Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review
Abstract
:1. Introduction
2. Methods Used to Study Soil Microorganisms in Temperate Agroforestry Systems
3. Trees in Agroforestry Systems Increase Soil Microbial Population Size
4. Do Agroforestry Systems Affect Soil Microbial Community Composition and Diversity?
5. Functions of Soil Microorganisms in Temperate Agroforestry Systems
6. Potential Drivers of Microbial Abundance, Diversity, and Functions
6.1. Different Soil Management
6.2. Different Plants and Cultivation Cycles
7. Implications for Future Studies
7.1. Reference Land Use
7.2. Spatial Heterogeneity
7.3. Soils Are Three-Dimensional Systems
7.4. Microorganisms Are More than Just Bacteria and Fungi
7.5. Multiple Study Sites and Repeated Sampling
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural Sustainability and Intensive Production Practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, S.; Gillespie, A.R.; Pallardy, S.G. Interspecific Interactions in Temperate Agroforestry. Agrofor. Syst. 2004, 61, 237–255. [Google Scholar] [CrossRef]
- Cannell, M.G.R.; Noordwijk, M.V.; Ong, C.K. The Central Agroforestry Hypothesis: The Trees Must Acquire Resources That the Crop Would Not Otherwise Acquire. Agrofor. Syst. 1996, 34, 27–31. [Google Scholar] [CrossRef]
- Allen, S.C.; Jose, S.; Nair, P.K.R.; Brecke, B.J.; Nkedi-Kizza, P.; Ramsey, C.L. Safety-Net Role of Tree Roots: Evidence from a Pecan (Carya Illinoensis K. Koch)–Cotton (Gossypium Hirsutum L.) Alley Cropping System in the Southern United States. For. Ecol. Manag. 2004, 192, 395–407. [Google Scholar] [CrossRef]
- Isaac, M.E.; Borden, K.A. Nutrient Acquisition Strategies in Agroforestry Systems. Plant Soil 2019, 444, 1–19. [Google Scholar] [CrossRef]
- Pardon, P.; Reubens, B.; Reheul, D.; Mertens, J.; De Frenne, P.; Coussement, T.; Janssens, P.; Verheyen, K. Trees Increase Soil Organic Carbon and Nutrient Availability in Temperate Agroforestry Systems. Agric. Ecosyst. Environ. 2017, 247, 98–111. [Google Scholar] [CrossRef]
- Böhm, C.; Kanzler, M.; Freese, D. Wind Speed Reductions as Influenced by Woody Hedgerows Grown for Biomass in Short Rotation Alley Cropping Systems in Germany. Agrofor. Syst. 2014, 88, 579–591. [Google Scholar] [CrossRef]
- Staton, T.; Walters, R.J.; Smith, J.; Girling, R.D. Evaluating the Effects of Integrating Trees into Temperate Arable Systems on Pest Control and Pollination. Agric. Syst. 2019, 176, 102676. [Google Scholar] [CrossRef]
- Varah, A.; Jones, H.; Smith, J.; Potts, S.G. Temperate Agroforestry Systems Provide Greater Pollination Service than Monoculture. Agric. Ecosyst. Environ. 2020, 301, 107031. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Rankoth, L.; Jose, S. Agroforestry and Biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Peichl, M.; Thevathasan, N.V.; Gordon, A.M.; Huss, J.; Abohassan, R.A. Carbon Sequestration Potentials in Temperate Tree-Based Intercropping Systems, Southern Ontario, Canada. Agrofor. Syst. 2006, 66, 243–257. [Google Scholar] [CrossRef]
- Gruenewald, H.; Brandt, B.K.V.; Schneider, B.U.; Bens, O.; Kendzia, G.; Hüttl, R.F. Agroforestry Systems for the Production of Woody Biomass for Energy Transformation Purposes. Ecol. Eng. 2007, 29, 319–328. [Google Scholar] [CrossRef]
