Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria
Abstract
:1. Introduction
2. 30S Ribosomal Subunit Biogenesis Factors
2.1. RbfA
2.2. YjeQ (RsgA)
2.3. Era
2.4. KsgA (RsmA)
2.5. RimJ
2.6. RimM
2.7. RimP
2.8. Hfq
2.9. Network of 30S Assembly Factors
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Connolly, K.; Culver, G. Deconstructing ribosome construction. Trends Biochem. Sci. 2009, 34, 256–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narla, A.; Ebert, B.L. Ribosomopathies: Human disorders of ribosome dysfunction. Blood 2010, 115, 3196–3205. [Google Scholar] [CrossRef] [PubMed]
- Shajani, Z.; Sykes, M.T.; Williamson, J.R. Assembly of Bacterial Ribosomes. Annu. Rev. Biochem. 2011, 80, 501–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodson, S.A. RNA folding and ribosome assembly. Curr. Opin. Chem. Biol. 2008, 12, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Woodson, S.A. RNA folding pathways and the self-assembly of ribosomes. Acc. Chem. Res. 2011, 44, 1312–1319. [Google Scholar] [CrossRef] [Green Version]
- Held, W.; Ballou, B.; Mizushima, S.; Nomura, M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli: Further studies. J. Biol. Chem. 1974, 249, 3103–3111. [Google Scholar] [CrossRef]
- Woodson, S.A. Recent insights on RNA folding mechanisms from catalytic RNA. Cell. Mol. Life Sci. 2000, 57, 796–808. [Google Scholar] [CrossRef]
- Mulder, A.M.; Yoshioka, C.; Beck, A.H.; Bunner, A.E.; Milligan, R.A.; Potter, C.S.; Carragher, B.; Williamson, J.R. Visualizing ribosome biogenesis: Parallel assembly pathways for the 30S subunit. Science 2010, 330, 673–677. [Google Scholar] [CrossRef]
- Schluenzen, F.; Tocilj, A.; Zarivach, R.; Harms, J.; Gluehmann, M.; Janell, D.; Bashan, A.; Bartels, H.; Agmon, I.; Franceschi, F.; et al. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 2000, 102, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Gabashvili, I.S.; Agrawal, R.K.; Spahn, C.M.; Grassucci, R.A.; Svergun, D.I.; Frank, J.; Penczek, P. Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 2000, 100, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Yusupov, M.M.; Yusupova, G.Z.; Baucom, A.; Lieberman, K.; Earnest, T.N.; Cate, J.H.D.; Noller, N.F. Crystal structure of the ribosome at 5.5 Å resolution. Science 2001, 292, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Bylund, G.O.; Wipemo, L.C.; Lundberg, L.A.; Wikström, P.M. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J. Bacteriol. 1998, 180, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, S.; Kato, S.; Kimura, T.; Muto, A.; Himeno, H. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. EMBO J. 2011, 30, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Razi, A.; Davis, J.H.; Hao, Y.; Jahagirdar, D.; Thurlow, B.; Basu, K.; Jain, N.; Gomez-Blanco, J.; Britton, R.A.; Vargas, J.; et al. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res. 2019, 47, 8301–8317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, K.; Culver, G. Overexpression of RbfA in the absence of the KsgA checkpoint results in impaired translation initiation. Mol. Microbiol. 2013, 87, 968–981. [Google Scholar] [CrossRef] [Green Version]
- Nord, S.; Bylund, G.O.; Lövgren, J.M.; Wikström, P.M. The RimP protein is important for maturation of the 30S ribosomal subunit. J. Mol. Biol. 2009, 386, 742–753. [Google Scholar] [CrossRef]
