysiological concepts and insights for clinicians. World J. Clin. Cases 2020, 8, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupre, J.; O’Malley, M.A. Varieties of Living Things: Life at the Intersection of Lineage and Metabolism. Philos. Theory Biol. 2009, 1, e003. [Google Scholar] [CrossRef] [Green Version]
- Whipps, J.M.; Lewis, K.; Cooke, R.C. Mycoparasitism and plant disease control 161–187. In Fungi in Biological Control Systems; Burge, N.M., Ed.; Manchester University Press: Manchester, UK, 1988; p. 176. [Google Scholar]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Cresci, G.A.; Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract. 2015, 30, 734–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Nascimento, F.S.; Suzuki, M.O.; Taba, J.V.; De Mattos, V.C.; Pipek, L.Z.; D’Albuquerque, E.M.C.; Iuamoto, L.; Meyer, A.; Andraus, W.; Pinho, J.R.R.; et al. Analysis of biliary MICRObiota in hepato BILIO pancreatic diseases compared to healthy people [MICROBILIO]: Study protocol. PLoS ONE 2020, 15, e0242553. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Kostic, A.D.; Xavier, R.J.; Gevers, D. The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology 2014, 146, 1489–1499. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, E.; Sánchez, B.; Farina, A.; Margolles, A.; Rodríguez, J.M. Characterization of the bile and gall bladder microbiota of healthy pigs. Microbiol. Open 2014, 3, 937–949. [Google Scholar] [CrossRef]
- Nicoletti, A.; Ponziani, F.R.; Nardella, E.; Ianiro, G.; Gasbarrini, A.; Dal Verme, L.Z. Biliary tract microbiota: A new kid on the block of liver diseases? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2750–2775. [Google Scholar]
- Molinero, N.; Ruiz, L.; Milani, C.; Gutiérrez-Díaz, I.; Sánchez, B.; Mangifesta, M.; Segura, J.; Cambero, I.; Campelo, A.B.; García-Bernardo, C.M.; et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 2019, 7, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Qi, M.; Qin, C.; Hong, J. Role of the biliary microbiome in gallstone disease. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Lammert, F.; Acalovschi, M.; Ercolani, G.; van Erpecum, K.J.; Gurusamy, K.S.; van Laarhoven, C.J.; Portincasa, P. EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J. Hepatol. 2016, 65, 146–181. [Google Scholar] [CrossRef] [Green Version]
- Lammert, F.; Gurusamy, K.; Ko, C.W.; Miquel, J.-F.; Méndez-Sánchez, N.; Portincasa, P.; Van Erpecum, K.J.; Van Laarhoven, C.J.; Wang, D.Q.-H. Gallstones. Nat. Rev. Dis. Prims 2016, 2, 16024. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Moschetta, A.; Palasciano, G. Cholesterol gallstone disease. Lancet 2006, 368, 230–239. [Google Scholar] [CrossRef]
- Marschall, H.U.; Einarsson, C. Gallstone disease. J. Intern. Med. 2007, 261, 529–542. [Google Scholar] [CrossRef]
- Gutiérrez-Díaz, I.; Molinero, N.; Cabrera, A.; Rodríguez, J.I.; Margolles, A.; Delgado, S.; González, S. Diet: Cause or Consequence of the Microbial Profile of Cholelithiasis Disease? Nutrients 2018, 10, 1307. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.-S.; Chen, J.-H. The Mechanism of Enterohepatic Circulation in the Formation of Gallstone Disease. J. Membr. Biol. 2014, 247, 1067–1082. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Pérez, O.; Cruz-Ramón, V.; Chinchilla-López, P.; Méndez-Sánchez, N. The Role of the Gut Microbiota in Bile Acid Metabolism. Ann. Hepatol. 2017, 16, s15–s20. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Z.; Liu, B.; Hou, D.; Liang, Y.; Zhang, J.; Shi, P. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genom. 2013, 14, 669. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.H.; Portincasa, P.; Afdhal, N.H.; Wang, D.Q.H. Lith genes and genetic analysis of cholesterol gallstone for-mation. Gastroenterol. Clin. N. Am. 2010, 39, 185–207. [Google Scholar]
- Fremont-Rahl, J.J.; Ge, Z.; Umana, C.; Whary, M.T.; Taylor, N.S.; Muthupalani, S.; Carey, M.C.; Fox, J.G.; Maurer, K.J. An Analysis of the Role of the Indigenous Microbiota in Cholesterol Gallstone Pathogenesis. PLoS ONE 2013, 8, e70657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, T. Pathogenesis of calcium bilirubinate gallstone: Role of E. coli, beta-glucuronidase and coagulation by inorganic ions, polyelectrolytes and agitation. Ann. Surg. 1966, 164, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Maluenda, F.; Csendes, A.; Burdiles, P.; Diaz, J. Bacteriological study of choledochal bile in patients with common bile duct stones, with or without acute suppurative cholangitis. Hepatogastroenterology 1989, 36, 132–135. [Google Scholar] [PubMed]
- Kaufman, H.S.; Magnuson, T.H.; Lillemoe, K.D.; Frasca, P.; Pitt, H.A. The Role of Bacteria in Gallbladder and Common Duct Stone Formation. Ann. Surg. 1989, 209, 584–592. [Google Scholar] [CrossRef]
- Nakano, T.; Yanagisawa, J.; Nakayama, F. Phospholipase activity in human bile. Hepatology 1988, 8, 1560–1564. [Google Scholar] [CrossRef]
- Gumucio, J.J.; Ostrow, J.D. Brown pigment gallstones: The role of bacterial hydrolases and another missed opportunity. Hepatology 1991, 13, 607–609. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K.; Tarr, P.I.; Haigh, G.W.; Lee, S.P. Bacterial Dna in Mixed Cholesterol Gallstones. Am. J. Gastroenterol. 1999, 94, 3502–3506. [Google Scholar] [CrossRef]