- Rois-Díaz, M.; Lovric, N.; Lovric, M.; Ferreiro-Domínguez, N.; Mosquera-Losada, M.R.; den Herder, M.; Graves, A.; Palma, J.H.N.; Paulo, J.A.; Pisanelli, A.; et al. Farmers’ Reasoning behind the Uptake of Agroforestry Practices: Evidence from Multiple Case-Studies across Europe. Agrofor. Syst. 2018, 92, 811–828. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.R.; Burgess, P.J.; Palma, J.H.N.; Herzog, F.; Moreno, G.; Bertomeu, M.; Dupraz, C.; Liagre, F.; Keesman, K.; van der Werf, W.; et al. Development and Application of Bio-Economic Modelling to Compare Silvoarable, Arable, and Forestry Systems in Three European Countries. Ecol. Eng. 2007, 29, 434–449. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.; Graves, A.; Palma, J.H.N.; Moreno, G.; Roces-Díaz, J.V.; Aviron, S.; Chouvardas, D.; Crous-Duran, J.; Ferreiro-Domínguez, N.; García de Jalón, S.; et al. Agroforestry Is Paying off–Economic Evaluation of Ecosystem Services in European Landscapes with and without Agroforestry Systems. Ecosyst. Serv. 2019, 36, 100896. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.R.; Burgess, P.J.; Liagre, F.; Pisanelli, A.; Paris, P.; Moreno, G.; Bellido, M.; Mayus, M.; Postma, M.; Schindler, B.; et al. Farmer Perceptions of Silvoarable Systems in Seven European Countries. In Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2009; pp. 67–86. ISBN 978-1-4020-8272-6. [Google Scholar]
- García de Jalón, S.; Burgess, P.J.; Graves, A.; Moreno, G.; McAdam, J.; Pottier, E.; Novak, S.; Bondesan, V.; Mosquera-Losada, R.; Crous-Durán, J.; et al. How Is Agroforestry Perceived in Europe? An Assessment of Positive and Negative Aspects by Stakeholders. Agrofor. Syst. 2018, 92, 829–848. [Google Scholar] [CrossRef] [Green Version]
- Wanvestraut, R.H.; Jose, S.; Nair, P.K.R.; Brecke, B.J. Competition for Water in a Pecan (Carya Illinoensis K. Koch)–Cotton (Gossypium Hirsutum L.) Alley Cropping System in the Southern United States. Agrofor. Syst. 2004, 60, 167–179. [Google Scholar] [CrossRef]
- Reynolds, P.E.; Simpson, J.A.; Thevathasan, N.V.; Gordon, A.M. Effects of Tree Competition on Corn and Soybean Photosynthesis, Growth, and Yield in a Temperate Tree-Based Agroforestry Intercropping System in Southern Ontario, Canada. Ecol. Eng. 2007, 29, 362–371. [Google Scholar] [CrossRef]
- Pardon, P.; Reubens, B.; Mertens, J.; Verheyen, K.; De Frenne, P.; De Smet, G.; Van Waes, C.; Reheul, D. Effects of Temperate Agroforestry on Yield and Quality of Different Arable Intercrops. Agric. Syst. 2018, 166, 135–151. [Google Scholar] [CrossRef]
- Swieter, A.; Langhof, M.; Lamerre, J.; Greef, J.M. Long-Term Yields of Oilseed Rape and Winter Wheat in a Short Rotation Alley Cropping Agroforestry System. Agrofor. Syst. 2018, 93, 1853–1864. [Google Scholar] [CrossRef] [Green Version]
- Beule, L.; Lehtsaar, E.; Rathgeb, A.; Karlovsky, P. Crop Diseases and Mycotoxin Accumulation in Temperate Agroforestry Systems. Sustainability 2019, 11, 2925. [Google Scholar] [CrossRef] [Green Version]
- Van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Cardinael, R.; Hoeffner, K.; Chenu, C.; Chevallier, T.; Béral, C.; Dewisme, A.; Cluzeau, D. Spatial Variation of Earthworm Communities and Soil Organic Carbon in Temperate Agroforestry. Biol. Fertil. Soils 2019, 55, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Guillot, E.; Bertrand, I.; Rumpel, C.; Gomez, C.; Arnal, D.; Abadie, J.; Hinsinger, P. Spatial Heterogeneity of Soil Quality within a Mediterranean Alley Cropping Agroforestry System: Comparison with a Monocropping System. Eur. J. Soil Biol. 2021, 105, 103330. [Google Scholar] [CrossRef]