- Maksimova, E.M.; Korepanov, A.P.; Kravchenko, O.V.; Baymukhametov, T.N.; Myasnikov, A.G.; Vassilenko, K.S.; Afonina, Z.A.; Stolboushkina, E.A. RbfA Is Involved in Two Important Stages of 30S Subunit Assembly: Formation of the Central Pseudoknot and Docking of Helix 44 to the Decoding Center. Int. J. Mol. Sci. 2021, 22, 6140. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, Q.; Goto, S.; Chen, Y.; Li, N.; Yan, K.; Zhang, Y.; Muto, A.; Deng, H.; Himeno, H.; et al. Structural insights into the assembly of the 30S ribosomal subunit in vivo: Functional role of S5 and location of the 17S rRNA precursor sequence. Protein Cell 2014, 5, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Jomaa, A.; Stewart, G.; Martin-Benito, J.; Zielke, R.; Campbell, T.L.; Maddock, J.R.; Brown, E.D.; Ortega, J. Understanding ribosome assembly: The structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy. RNA 2011, 17, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Leong, V.; Kent, M.; Jomaa, A.; Ortega, J. Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits of similar structure and protein complement. RNA 2013, 19, 789–802. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Goto, S.; Chen, Y.; Feng, B.; Xu, Y.; Muto, A.; Himeno, H.; Deng, H.; Lei, J.; Gao, N. Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res. 2013, 41, 2609–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.J.; Swapna, G.V.T.; Rajan, P.K.; Ke, H.; Xia, B.; Shukla, K.; Inouye, M.; Montelione, G.T. Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. J. Mol. Biol. 2003, 327, 521–536. [Google Scholar] [CrossRef]
- Grishin, N.V. KH domain: One motif, two folds. Nucleic Acids Res. 2001, 29, 638–643. [Google Scholar] [CrossRef]
- Valverde, R.; Edwards, L.; Regan, L. Structure and function of KH domains. FEBS J. 2008, 275, 2712–2726. [Google Scholar] [CrossRef]
- Fristedt, R.; Scharff, L.B.; Clarke, C.A.; Wang, Q.; Lin, C.; Merchant, S.S.; Bock, R. RBF1, a plant homolog of the bacterial ribosome-binding factor RbfA, acts in processing of the chloroplast 16S ribosomal RNA. Plant Physiol. 2014, 164, 201–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozanska, A.; Richter-Dennerlein, R.; Rorbach, J.; Gao, F.; Lewis, R.J.; Chrzanowska-Lightowlers, Z.M.; Lightowlers, R.N. The human RNA-binding protein RBFA promotes the maturation of the mitochondrial ribosome. Biochem. J. 2017, 474, 2145–2158. [Google Scholar] [CrossRef] [Green Version]
- Dammel, C.S.; Noller, H.F. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev. 1995, 9, 626–637. [Google Scholar] [CrossRef] [Green Version]
- Dammel, C.S.; Noller, H.F. A cold-sensitive mutation in 16S rRNA provides evidence for helical switching in ribosome assembly. Genes Dev. 1993, 7, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Datta, P.P.; Wilson, D.N.; Kawazoe, M.; Swami, N.K.; Kaminishi, T.; Sharma, M.R.; Booth, T.M.; Takemoto, C.; Fucini, P.; Yokoyama, S.; et al. Structural aspects of RbfA action during small ribosomal subunit assembly. Mol. Cell 2007, 28, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Schedlbauer, A.; Iturrioz, I.; Ochoa-Lizarralde, B.; Diercks, T.; López-Alonso, J.D.; Lavin, J.L.; Kaminishi, T.; Çapuni, R.; Dhimole, N.; de Astigarraga, E.; et al. A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. Sci. Adv. 2021, 7, eabf7547. [Google Scholar] [CrossRef]
- Sharma, I.M.; Woodson, S.A. RbfA and IF3 couple ribosome biogenesis and translation initiation to increase stress tolerance. Nucleic Acids Res. 2020, 48, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Clatterbuck-Soper, S.F.C.; Dator, R.P.; Limbach, P.A.; Woodson, S.A. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol. Cell 2013, 52, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigle, D.M.; Rossi, L.; Berghuis, A.M.; Aravind, L.; Koonin, E.V.; Brown, E.D. YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-motifs and marked burst kinetics. Biochemistry 2002, 41, 11109–11117. [Google Scholar] [CrossRef] [PubMed]