- Kawai, M.; Iwahashi, M.; Uchiyama, K.; Ochiai, M.; Tanimura, H.; Yamaue, H. Gram-positive cocci are associated with the formation of completely pure cholesterol stones. Am. J. Gastroenterol. 2002, 97, 83–88. [Google Scholar] [CrossRef]
- Yoon, W.J.; Kim, H.-N.; Park, E.; Ryu, S.; Chang, Y.; Shin, H.; Kim, H.-L.; Yi, S. The Impact of Cholecystectomy on the Gut Microbiota: A Case-Control Study. J. Clin. Med. 2019, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, H.; Li, J.; Wang, X.Z.; Cai, D.; Zhang, Y.L. Study on the mechanism of pronucleation of cholesterol crystal formation by bacteria. J. Hepatopancreatobil. Surg. 2009, 21, 122–125. [Google Scholar]
- Keren, N.; Konikoff, F.M.; Paitan, Y.; Gabay, G.; Reshef, L.; Naftali, T.; Gophna, U. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ. Microbiol. Rep. 2015, 7, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Dumonceau, J.M.; Lescuyer, P. Proteomic analysis of human bile and potential applications for cancer diagnosis. Expert Rev. Proteomics 2009, 6, 285–301. [Google Scholar] [PubMed]
- Chang, C.-M.; Chiu, T.H.T.; Chang, C.-C.; Lin, M.-N.; Lin, C.-L. Plant-Based Diet, Cholesterol, and Risk of Gallstone Disease: A Prospective Study. Nutrients 2019, 11, 335. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.L.; Takeda, K.; Sundrud, M.S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal. Immunol. 2019, 12, 851–861. [Google Scholar] [CrossRef] [Green Version]
- Csendes, A.; Burdiles, P.; Maluenda, F.; Diaz, J.C.; Csendes, P.; Mitru, N. Simultaneous Bacteriologic Assessment of Bile From Gallbladder and Common Bile Duct in Control Subjects and Patients with Gallstones and Common Duct Stones. Arch. Surg. 1996, 131, 389–394. [Google Scholar] [CrossRef]
- Helaly, G.F.; El-Ghazzawi, E.F.; Kazeiw, A.H.; Dowidar, N.L.; Anwar, M.M.; Attia, N.M. Detection of Helicobacter Pylori Infection in Egyptian patients with chronic calcular cholecystitis. Br. J. Biomed. Sci. 2014, 71, 13–18. [Google Scholar] [CrossRef]
- Neri, V.; Margiotta, M.; De Francesco, V.; Ambrosi, A.; Della Valle, N.; Fersini, A.; Tartaglia, N.; Minenna, M.F.; Ricciardelli, C.; Giorgio, F.; et al. DNA sequences and proteic antigens of H. pylori in cholecystic bile and tissue of patients with gallstones. Aliment. Pharmacol. Ther. 2005, 22, 715–720. [Google Scholar] [CrossRef]
- Swidsinski, A.; Ludwig, W.; Pahlig, H.; Priem, F. Molecular genetic evidence of bacterial colonization of cholesterol gallstones. Gastroenterology 1995, 108, 860–864. [Google Scholar] [CrossRef]
- Ye, F.; Shen, H.; Li, Z.; Meng, F.; Li, L.; Yang, J.; Chen, Y.; Bo, X.; Zhang, X.; Ni, M. Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLoS ONE 2016, 11, e0150519. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Y.; Liu, Y.; Nie, Y.; Xu, P.; Xia, B.; Tian, F.; Sun, Q. Cholesterol gallstones and bile host diverse bacterial communities with potential to promote the formation of gallstones. Microb. Pathog. 2015, 83-84, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.M.; Flechtner, A.D.; La Perle, K.M.; Gunn, J.S. Visualization of Extracellular Matrix Components within Sectioned Salmonella Biofilms on the Surface of Human Gallstones. PLoS ONE 2014, 9, e89243. [Google Scholar] [CrossRef] [Green Version]
- Belzer, C.; Kusters, J.G.; Kuipers, E.J.; Van Vliet, A.H.M. Urease induced calcium precipitation by Helicobacter species may initiate gallstone formation. Gut 2006, 55, 1678–1679. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A.; Szmyt, M.; Malkowski, W.; Przybyszewska, W.; Helak-Łapaj, C.; Seraszek-Jaros, A.; Surdacka, A.; Małkowska-Lanzafame, A.; Kaczmarek, E. Analysis of immunohistochemical expression of proinflammatory cytokines (IL-1?, IL-6, and TNF-?) in gallbladder mucosa: Comparative study in acute and chronic calculous cholecystitis. Folia Morphol. 2015, 74, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sipos, P.; Krisztina, H.; Blázovics, A.; Fehér, J. Cholecystitis, gallstones and free radical reactions in human gallbladder. Med. Sci. Monit. 2001, 7, 84–88. [Google Scholar]
- Molinero, N.; Ruiz, L.; Sánchez, B.; Margolles, A.; Delgado, S. Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Front. Physiol. 2019, 10, 185. [Google Scholar] [CrossRef] [Green Version]
- Kose, S.H.; Grice, K.; Orsi, W.D.; Ballal, M.; Coolen, M.J.L. Metagenomics of pigmented and cholesterol gallstones: The putative role of bacteria. Sci. Rep. 2018, 8, 11218. [Google Scholar] [CrossRef]
- Shen, H.; Ye, F.; Xie, L.; Yang, J.; Li, Z.; Xu, P.; Meng, F.; Li, L.; Xiaochen, B.; Bo, X.; et al. Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria. Sci. Rep. 2015, 5, 17450. [Google Scholar] [CrossRef]
- Segata, N.; Boernigen, D.; Tickle, T.L.; Morgan, X.C.; Garrett, W.S.; Huttenhower, C. Computational meta’omics for microbial community studies. Mol. Syst. Biol. 2013, 9, 666. [Google Scholar] [CrossRef]
- Natsui, M.; Honma, T.; Genda, T.; Nakadaira, H. Effects of endoscopic papillary balloon dilation and endoscopic sphincterotomy on bacterial contamination of the biliary tract. Eur. J. Gastroenterol. Hepatol. 2011, 23, 818–824. [Google Scholar] [CrossRef]
- Su, Y.; Wu, S.-D.; Jin, J.; Zhang, Z.-H.; Fan, Y. Role of intestinal barrier in pathogenesis of pigment gallstone in a guinea pig model. Hepatobil. Pancreat. Dis. Int. 2006, 5, 443–448. [Google Scholar] [PubMed]