- Marsden, C.; Martin-Chave, A.; Cortet, J.; Hedde, M.; Capowiez, Y. How Agroforestry Systems Influence Soil Fauna and Their Functions–A Review. Plant Soil 2020, 453, 29–44. [Google Scholar] [CrossRef]
- Araujo, A.S.F.; Leite, L.F.C.; Iwata, B.D.F.; Lira, M.D.A.; Xavier, G.R.; Figueiredo, M.D.V.B. Microbiological Process in Agroforestry Systems. A Review. Agron. Sustain. Dev. 2012, 32, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Baah-Acheamfour, M.; Carlyle, C.N.; Bissett, A.; Richardson, A.E.; Siddique, T.; Bork, E.W.; Chang, S.X. Determinants of Bacterial Communities in Canadian Agroforestry Systems: Co-Occurrence Patterns of Soil Bacterial Communities. Environ. Microbiol. 2016, 18, 1805–1816. [Google Scholar] [CrossRef]
- Battie-Laclau, P.; Taschen, E.; Plassard, C.; Dezette, D.; Abadie, J.; Arnal, D.; Benezech, P.; Duthoit, M.; Pablo, A.-L.; Jourdan, C.; et al. Role of Trees and Herbaceous Vegetation beneath Trees in Maintaining Arbuscular Mycorrhizal Communities in Temperate Alley Cropping Systems. Plant Soil 2019, 453, 153–171. [Google Scholar] [CrossRef]
- Beule, L.; Karlovsky, P. Tree Rows in Temperate Agroforestry Croplands Alter the Composition of Soil Bacterial Communities. PLoS ONE 2021, 16, e0246919. [Google Scholar] [CrossRef] [PubMed]
- Beule, L.; Karlovsky, P. Early Response of Soil Fungal Communities to the Conversion of Monoculture Cropland to a Temperate Agroforestry System. PeerJ 2021, 9, e12236. [Google Scholar] [CrossRef] [PubMed]
- Rivest, M.; Whalen, J.K.; Rivest, D. Variation of Soil Microbial and Earthworm Communities along an Agricultural Transect with Tree Windbreak. Agrofor. Syst. 2020, 94, 1639–1649. [Google Scholar] [CrossRef]
- Guillot, E.; Hinsinger, P.; Dufour, L.; Roy, J.; Bertrand, I. With or without Trees: Resistance and Resilience of Soil Microbial Communities to Drought and Heat Stress in a Mediterranean Agroforestry System. Soil Biol. Biochem. 2019, 129, 122–135. [Google Scholar] [CrossRef]
- Clivot, H.; Petitjean, C.; Marron, N.; Dallé, E.; Genestier, J.; Blaszczyk, N.; Santenoise, P.; Laflotte, A.; Piutti, S. Early Effects of Temperate Agroforestry Practices on Soil Organic Matter and Microbial Enzyme Activity. Plant Soil 2020, 453, 189–207. [Google Scholar] [CrossRef]
- Beule, L.; Arndt, M.; Karlovsky, P. Relative Abundances of Species or Sequence Variants Can Be Misleading: Soil Fungal Communities as an Example. Microorganisms 2021, 9, 589. [Google Scholar] [CrossRef]
- Beule, L.; Corre, M.D.; Schmidt, M.; Göbel, L.; Veldkamp, E.; Karlovsky, P. Conversion of Monoculture Cropland and Open Grassland to Agroforestry Alters the Abundance of Soil Bacteria, Fungi and Soil-N-Cycling Genes. PLoS ONE 2019, 14, e0218779. [Google Scholar] [CrossRef]
- Beuschel, R.; Piepho, H.-P.; Joergensen, R.G.; Wachendorf, C. Similar Spatial Patterns of Soil Quality Indicators in Three Poplar-Based Silvo-Arable Alley Cropping Systems in Germany. Biol. Fertil. Soils 2019, 55, 1–14. [Google Scholar] [CrossRef]