- Daigle, D.M.; Brown, E.D. Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro. J. Bacteriol. 2004, 186, 1381–1387. [Google Scholar] [CrossRef] [Green Version]
- Jeganathan, A.; Razi, A.; Thurlow, B.; Ortega, J. The C-terminal helix in the YjeQ zinc-finger domain catalyzes the release of RbfA during 30S ribosome subunit assembly. RNA 2015, 21, 1203–1216. [Google Scholar] [CrossRef] [Green Version]
- Arigoni, F.; Talabot, F.; Peitsch, M.; Edgerton, M.D.; Meldrum, E.; Allet, E.; Fish, R.; Jamotte, T.; Curchod, M.L.; Loferer, H. A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 1998, 16, 851–856. [Google Scholar] [CrossRef]
- Himeno, H.; Hanawa-Suetsugu, K.; Kimura, T.; Takagi, K.; Sugiyama, W.; Shirata, S.; Mikami, T.; Odagiri, F.; Osanai, Y.; Watanabe, D.; et al. A novel GTPase activated by the small subunit of ribosome. Nucleic Acids Res. 2004, 32, 5303–5309. [Google Scholar] [CrossRef]
- Campbell, T.L.; Daigle, D.M.; Brown, E.D. Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. Biochem. J. 2005, 389, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Levdikov, V.M.; Blagova, E.V.; Brannigan, J.A.; Cladière, L.; Antson, A.A.; Isupov, M.N.; Séror, S.J.; Wilkinson, A.J. The crystal structure of YloQ, a circularly permuted GTPase essential for Bacillus subtilis viability. J. Mol. Biol. 2004, 340, 767–782. [Google Scholar] [CrossRef]
- Shin, D.H.; Lou, Y.; Jancarik, J.; Yokota, H.; Kim, R.; Kim, S.-H. Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain. Proc. Natl. Acad. Sci. USA 2004, 101, 13198–13203. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.E.; Johnson, C.; Lamb, H.K.; Lockyer, M.; Charles, I.G.; Hawkins, A.R.; Stammers, D.K. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2007, 63, 922–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocchio, S.; Santorelli, D.; Rinaldo, S.; Franceschini, M.; Malatesta, F.; Imperi, F.; Federici, L.; Travaglini-Allocatelli, C.; Matteo, A.D. Structural and functional investigation of the Small Ribosomal Subunit Biogenesis GTPase A (RsgA) from Pseudomonas aeruginosa. FEBS J. 2019, 286, 4245–4260. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yuan, Y.; Xu, Y.; Feng, B.; Liu, L.; Chen, K.; Sun, M.; Yang, Z.; Lei, J.; Gao, N. Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc. Natl. Acad. Sci. USA 2011, 108, 13100–13105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jomaa, A.; Stewart, G.; Mears, J.A.; Kireeva, I.; Brown, E.D.; Ortega, J. Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. RNA 2011, 17, 2026–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Alonso, J.P.; Kaminishi, T.; Kikuchi, T.; Hirata, Y.; Iturrioz, I.; Dhimole, N.; Schedlbauer, A.; Hase, Y.; Goto, S.; Kurita, D.; et al. RsgA couples the maturation state of the 30S ribosomal decoding center to activation of its GTPase pocket. Nucleic Acids Res. 2017, 45, 6945–6959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razi, A.; Guarné, A.; Ortega, J. The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly. Proc. Natl. Acad. Sci. USA 2017, 114, E3396–E3403. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000, 407, 340–348. [Google Scholar] [CrossRef]
- Kimura, T.; Takagi, K.; Hirata, Y.; Hase, Y.; Muto, A.; Himeno, H. Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. J. Mol. Biol. 2008, 381, 467–477. [Google Scholar] [CrossRef]
- Corrigan, R.M.; Bellows, L.E.; Wood, A.; Gründling, A. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 2016, 113, 1710–1719. [Google Scholar] [CrossRef] [Green Version]
- Ahnn, J.; March, P.E.; Takiff, H.E.; Inouye, M. A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. Proc. Natl. Acad. Sci. USA 1986, 83, 8849–8853. [Google Scholar] [CrossRef] [Green Version]