- Cetta, F. The Role of Bacteria in Pigment Gallstone Disease. Ann. Surg. 1991, 213, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.; Griffiss, J.M.L.; Way, L.W. Spectrum of gallstone disease in the veterans population. Am. J. Surg. 2005, 190, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Abeysuriya, V.; Deen, K.; Wijesuriya, T.; Salgado, S.S. Microbiology of gallbladder bile in uncomplicated symptomatic cholelithiasis-PubMed. Hepatobil. Pancreat Dis. Int. 2008, 7, 633–637. [Google Scholar]
- Petrov, V.A.; Fernández-Peralbo, M.A.; Derks, R.; Knyazeva, E.M.; Merzlikin, N.V.; Sazonov, A.E.; Mayboroda, O.A.; Saltykova, I.V. Biliary Microbiota and Bile Acid Composition in Cholelithiasis. BioMed Res. Int. 2020, 2020, 1242364. [Google Scholar] [CrossRef]
- Thomas, R.M.; Jobin, C. The Microbiome and Cancer: Is the “Oncobiome” Mirage Real? Trends Cancer 2015, 1, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The microbiome, cancer, and cancer therapy. Nat. Med. 2019, 25, 377–388. [Google Scholar] [CrossRef]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.-J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Graillot, V.; Dormoy, I.; Dupuy, J.; Shay, J.W.; Huc, L.; Mirey, G.; Vignard, J. Genotoxicity of Cytolethal Distending Toxin (CDT) on Isogenic Human Colorectal Cell Lines: Potential Promoting Effects for Colorectal Carcinogenesis. Front. Cell. Infect. Microbiol. 2016, 6, 34. [Google Scholar] [CrossRef]
- Yong, X.; Tang, B.; Li, B.-S.; Xie, R.; Hu, C.-J.; Luo, G.; Qin, Y.; Dong, H.; Yang, S.-M. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways. Cell Commun. Signal. 2015, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhou, R.; Wang, H.; Li, W.; Pan, M.; Yao, X.; Zhan, W.; Yang, S.; Xu, L.; Ding, Y.; et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019, 26, 2447–2463. [Google Scholar] [CrossRef] [PubMed]
- Calcinotto, A.; Brevi, A.; Chesi, M.; Ferrarese, R.; Perez, L.G.; Grioni, M.; Kumar, S.; Garbitt, V.M.; Sharik, M.E.; Henderson, K.J.; et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat. Commun. 2018, 9, 4832. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.I.; Zhao, L.; Eaton, K.A.; Ho, S.; Chen, J.; Poe, S.; Becker, J.; Gonzalez, A.; McKinstry, D.; Hasso, M.; et al. Gut Microbiota Modulate CD8 T Cell Responses to Influence Colitis-Associated Tumorigenesis. Cell Rep. 2020, 31, 107471. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Han, M.; Heinrich, B.; Fu, Q.; Zhang, Q.; Sandhu, M.; Agdashian, D.; Terabe, M.; Berzofsky, J.A.; Fako, V.; et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018, 360, eaan5931. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.J.; Esterhazy, D.; Kim, S.-H.; Lemetre, C.; Aguilar, R.R.; Gordon, E.A.; Pickard, A.J.; Cross, J.R.; Emiliano, A.B.; Han, S.M.; et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017, 549, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Bishehsari, F.; Engen, P.A.; Preite, N.Z.; Tuncil, Y.E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S.J.; Hamaker, B.R.; et al. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 2013, 13, 800–812. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Zhao, R.; Zhou, X.; Liang, X.; Campbell, D.J.W.; Zhang, X.; Zhang, L.; Shi, R.; Wang, G.; Pandak, W.M.; et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology 2014, 60, 908–918. [Google Scholar] [CrossRef]
- Dai, J.; Wang, H.; Dong, Y.; Zhang, Y.; Wang, J. Bile Acids Affect the Growth of Human Cholangiocarcinoma via NF-kB Pathway. Cancer Investig. 2013, 31, 111–120. [Google Scholar] [CrossRef]
- Avilés-Jiménez, F.; Guitron, A.; Segura-López, F.; Méndez-Tenorio, A.; Iwai, S.; Hernández-Guerrero, A.; Torres, J. Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin. Microbiol. Infect. 2016, 22, 178.e11–178.e22. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Lu, S.; Zeng, Z.; Liu, Q.; Dong, Z.; Chen, Y.; Zhu, Z.; Hong, Z.; Zhang, T.; Du, G.; et al. Characterization of Gut Microbiota, Bile Acid Metabolism, and Cytokines in Intrahepatic Cholangiocarcinoma. Hepatology 2020, 71, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Herraez, E.; Romero, M.R.; Macias, R.I.R.; Monte, M.J.; Marin, J.J.G. Clinical relevance of the relationship between changes in gut microbiota and bile acid metabolism in patients with intrahepatic cholangiocarcinoma. Hepatobil. Surg. Nutr. 2020, 9, 211–214. [Google Scholar] [CrossRef]
- Di Carlo, P.; Serra, N.; D’Arpa, F.; Agrusa, A.; Gulotta, G.; Fasciana, T.; Rodolico, V.; Giammanco, A.; Sergi, C. The microbiota of the bilio-pancreatic system: A cohort, STROBE-compliant study. Infect. Drug Resist. 2019, 12, 1513–1527. [Google Scholar] [CrossRef] [Green Version]
- Boonyanugomol, W.; Chomvarin, C.; Sripa, B.; Bhudhisawasdi, V.; Khuntikeo, N.; Hahnvajanawong, C.; Chamsuwan, A. Helicobacter pylori in Thai patients with cholangiocarcinoma and its association with biliary inflammation and proliferation. HPB 2012, 14, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Fu, S.W.; Lu, L.; Zhao, H. A Preliminary Study of Biliary Microbiota in Patients with Bile Duct Stones or Distal Cholangiocarcinoma. BioMed Res. Int. 2019, 2019, 1092563. [Google Scholar] [CrossRef] [Green Version]