- Sun, H.; Koal, P.; Gerl, G.; Schroll, R.; Gattinger, A.; Joergensen, R.G.; Munch, J.C. Microbial Communities and Residues in Robinia- and Poplar-Based Alley-Cropping Systems under Organic and Integrated Management. Agrofor. Syst. 2018, 92, 35–46. [Google Scholar] [CrossRef]
- D’hervilly, C.; Marsden, C.; Hedde, M.; Bertrand, I. Sown Understory Vegetation Strips Impact Soil Chemical Fertility, Associated Microorganisms and Macro-Invertebrates in Two Temperate Alley Cropping Systems. Agrofor. Syst. 2020, 94, 1851–1864. [Google Scholar] [CrossRef]
- D’Hervilly, C.; Marsden, C.; Capowiez, Y.; Béral, C.; Delapré-Cosset, L.; Bertrand, I. Trees and Herbaceous Vegetation Strips Both Contribute to Changes in Soil Fertility and Soil Organism Communities in an Agroforestry System. Plant Soil 2021, 463, 537–553. [Google Scholar] [CrossRef]
- Lee, K.-H.; Jose, S. Soil Respiration and Microbial Biomass in a Pecan—Cotton Alley Cropping System in Southern USA. Agrofor. Syst. 2003, 58, 45–54. [Google Scholar] [CrossRef]
- Mungai, N.W.; Motavalli, P.P.; Kremer, R.J. Soil Organic Carbon and Nitrogen Fractions in Temperate Alley Cropping Systems. Commun. Soil Sci. Plant Anal. 2006, 37, 977–992. [Google Scholar] [CrossRef]
- Luo, J.; Beule, L.; Shao, G.; Veldkamp, E.; Corre, M.D. Reduced Soil Gross N2O Emission Driven by Substrates Rather Than Denitrification Gene Abundance in Cropland Agroforestry and Monoculture. J. Geophys. Res. Biogeosciences 2022, 127, e2021JG006629. [Google Scholar] [CrossRef]
- Mungai, N.W.; Motavalli, P.P.; Kremer, R.J.; Nelson, K.A. Spatial Variation of Soil Enzyme Activities and Microbial Functional Diversity in Temperate Alley Cropping Systems. Biol. Fertil. Soils 2005, 42, 129–136. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Kremer, R.J.; Adamson, B.W.; Anderson, S.H. Variations in Soil Aggregate Stability and Enzyme Activities in a Temperate Agroforestry Practice. Appl. Soil Ecol. 2008, 39, 153–160. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Kremer, R.J.; Garrett, H.E.; Anderson, S.H. Soil Enzyme Activities and Physical Properties in a Watershed Managed under Agroforestry and Row-Crop Systems. Agric. Ecosyst. Environ. 2009, 131, 98–104. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Kremer, R.J.; Nelson, K.A.; Jose, S.; Bardhan, S. Soil Quality of a Mature Alley Cropping Agroforestry System in Temperate North America. Commun. Soil Sci. Plant Anal. 2014, 45, 2539–2551. [Google Scholar] [CrossRef]
- Unger, I.M.; Goyne, K.W.; Kremer, R.J.; Kennedy, A.C. Microbial Community Diversity in Agroforestry and Grass Vegetative Filter Strips. Agrofor. Syst. 2013, 87, 395–402. [Google Scholar] [CrossRef]
- Weerasekara, C.; Udawatta, R.P.; Jose, S.; Kremer, R.J.; Weerasekara, C. Soil Quality Differences in a Row-Crop Watershed with Agroforestry and Grass Buffers. Agrofor. Syst. 2016, 90, 829–838. [Google Scholar] [CrossRef]
- Nii-Annang, S.; Grünewald, H.; Freese, D.; Hüttl, R.F.; Dilly, O. Microbial Activity, Organic C Accumulation and 13C Abundance in Soils under Alley Cropping Systems after 9 Years of Recultivation of Quaternary Deposits. Biol. Fertil. Soils 2009, 45, 531–538. [Google Scholar] [CrossRef]
- Lacombe, S.; Bradley, R.L.; Hamel, C.; Beaulieu, C. Do Tree-Based Intercropping Systems Increase the Diversity and Stability of Soil Microbial Communities? Agric. Ecosyst. Environ. 2009, 131, 25–31. [Google Scholar] [CrossRef]