- Harvey, J.J. An unidentified virus which causes the rapid production of tumors in mice. Nature 1964, 204, 1104–1105. [Google Scholar] [CrossRef] [PubMed]
- March, P.E.; Lerner, C.G.; Ahnn, J.; Cui, X.; Inouye, M. The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth. Oncogene 1988, 2, 539–544. [Google Scholar] [PubMed]
- Inada, T.; Kawakami, K.; Chen, S.M.; Takiff, H.E.; Nakamura, Y. Temperature-sensitive lethal mutant of era, a G protein in Escherichia coli. J. Bacteriol. 1989, 171, 5017–5024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takiff, H.E.; Chen, S.M.; Court, D.L. Genetic analysis of the rnc operon of Escherichia coli. J. Bacteriol. 1989, 171, 2581–2590. [Google Scholar] [CrossRef] [Green Version]
- Zuber, M.; Hoover, T.A.; Powell, B.S.; Court, D.L. Analysis of the rnc locus of Coxiella burnetii. Mol. Microbiol. 1994, 14, 291–300. [Google Scholar] [CrossRef]
- Zuber, M.; Hoover, T.A.; Dertzbaugh, M.T.; Court, D.L. A Francisella tularensis DNA clone complements Escherichia coli defective for the production of Era, an essential Ras-like GTP-binding protein. Gene 1997, 189, 31–34. [Google Scholar] [CrossRef]
- Gollop, N.; March, P.E. Localization of the membrane binding sites of Era in Escherichia coli. Res. Microbiol. 1991, 142, 301–307. [Google Scholar] [CrossRef]
- Britton, R.A.; Powell, B.S.; Dasgupta, S.; Sun, Q.; Margolin, W.; Lupski, J.R.; Court, D.L. Cell cycle arrest in Era GTPase mutants: A potential growth rate-regulated checkpoint in Escherichia coli. Mol. Microbiol. 1998, 27, 739–750. [Google Scholar] [CrossRef]
- Ingram, G.C.; Simon, R.; Carpenter, R.; Coen, E.S. The Antirrhinum ERG gene encodes a protein related to bacterial small GTPases and is required for embryonic viability. Curr. Biol. 1998, 8, 1079–1082. [Google Scholar] [CrossRef] [Green Version]
- Leipe, D.D.; Wolf, Y.I.; Koonin, E.V.; Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 2002, 317, 41–72. [Google Scholar] [CrossRef] [Green Version]
- Gohda, J.; Nomura, Y.; Suzuki, H.; Arai, H.; Akiyama, T.; Inoue, J.-I. Elimination of the vertebrate Escherichia coli Ras-like protein homologue leads to cell cycle arrest at G1 phase and apoptosis. Oncogene 2003, 22, 1340–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayed, A.; Matsuyama, S.I.; Inouye, M. Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. Biochem. Biophys. Res. Commun. 1999, 264, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Alsina, J.; Chen, J.; Inouye, M. Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol. Microbiol. 2003, 48, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Court, D.L.; Ji, X. Crystal structure of ERA: A GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc. Natl. Acad. Sci. USA 1999, 96, 8396–8401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, C.; Zhou, X.; Tropea, J.E.; Austin, B.P.; Waugh, D.S.; Court, D.L.; Li, X. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis. Proc Natl. Acad. Sci. USA 2009, 106, 14843–14848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sood, P.; Lerner, C.G.; Shimamoto, T.; Lu, Q.; Inouye, M. Characterization of the autophosphorylation of Era, an essential Escherichia coli GTPase. Mol. Microbiol. 1994, 12, 201–208. [Google Scholar] [CrossRef]
- Pillutla, R.C.; Sharer, J.D.; Gulati, P.S.; Wu, E.; Yamashita, Y.; Lerner, C.G.; Inouye, M.; March, P.E. Cross-species complementation of the indispensable Escherichia coli era gene highlights amino acid regions essential for activity. J. Bacteriol. 1995, 177, 2194–2196. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, B.H.; Handler, A.A.; Chao, D.K.; Nguyen, V.; Smith, M.; Ryu, S.Y.; Simons, E.L.; Anderson, P.E.; Simons, R.W. The widely conserved Era G-protein contains an RNA-binding domain required for Era function in vivo. Mol. Microbiol. 1999, 33, 1118–1131. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.R.; Barat, C.; Wilson, D.N.; Booth, T.M.; Kawazoe, M.; Hori-Takemoto, C.; Shirouzu, M.; Yokoyama, S.; Fucini, P.; Agrawal, R.K. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol. Cell 2005, 18, 319–329. [Google Scholar] [CrossRef]