- Chng, K.R.; Chan, S.H.; Ng, A.H.Q.; Li, C.; Jusakul, A.; Bertrand, D.; Wilm, A.; Choo, S.P.; Tan, D.M.Y.; Lim, K.H.; et al. Tissue Microbiome Profiling Identifies an Enrichment of Specific Enteric Bacteria in Opisthorchis viverrini Associated Cholangiocarcinoma. eBioMedicine 2016, 8, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saab, M.; Mestivier, D.; Sohrabi, M.; Rodriguez, C.; Khonsari, M.R.; Faraji, A.; Sobhani, I. Characterization of biliary microbiota dysbiosis in extrahepatic cholangiocarcinoma. PLoS ONE 2021, 16, e0247798. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Li, X.; Ye, J.; Wu, X.; Tan, Z.; Liu, C.; Shen, B.; Wang, X.-A.; Wu, W.; et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat. Genet. 2014, 46, 872–876. [Google Scholar] [CrossRef]
- Hsing, A.W.; Bai, Y.; Andreotti, G.; Rashid, A.; Deng, J.; Chen, J.; Goldstein, A.M.; Han, T.-Q.; Shen, M.C.; Fraumeni, J.F.; et al. Family history of gallstones and the risk of biliary tract cancer and gallstones: A population-based study in Shanghai, China. Int. J. Cancer 2007, 121, 832–838. [Google Scholar] [CrossRef] [Green Version]
- Shrikhande, S.V.; Barreto, S.G.; Singh, S.; Udwadia, T.E.; Agarwal, A.K. Cholelithiasis in gallbladder cancer: Coinci-dence, cofactor, or cause! Eur. J. Surg. Oncol. 2010, 36, 514–519. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Cavallo, I.; Pontone, M.; Toma, L.; Ensoli, F. Biofilm producing Salmonella typhi: Chronic coloni-zation and development of gallbladder cancer. Int. J. Mol. Sci. 2017, 18, 1887. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, X.; Hu, Y.; Li, H.; Ren, T.; Li, Y.; Liu, L.; Li, L.; Li, X.; Wang, Z.; et al. A metagenomic study of biliary microbiome change along the cholecystitis-carcinoma sequence. Clin. Transl. Med. 2020, 10, e97. [Google Scholar] [CrossRef] [PubMed]
- Hirschfield, G.M.; Beuers, U.; Corpechot, C.; Invernizzi, P.; Jones, D.; Marzioni, M.; Schramm, C. EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 2017, 67, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Hirschfield, G.M.; Dyson, J.K.; Alexander, G.J.M.; Chapman, M.H.; Collier, J.; Hübscher, S.; Patanwala, I.; Pereira, S.P.; Thain, C.; Thorburn, D.; et al. The British Society of Gastroenterology/UK-PBC primary biliary cholangitis treatment and management guidelines. Gut 2018, 67, 1568–1594. [Google Scholar] [CrossRef] [Green Version]
- Quigley, E.M.M. Primary Biliary Cirrhosis and the Microbiome. Semin. Liver Dis. 2016, 36, 349–353. [Google Scholar] [CrossRef]
- Lv, L.-X.; Fang, D.-Q.; Shi, D.; Chen, D.-Y.; Yan, R.; Zhu, Y.-X.; Chen, Y.-F.; Shao, L.; Guo, F.-F.; Wu, W.-R.; et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ. Microbiol. 2016, 18, 2272–2286. [Google Scholar] [CrossRef]
- Tang, R.; Wei, Y.; Li, Y.; Chen, W.; Chen, H.; Wang, Q.; Yang, F.; Miao, Q.; Xiao, X.; Zhang, H.; et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 2018, 67, 534–541. [Google Scholar] [CrossRef]
- Chen, W.; Wei, Y.; Xiong, A.; Li, Y.; Guan, H.; Wang, Q.; Miao, Q.; Bian, Z.; Xiao, X.; Lian, M.; et al. Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clin. Rev. Allergy Immunol. 2020, 58, 25–38. [Google Scholar] [CrossRef]
- Furukawa, M.; Moriya, K.; Nakayama, J.; Inoue, T.; Momoda, R.; Kawaratani, H.; Namisaki, T.; Sato, S.; Douhara, A.; Kaji, K.; et al. Gut dysbiosis associated with clinical prognosis of patients with primary biliary cholangitis. Hepatol. Res. 2020, 50, 840–852. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Harada, K.; Tsuneyama, K.; Sasaki, M.; Fujita, S.; Hashimoto, T.; Kaneko, S.; Kobayashi, K.; Nakanuma, Y. Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis. J. Hepatol. 2000, 33, 9–18. [Google Scholar] [CrossRef]
- Lohse, A.W.; Chazouillères, O.; Dalekos, G.; Drenth, J.; Heneghan, M.; Hofer, H.; Lammert, F.; Lenzi, M. EASL clinical practice guidelines: Autoimmune hepatitis. J. Hepatol. 2015, 63, 971–1004. [Google Scholar] [CrossRef]
- Yuksel, M.; Wang, Y.; Tai, N.; Peng, J.; Guo, J.; Beland, K.; Lapierre, P.; David, C.; Alvarez, F.; Colle, I.; et al. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology 2015, 62, 1536–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Ran, Y.; Li, Y.; Wang, B.; Zhou, L. Intestinal microbiome and permeability in patients with autoimmune hep-atitis. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Zhou, L.; Zhang, J.; Wang, B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int. J. Clin. Exp. Pathol. 2015, 8, 5153–5160. [Google Scholar] [PubMed]
- Wei, Y.; Li, Y.; Yan, L.; Sun, C.; Miao, Q.; Wang, Q.; Xiao, X.; Lian, M.; Li, B.; Chen, Y.; et al. Alterations of gut microbiome in autoimmune hepatitis. Gut 2020, 69, 569–577. [Google Scholar] [CrossRef]
- Elsherbiny, N.M.; Rammadan, M.; Hassan, E.A.; Ali, M.E.; El-Rehim, A.S.A.; Abbas, W.A.; Abozaid, M.A.A.; Hassanin, E.; Hetta, H.F. Autoimmune Hepatitis: Shifts in Gut Microbiota and Metabolic Pathways among Egyptian Patients. Microorganisms 2020, 8, 1011. [Google Scholar] [CrossRef]
- Liwinski, T.; Casar, C.; Ruehlemann, M.C.; Bang, C.; Sebode, M.; Hohenester, S.; Denk, G.; Lieb, W.; Lohse, A.W.; Franke, A.; et al. A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis. Aliment. Pharmacol. Ther. 2020, 51, 1417–1428. [Google Scholar] [CrossRef]
- Lou, J.; Jiang, Y.; Rao, B.; Li, A.; Ding, S.; Yan, H.; Zhou, H.; Liu, Z.; Shi, Q.; Cui, G.; et al. Fecal Microbiomes Distinguish Patients With Autoimmune Hepatitis From Healthy Individuals. Front. Cell. Infect. Microbiol. 2020, 10, 342. [Google Scholar] [CrossRef]