- Beule, L.; Lehtsaar, E.; Corre, M.D.; Schmidt, M.; Veldkamp, E.; Karlovsky, P. Poplar Rows in Temperate Agroforestry Croplands Promote Bacteria, Fungi, and Denitrification Genes in Soils. Front. Microbiol. 2020, 10, 3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, P.; Zheng, X.; Wang, L.; Liu, B.; Zhang, S. Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems. Forests 2019, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Van Tuinen, D.; Tranchand, E.; Hirissou, F.; Wipf, D.; Courty, P.-E. Carbon Partitioning in a Walnut-Maize Agroforestry System through Arbuscular Mycorrhizal Fungi. Rhizosphere 2020, 15, 100230. [Google Scholar] [CrossRef]
- Seiter, S.; Ingham, E.R.; William, R.D. Dynamics of Soil Fungal and Bacterial Biomass in a Temperate Climate Alley Cropping System. Appl. Soil Ecol. 1999, 12, 139–147. [Google Scholar] [CrossRef]
- Bainard, L.D.; Koch, A.M.; Gordon, A.M.; Klironomos, J.N. Temporal and Compositional Differences of Arbuscular Mycorrhizal Fungal Communities in Conventional Monocropping and Tree-Based Intercropping Systems. Soil Biol. Biochem. 2012, 45, 172–180. [Google Scholar] [CrossRef]
- Chifflot, V.; Rivest, D.; Olivier, A.; Cogliastro, A.; Khasa, D. Molecular Analysis of Arbuscular Mycorrhizal Community Structure and Spores Distribution in Tree-Based Intercropping and Forest Systems. Agric. Ecosyst. Environ. 2009, 131, 32–39. [Google Scholar] [CrossRef]
- Bardhan, S.; Jose, S.; Udawatta, R.P.; Fritschi, F. Microbial Community Diversity in a 21-Year-Old Temperate Alley Cropping System. Agrofor. Syst. 2013, 87, 1031–1041. [Google Scholar] [CrossRef]
- Muyzer, G.; Smalla, K. Application of Denaturing Gradient Gel Electrophoresis (DGGE) and Temperature Gradient Gel Electrophoresis (TGGE) in Microbial Ecology. Antonie Van Leeuwenhoek 1998, 73, 127–141. [Google Scholar] [CrossRef]
- Beaudette, C.; Bradley, R.L.; Whalen, J.K.; McVetty, P.B.E.; Vessey, K.; Smith, D.L. Tree-Based Intercropping Does Not Compromise Canola (Brassica Napus L.) Seed Oil Yield and Reduces Soil Nitrous Oxide Emissions. Agric. Ecosyst. Environ. 2010, 139, 33–39. [Google Scholar] [CrossRef]
- Kwak, J.-H.; Lim, S.-S.; Baah-Acheamfour, M.; Choi, W.-J.; Fatemi, F.; Carlyle, C.N.; Bork, E.W.; Chang, S.X. Introducing Trees to Agricultural Lands Increases Greenhouse Gas Emission during Spring Thaw in Canadian Agroforestry Systems. Sci. Total Environ. 2019, 652, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Amadi, C.C.; Van Rees, K.C.J.; Farrell, R.E. Soil–Atmosphere Exchange of Carbon Dioxide, Methane and Nitrous Oxide in Shelterbelts Compared with Adjacent Cropped Fields. Agric. Ecosyst. Environ. 2016, 223, 123–134. [Google Scholar] [CrossRef]
- Amadi, C.C.; Farrell, R.E.; Van Rees, K.C.J. Greenhouse Gas Emissions along a Shelterbelt-Cropped Field Transect. Agric. Ecosyst. Environ. 2017, 241, 110–120. [Google Scholar] [CrossRef]
- Wotherspoon, A.; Thevathasan, N.V.; Gordon, A.M.; Voroney, R.P. Carbon Sequestration Potential of Five Tree Species in a 25-Year-Old Temperate Tree-Based Intercropping System in Southern Ontario, Canada. Agrofor. Syst. 2014, 88, 631–643. [Google Scholar] [CrossRef]
- Mayer, S.; Wiesmeier, M.; Sakamoto, E.; Hübner, R.; Cardinael, R.; Kühnel, A.; Kögel-Knabner, I. Soil Organic Carbon Sequestration in Temperate Agroforestry Systems–A Meta-Analysis. Agric. Ecosyst. Environ. 2022, 323, 107689. [Google Scholar] [CrossRef]
- Doran, J.W. Soil Microbial and Biochemical Changes Associated with Reduced Tillage. Soil Sci. Soc. Am. J. 1980, 44, 765–771. [Google Scholar] [CrossRef]
- Zuber, S.M.; Villamil, M.B. Meta-Analysis Approach to Assess Effect of Tillage on Microbial Biomass and Enzyme Activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Kraut-Cohen, J.; Zolti, A.; Shaltiel-Harpaz, L.; Argaman, E.; Rabinovich, R.; Green, S.J.; Minz, D. Effects of Tillage Practices on Soil Microbiome and Agricultural Parameters. Sci. Total Environ. 2020, 705, 135791. [Google Scholar] [CrossRef]
- Böhme, L.; Langer, U.; Böhme, F. Microbial Biomass, Enzyme Activities and Microbial Community Structure in Two European Long-Term Field Experiments. Agric. Ecosyst. Environ. 2005, 109, 141–152. [Google Scholar] [CrossRef]
- Boinot, S.; Fried, G.; Storkey, J.; Metcalfe, H.; Barkaoui, K.; Lauri, P.-É.; Mézière, D. Alley Cropping Agroforestry Systems: Reservoirs for Weeds or Refugia for Plant Diversity? Agric. Ecosyst. Environ. 2019, 284, 106584. [Google Scholar] [CrossRef]
- Steinauer, K.; Chatzinotas, A.; Eisenhauer, N. Root Exudate Cocktails: The Link between Plant Diversity and Soil Microorganisms? Ecol. Evol. 2016, 6, 7387–7396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhauer, N.; Lanoue, A.; Strecker, T.; Scheu, S.; Steinauer, K.; Thakur, M.P.; Mommer, L. Root Biomass and Exudates Link Plant Diversity with Soil Bacterial and Fungal Biomass. Sci. Rep. 2017, 7, 44641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oelbermann, M.; Paul Voroney, R.; Gordon, A.M. Carbon Sequestration in Tropical and Temperate Agroforestry Systems: A Review with Examples from Costa Rica and Southern Canada. Agric. Ecosyst. Environ. 2004, 104, 359–377. [Google Scholar] [CrossRef]
- Went, F.W.; Stark, N. The Biological and Mechnaical Role of Soil Fungi. Proc. Natl. Acad. Sci. USA 1968, 60, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaby, R.J.Y. The Relationship between Micro-Organisms and Soil Aggregation. Microbiology 1949, 3, 236–254. [Google Scholar] [CrossRef] [Green Version]
- Gainey, P.L. Soil Reaction and the Growth of Azotobacter. J. Agric. Res. 1918, 14, 265–271. [Google Scholar]
- Schmidt, M.; Corre, M.D.; Kim, B.; Morley, J.; Göbel, L.; Sharma, A.S.I.; Setriuc, S.; Veldkamp, E. Nutrient Saturation of Crop Monocultures and Agroforestry Indicated by Nutrient Response Efficiency. Nutr. Cycl. Agroecosyst. 2020, 119, 69–82. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beule, L.; Vaupel, A.; Moran-Rodas, V.E. Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review. Microorganisms 2022, 10, 616. https://doi.org/10.3390/microorganisms10030616
Beule L, Vaupel A, Moran-Rodas VE. Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review. Microorganisms. 2022; 10(3):616. https://doi.org/10.3390/microorganisms10030616
Chicago/Turabian StyleBeule, Lukas, Anna Vaupel, and Virna Estefania Moran-Rodas. 2022. "Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review" Microorganisms 10, no. 3: 616. https://doi.org/10.3390/microorganisms10030616
APA StyleBeule, L., Vaupel, A., & Moran-Rodas, V. E. (2022). Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review. Microorganisms, 10(3), 616. https://doi.org/10.3390/microorganisms10030616