- Chapman, M.H.; Thorburn, D.; Hirschfield, G.M.; Webster, G.G.J.; Rushbrook, S.M.; Alexander, G.; Collier, J.; Dyson, J.K.; Jones, D.E.J.; Patanwala, I.; et al. British Society of Gastroenterology and UK-PSC guidelines for the diagnosis and man-agement of primary sclerosing cholangitis. Gut 2019, 68, 1356–1378. [Google Scholar] [CrossRef] [Green Version]
- Saffioti, F.; Gurusamy, K.S.; Hawkins, N.; Toon, C.D.; Tsochatzis, E.; Davidson, B.R.; Thorburn, D. Pharmacological interventions for primary sclerosing cholangitis. Cochrane Database Syst. Rev. 2017, 3, CD011343. [Google Scholar] [CrossRef]
- Dean, G.; Hanauer, S.; Levitsky, J. The Role of the Intestine in the Pathogenesis of Primary Sclerosing Cholangitis: Evidence and Therapeutic Implications. Hepatology 2020, 72, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Hov, J.R.; Karlsen, T.H. The Microbiome in Primary Sclerosing Cholangitis: Current Evidence and Potential Concepts. Semin. Liver Dis. 2017, 37, 314–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamoto, N.; Sasaki, N.; Aoki, R.; Miyamoto, K.; Suda, W.; Teratani, T.; Suzuki, T.; Koda, Y.; Chu, P.-S.; Taniki, N.; et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat. Microbiol. 2019, 4, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Tabibian, J.H.; O’Hara, S.P.; Trussoni, C.E.; Tietz, P.S.; Splinter, P.L.; Mounajjed, T.; Hagey, L.R.; LaRusso, N.F. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 2016, 63, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Schneider, K.M.; Gálvez, E.J.C.; Frissen, M.; Marschall, H.-U.; Su, H.; Hatting, M.; Wahlström, A.; Haybaeck, J.; Puchas, P.; et al. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis. Gut 2019, 68, 1477–1492. [Google Scholar] [CrossRef]
- Torres, J.; Bao, X.; Goel, A.; Colombel, J.-F.; Pekow, J.; Jabri, B.; Williams, K.M.; Castillo, A.; Odin, J.A.; Meckel, K.; et al. The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment. Pharmacol. Ther. 2016, 43, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Rossen, N.G.; Fuentes, S.; Boonstra, K.; D’Haens, G.R.; Heilig, H.G.; Zoetendal, E.G.; De Vos, W.M.; Ponsioen, C.Y. The Mucosa-associated Microbiota of PSC Patients is Characterized by Low Diversity and Low Abundance of Uncultured Clostridiales II. J. Crohn’s Colitis 2015, 9, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Kummen, M.; Thingholm, L.B.; Rühlemann, M.C.; Holm, K.; Hansen, S.H.; Moitinho-Silva, L.; Liwinski, T.; Zenouzi, R.; Storm-Larsen, C.; Midttun, Ø.; et al. Altered Gut Microbial Metabolism of Essential Nutrients in Primary Sclerosing Cholangitis. Gastroenterology 2020, 160, 1784–1798. [Google Scholar] [CrossRef]
- Kummen, M.; Holm, K.; Anmarkrud, J.A.; Nygård, S.; Vesterhus, M.; Høivik, M.L.; Trøseid, M.; Marschall, H.-U.; Schrumpf, E.; Moum, B.; et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017, 66, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Sabino, J.; Vieira-Silva, S.; Machiels, K.; Joossens, M.; Falony, G.; Ballet, V.; Ferrante, M.; Van Assche, G.; Van der Merwe, S.; Vermeire, S.; et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 2016, 65, 1681–1689. [Google Scholar] [CrossRef] [Green Version]
- Kevans, D.; Tyler, A.D.; Holm, K.; Jørgensen, K.K.; Vatn, M.H.; Karlsen, T.H.; Kaplan, G.G.; Eksteen, B.; Gevers, D.; Hov, J.R.; et al. Characterization of Intestinal Microbiota in Ulcerative Colitis Patients with and without Primary Sclerosing Cholangitis. J. Crohn’s Colitis 2016, 10, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Bajer, L.; Kverka, M.; Kostovcik, M.; Macinga, P.; Dvorak, J.; Stehlikova, Z.; Brezina, J.; Wohl, P.; Spicak, J.; Drastich, P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017, 23, 4548–4558. [Google Scholar] [CrossRef] [PubMed]
- Lemoinne, S.; Kemgang, A.; Ben Belkacem, K.; Straube, M.; Jegou, S.; Corpechot, C.; Chazouillères, O.; Housset, C.; Sokol, H.; Lemoinn, S.; et al. Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut 2020, 69, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapidot, Y.; Amir, A.; Ben-Simon, S.; Veitsman, E.; Cohen-Ezra, O.; Davidov, Y.; Weiss, P.; Bradichevski, T.; Segev, S.; Koren, O.; et al. Alterations of the salivary and fecal microbiome in patients with primary sclerosing cholangitis. Hepatol. Int. 2020, 15, 191–201. [Google Scholar] [CrossRef]
- Rühlemann, M.; Liwinski, T.; Heinsen, F.-A.; Bang, C.; Zenouzi, R.; Kummen, M.; Thingholm, L.; Tempel, M.; Lieb, W.; Karlsen, T.; et al. Consistent alterations in faecal microbiomes of patients with primary sclerosing cholangitis independent of associated colitis. Aliment. Pharmacol. Ther. 2019, 50, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Quraishi, M.N.; Acharjee, A.; Beggs, A.D.; Horniblow, R.; Tselepis, C.; Gkoutos, G.; Ghosh, S.; Rossiter, A.E.; Loman, N.; van Schaik, W.; et al. A Pilot Integrative Analysis of Colonic Gene Expression, Gut Microbiota, and Immune Infiltration in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease: Association of Disease With Bile Acid Pathways. J. Crohn’s Colitis 2020, 14, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Olsson, R.; Björnsson, E.; Bäckman, L.; Friman, S.; Höckerstedt, K.; Kaijser, B.; Olausson, M. Bile duct bacterial isolates in primary sclerosing cholangitis: A study of explanted livers. J. Hepatol. 1998, 28, 426–432. [Google Scholar] [CrossRef]
- Björnsson, E.; Kilander, A.; Olsson, R. Bile duct bacterial isolates in primary sclerosing cholangitis and certain other forms of cholestasis—a study of bile cultures from ERCP. Hepatogastroenterology 2000, 47, 1504–1508. [Google Scholar] [PubMed]
- Folseraas, T.; Melum, E.; Rausch, P.; Juran, B.D.; Ellinghaus, E.; Shiryaev, A.; Laerdahl, J.K.; Ellinghaus, D.; Schramm, C.; Weismüller, T.J.; et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J. Hepatol. 2012, 57, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.; Aho, V.; Arola, J.; Boyd, S.; Jokelainen, K.; Paulin, L.; Auvinen, P.; Färkkilä, M. Bile microbiota in primary sclerosing cholangitis: Impact on disease progression and development of biliary dysplasia. PLoS ONE 2017, 12, e0182924. [Google Scholar] [CrossRef]
- Tyc, O.; Jansen, C.; Schierwagen, R.; Uschner, F.E.; Israelsen, M.; Klein, S.; Ortiz, C.; Strassburg, C.P.; Zeuzem, S.; Gu, W.; et al. Variation in Bile Microbiome by the Etiology of Cholestatic Liver Disease. Liver Transplant. 2020, 26, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- Tabibian, J.H.; Weeding, E.; Jorgensen, R.A.; Petz, J.L.; Keach, J.C.; Talwalkar, J.A.; Lindor, K.D. Randomised clinical trial: Vancomycin or metronidazole in patients with primary sclerosing cholangitis—A pilot study. Aliment. Pharmacol. Ther. 2013, 37, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Färkkilä, M.; Karvonen, A.-L.; Nurmi, H.; Nuutinen, H.; Taavitsainen, M.; Pikkarainen, P.; Kärkkäinen, P. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: A randomized placebo-controlled trial. Hepatology 2004, 40, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Davies, Y.K.; Cox, K.M.; Abdullah, B.A.; Safta, A.; Terry, A.B.; Cox, K.L. Long-term Treatment of Primary Sclerosing Cholangitis in Children With Oral Vancomycin: An Immunomodulating Antibiotic. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabibian, J.H.; Gossard, A.; El-Youssef, M.; Eaton, J.E.; Petz, J.; Jorgensen, R.; Enders, F.B.; Tabibian, A.; Lindor, K.D. Prospective Clinical Trial of Rifaximin Therapy for Patients With Primary Sclerosing Cholangitis. Am. J. Ther. 2017, 24, e56–e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegretti, J.R.; Kassam, Z. Fecal Microbiota Transplantation in Patients With Primary Sclerosing Cholangitis: The Next Steps in This Promising Story. Am. J. Gastroenterol. 2019, 114, 1354–1355. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Fagan, A.; Sikaroodi, M.; White, M.B.; Sterling, R.K.; Gilles, H.C.; Heuman, D.; Stravitz, R.T.; Matherly, S.C.; Siddiqui, M.S.; et al. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transplant. 2017, 23, 907–914. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Kakiyama, G.; Cox, I.J.; Nittono, H.; Takei, H.; White, M.; Fagan, A.; Gavis, E.A.; Heuman, D.M.; Gilles, H.C.; et al. Alterations in gut microbial function following liver transplant. Liver Transplant. 2018, 24, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.Y.; Yang, Y.-S.; Qu, W.; Zhu, Z.-J.; Wei, L.; Ye, Z.-S.; Zhang, J.-R.; Sun, X.-Y.; Zeng, Z.-G. Gut microbiota of liver transplantation recipients. Sci. Rep. 2017, 7, 3762. [Google Scholar] [CrossRef] [Green Version]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Macesic, N.; Sullivan, S.B.; Kress, A.; Khan, S.D.; Giddins, M.J.; Stump, S.; Kim, G.I.; Narain, R.; et al. Colonizing multidrug-resistant bacteria and the longitudinal evolution of the intestinal microbiome after liver transplantation. Nat. Commun. 2019, 10, 4715. [Google Scholar] [CrossRef] [Green Version]
- Kriss, M.; Verna, E.C.; Rosen, H.R.; Lozupone, C.A. Functional Microbiomics in Liver Transplantation: Identifying Novel Targets for Improving Allograft Outcomes. Transplantation 2019, 103, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Corbitt, N.; Kimura, S.; Isse, K.; Specht, S.; Chedwick, L.; Rosborough, B.R.; Lunz, J.G.; Murase, N.; Yokota, S.; Demetris, A.J. Gut Bacteria Drive Kupffer Cell Expansion via MAMP-Mediated ICAM-1 Induction on Sinusoidal Endothelium and Influence Preservation-Reperfusion Injury after Orthotopic Liver Transplantation. Am. J. Pathol. 2013, 182, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, H.C.; Li, L.J.; Xu, K.J.; Shen, T.; Chen, Y.B.; Sheng, J.F.; Chen, Y.; Fu, S.Z.; Chen, C.L.; Wang, J.G.; et al. Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia-reperfusion injury. J. Gastroenterol. Hepatol. 2006, 21, 647–656. [Google Scholar] [CrossRef]
- Ren, Z.; Cui, G.; Lu, H.; Chen, X.; Jiang, J.; Liu, H.; He, Y.; Ding, S.; Hu, Z.; Wang, W.; et al. Liver Ischemic Preconditioning (IPC) Improves Intestinal Microbiota Following Liver Transplantation in Rats through 16s rDNA-Based Analysis of Microbial Structure Shift. PLoS ONE 2013, 8, e75950. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Nakamura, K.; Kageyama, S.; Korayem, I.M.; Hirao, H.; Kadono, K.; Aziz, J.; Younan, S.; DiNorcia, J.; Agopian, V.G.; et al. Impact of Rifaximin Therapy on Ischemia/Reperfusion Injury in Liver Transplantation: A Propensity Score–Matched Analysis. Liver Transplant. 2019, 25, 1778–1789. [Google Scholar] [CrossRef] [PubMed]
- Grąt, M.; Wronka, K.M.; Lewandowski, Z.; Grąt, K.; Krasnodębski, M.; Stypułkowski, J.; Hołówko, W.; Masior, Ł.; Kosińska, I.; Wasilewicz, M.; et al. Effects of continuous use of probiotics before liver transplantation: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2017, 36, 1530–1539. [Google Scholar] [CrossRef]
- Ren, Z.; Jiang, J.; Lu, H.; Chen, X.; He, Y.; Zhang, H.; Xie, H.; Wang, W.; Zheng, S.; Zhou, L. Intestinal Microbial Variation May Predict Early Acute Rejection after Liver Transplantation in Rats. Transplantation 2014, 98, 844–852. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Luo, Z.; Li, Z.; Deng, M.; Liu, H.; Zhu, B.; Ruan, B.; Li, L. Structural Shifts of Fecal Microbial Communities in Rats with Acute Rejection after Liver Transplantation. Microb. Ecol. 2012, 64, 546–554. [Google Scholar] [CrossRef]
- Kato, K.; Nagao, M.; Miyamoto, K.; Oka, K.; Takahashi, M.; Yamamoto, M.; Matsumura, Y.; Kaido, T.; Uemoto, S.; Ichiyama, S. Longitudinal Analysis of the Intestinal Microbiota in Liver Transplantation. Transplant. Direct 2017, 3, e144. [Google Scholar] [CrossRef]
- Sawas, T.; Al Halabi, S.; Hernaez, R.; Carey, W.D.; Cho, W.K. Patients Receiving Prebiotics and Probiotics Before Liver Transplantation Develop Fewer Infections Than Controls: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2015, 13, 1567–1574.e3. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, F.G.; Liu, P.; Zhang, H.K.; Zhu, H.Y.; Feng, Z.; Zhang, X.F.; Wang, B.; Liu, X.M.; Zhang, X.G.; et al. Characteristics of fecal microbial communities in patients with non-anastomotic biliary strictures after liver transplantation. World J. Gastroenterol. 2017, 23, 8217–8226. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.K.; Banerjee, P.; Pierre, J.F.; Higgins, D.; Dutta, S.; Heda, R.; Khan, S.D.; Mupparaju, V.K.; Mas, V.; Nair, S.; et al. Characterization of Gut Microbiome in Liver Transplant Recipients With Nonalcoholic Steatohepatitis. Transplant. Direct 2020, 6, e625. [Google Scholar] [CrossRef] [PubMed]
- Kipp, F.; Kabar, I.; Hüsing, A.; Cicinnati, V.R.; Heitschmidt, L.; Beckebaum, S.; Thölking, G.; Schmidt, H.H.; Karch, H. Analysis of Bile Colonization and Intestinal Flora may Improve Management in Liver Transplant Recipients Undergoing ERCP. Ann. Transplant. 2015, 20, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Sun, L.-Y.; Zhu, Z.-J.; Wei, L.; Qu, W.; Zeng, Z.-G. Bile microbiota: New insights into biliary complications in liver transplant recipients. Ann. Transl. Med. 2020, 8, 354. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, J.-D.; Sun, L.-Y.; Zhu, Z.-J.; Zhang, J.-R.; Wei, L.; Qu, W.; Zeng, Z.-G. Characteristics of bile microbiota in liver transplant recipients with biliary injury—PubMed. Int. J. Clin. Exp. Pathol. 2018, 11, 481–489. [Google Scholar]
Potential Pathogenesis Mechanism | Phylum | Family | Genus | |
---|---|---|---|---|
Gut Microbiota In Gallstone Disease | Genetic/environmental factors, drugs, lifestyle, comorbidities Cholesterol/bilirubin hypersecretion Intestinal, metabolic or dietary factors Bacterial damaging effect Perturbation of gut microbiota:
| ↑ Firmicutes | Lactobacillaceae Clostridiaceae Ruminococcaceae Acidaminococcaceae Lachnospiraceae | Clostridium Dorea Ruminococcus Oscillospira Veillonella Blautia Anaerostipes |
↑ Actinobacteria | Bifidobacteriaceae | Bifidobacterium | ||
↑ Bacteroidetes | Bacteroideceae | Prevotella Bacteroides | ||
↑ Fusobacteria | Fusobacteriaceae | Fusobacterium | ||
↑ Proteobacteria | ||||
↓ Firmicutes | Clostridiaceae Eubacteriaceae Lachnospiraceae | Faecalibacterium Eubacterium Lachnospira Roseburia | ||
↓ Proteobacteria | Desulfovibrionaceae | Desulfovibrio | ||
↓ Actinobacteria | Bifidobacteriaceae | Bifidobacterium | ||
↓ Bacteroidetes | Bacteroideceae Rikenellaceae Paludibacteraceae Barnesiellaceae Muribaculaceae | Prevotella Bacteroides Alistipes Paludibacter Barnesiella | ||
Biliary Microbiota In Gallstone Disease | Genetic/environmental factors, drugs, lifestyle, comorbidities Cholesterol/bilirubin hypersecretion Intestinal, metabolic or dietary factors Bacterial damaging effect Perturbation of gut microbiota:
| ↑ Proteobacteria | Enterobacteriaceae | |
↑ Firmicutes | Enterococcaceae | Enterococcus | ||
↓ Bacteroidetes | ||||
↓ Synergistetes | Synergistaceae | Pyramidobacter |
Potential Pathogenesis Mechanism | Phylum | Family | Genus | |
---|---|---|---|---|
Gut Microbiota in Cholangiocarcinoma | Direct impact of bacterial toxins/metabolites on cancer initiation and growth Modulation of the host local and systemic immune response Alteration of microbial and host metabolism Interaction of gut microbiota on the bile acids metabolism pathways | ↑ Firmicutes | Lactobacillaceae Peptostreptococcaceae Ruminococcaceae | Lactobacillus |
↑ Actinobacteria | Bifidobacteriaceae | Actinomyces Alloscardovia | ||
Biliary Microbiota in Cholangiocarcinoma | Direct impact of bacterial toxins/metabolites on cancer initiation and growth Modulation of the host local and systemic immune response Alteration of microbial and host metabolism Interaction of gut microbiota on the bile acids metabolism pathways | ↑ Proteobacteria | Enterobacteriaceae Methylophilaceae Sinobacteriaceae Helicobacteracae Erythrobacteraceae | Klebsiella Helicobacter Novosphingobium |
↑Gemmatimonadetes | ||||
↑ Nitrospirae | ||||
↑ Chloroflexi | ||||
↑ Latescibacteria | ||||
↑ Planctomycetes | ||||
↑ Actinobacteria | Bifidobacteriaceae | Actinomyces | ||
↑ Firmicutes | Enterococcaceae Streptococcaceae Bacillaceae | Dialister Streptococcus Geobacillus Anoxybacillus | ||
↑ Bacteroidetes | Bacteroideceae | Prevotella Bacteroides | ||
↑ Fusobacteria | Fusobacteriaceae | Fusobacterium | ||
↑ Synergistetes | Synergistaceae | Pyramidobacter | ||
↑ Deinococcus-Thermus | Thermaceae | Meiothermus | ||
Biliary Microbiota in Gallbladder Cancer | Direct impact of bacterial toxins/metabolites on cancer initiation and growth Modulation of the host local and systemic immune response Alteration of microbial and host metabolism Inflammation-induced carcinogenesis | ↑ Proteobacteria | Enterobacteriaceae | Salmonella |
↑ Firmicutes | Peptostreptococcaceae Enterococcaceae | Peptostreptococcus Enterococcus | ||
↑ Bacteroidetes | ||||
↑ Fusobacteria | Fusobacteriaceae | Fusobacterium |
Potential Pathogenesis Mechanism | Phylum | Family | Genus | |
---|---|---|---|---|
Gut Microbiota in PBC | Interaction between immune and biliary pathways Genetic and environmental factors Molecular mimicry between host antigens and microbe | ↑ Proteobacteria | ||
↑ Fusobacteria | ||||
↓ Bacteroidetes | ||||
Biliary Microbiota in PBC | Interaction between immune and biliary pathways Genetic and environmental factors Molecular mimicry between host antigens and microbe | ↑ Firmicutes | Staphylococcaceae Enterococcaceae Streptococcaceae Lactobacillaceae | Staphylococcus Enterococcus Streptococcus Lactobacillus |
Gut Microbiota in PSC | Gut dysbiosis Alteration of intestinal permeability → bacterial translocation Immune-mediated hepatobiliary inflammation | ↑ Firmicutes | Enterococcaceae Streptococcaceae Lactobacillaceae Acidaminococcaceae | Enterococcus Streptococcus Lactobacillus Veillonella |
↑ Fusobacteria | Fusobacteriaceae | Fusobacterium | ||
↑ Actinobacteria | Micrococcaceae | Rothia | ||
↑ Bacteroidetes | Tannerellaceae | Parabacteroides | ||
Biliary Microbiota in PSC | Gut dysbiosis Alteration of intestinal permeability → bacterial translocation Immune-mediated hepatobiliary inflammation | ↑ Firmicutes | Staphylococcaceae Enterococcaceae Streptococcaceae Acidaminococcaceae | Staphylococcus Enterococcus Streptococcus Veillonella |
↑ Bacteroidetes | Bacteroideceae | Prevotella | ||
↑ Fusobacteria | Fusobacteriaceae | Fusobacterium | ||
↑ Proteobacteria | Pasteurellaceae | Haemophilus | ||
Gut Microbiota in AIH | Increased intestinal permeability and gut microbiome dysbiosis | ↑ Firmicutes | Acidaminococcaceae Lactobacillaceae Ruminococcaceae | Veillonella Lactobacillus Oscillospira |
Potential Pathogenesis Mechanism | Phylum | Family | Genus | |
---|---|---|---|---|
Gut Microbiota in Liver Transplant | Interaction between immunosuppression, antibiotic therapy, infections, and liver allograft immunity Modulation of both innate and adaptive liver allograft immunity → prevention of complications such as ischemia-reperfusion injury, acute cellular rejection, and infections after LT. | ↑ Firmicutes | Ruminococcaceae Lachnospiraceae Streptococcaceae Enterococcaceae Lactobacillaceae Clostridiaceae | Enterococcus |
↑ Verrucomicrobia | Verrucomicrobiaceae | Akkermansia | ||
↑ Proteobacteria | Enterobacteriaceae | Klebsiella | ||
↑ Bacteroidetes | Bacteroidaceae | Bacteroides | ||
↑ Actinobacteria | Bifidobacteriaceae | |||
↓ Firmicutes | Enterococcaceae Clostridiaceae Lachnospiraceae | Faecalibacterium | ||
↓ Proteobacteria | Enterobacteriaceae | Escherichia Shigella Salmonella | ||
↓ Bacteroidetes | Bacteroidaceae | Bacteroides | ||
Biliary Microbiota in Liver Transplant | Interaction between immunosuppression, antibiotic therapy, infections, and liver allograft immunity Modulation of both innate and adaptive liver allograft immunity → prevention of complications such as ischemia-reperfusion injury, acute cellular rejection, and infections after LT. | ↑ Firmicutes | Enterococcaceae Streptococcaceae Staphylococcaceae Clostridiaceae | Enterococcus Streptococcus Lactococcus Staphylococcus Clostridium |
↑ Proteobacteria | Enterobacteriaceae Rhizobiaceae Xanthomonadaceae Pseudomonaceae Aeromonadaceae | Escherichia Klebsiella Rhizobium Nevskia Stenotrophomas Pseudomonas Aeromonas | ||
↑ Ascomycota | Saccharomycetaceae | Candida | ||
↓ Proteobacteria | Enterobacteriaceae | Escherichia Shigella Salmonella | ||
↓ Bacteroidetes | Bacteroidaceae | Bacteroides | ||
↓ Firmicutes | Clostridiaceae Lachnospiraceae | Faecalibacterium Lachnospira |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binda, C.; Gibiino, G.; Coluccio, C.; Sbrancia, M.; Dajti, E.; Sinagra, E.; Capurso, G.; Sambri, V.; Cucchetti, A.; Ercolani, G.; et al. Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022, 10, 312. https://doi.org/10.3390/microorganisms10020312
Binda C, Gibiino G, Coluccio C, Sbrancia M, Dajti E, Sinagra E, Capurso G, Sambri V, Cucchetti A, Ercolani G, et al. Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms. 2022; 10(2):312. https://doi.org/10.3390/microorganisms10020312
Chicago/Turabian StyleBinda, Cecilia, Giulia Gibiino, Chiara Coluccio, Monica Sbrancia, Elton Dajti, Emanuele Sinagra, Gabriele Capurso, Vittorio Sambri, Alessandro Cucchetti, Giorgio Ercolani, and et al. 2022. "Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases" Microorganisms 10, no. 2: 312. https://doi.org/10.3390/microorganisms10020312
APA StyleBinda, C., Gibiino, G., Coluccio, C., Sbrancia, M., Dajti, E., Sinagra, E., Capurso, G., Sambri, V., Cucchetti, A., Ercolani, G., & Fabbri, C. (2022). Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms, 10(2), 312. https://doi.org/10.3390/microorganisms10020312