- Ghosal, A.; Babu, V.M.P.; Walker, G.C. Elevated levels of Era GTPase improve growth, 16S rRNA processing, and 70S ribosome assembly of Escherichia coli lacking highly conserved multifunctional YbeY endoribonuclease. J. Bacteriol. 2018, 200, e00278-18. [Google Scholar] [CrossRef] [Green Version]
- Campbell, T.L.; Brown, E.D. Genetic interaction screens with ordered overexpression and deletion clone sets implicate the Escherichia coli GTPase YjeQ in late ribosome biogenesis. J. Bacteriol. 2008, 190, 2537–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, S.M.; Mishra, R.; Neubig, R.R.; Maddock, J.R. Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era. J. Bacteriol. 2000, 182, 3460–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helser, T.L.; Davies, J.E.; Dahlberg, J.E. Mechanism of kasugamycin resistance in Escherichia coli. Nat. New Biol. 1972, 235, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Poldermans, B.; Roza, L.; Van Knippenberg, P.H. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16 S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30 S interactions. J. Biol. Chem. 1979, 254, 9094–9100. [Google Scholar] [CrossRef]
- Van Buul, C.P.; Visser, W.; Van Knippenberg, P.H. Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring the ksgA gene. FEBS Lett. 1984, 177, 119–124. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, M.; Thomas, C.L.; Zimmermann, R.A.; Dahlberg, A.E. Decoding fidelity at the ribosomal A and P sites: Influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res. 1997, 25, 1185–1193. [Google Scholar] [CrossRef]
- Van Knippenberg, P.H.; Van Kimmenade, J.M.; Heus, H.A. Phylogeny of the conserved 3′ terminal structure of the RNA of small ribosomal subunits. Nucleic Acids Res. 1984, 12, 2595–2604. [Google Scholar] [CrossRef] [Green Version]
- O’Farrell, H.C.; Scarsdale, J.N.; Rife, J.P. Crystal Structure of KsgA, a Universally Conserved rRNA Adenine Dimethyltransferase in Escherichia coli. J. Mol. Biol. 2004, 339, 337–353. [Google Scholar] [CrossRef]
- Lévĕque, F.; Blanchin-Roland, S.; Fayat, G.; Plateau, P.; Blanquet, S. Design and Characterization of Escherichia coli Mutants Devoid of Ap4N-hydrolase Activity. J. Mol. Biol. 1990, 212, 319–329. [Google Scholar] [CrossRef]
- Lafontaine, D.; Delcour, J.; Glasser, A.L.; Desgrès, J.; Vandenhaute, J. The DIM1 gene responsible for the conserved m62Am62A dimethylation in the 3′-terminal loop of 18 S rRNA is essential in yeast. J. Mol. Biol. 1994, 241, 492–497. [Google Scholar] [CrossRef]
- Connolly, K.; Rife, J.P.; Culver, G. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol. Microbiol. 2008, 70, 1062–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, P.M.; Rife, J.P. The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit. Arch. Biochem. Biophys. 2006, 449, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Thammana, P.; Held, W.A. Methylation of 16S RNA during ribosome assembly in vitro. Nature 1974, 251, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Boehringer, D.; O’Farrell, H.C.; Rife, J.P.; Ban, N. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis. J. Biol. Chem. 2012, 287, 10453–10459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephan, N.C.; Ries, A.B.; Boehringer, D.; Ban, N. Structural basis of successive adenosine modifications by the conserved ribosomal methyltransferase KsgA. Nucleic Acids Res. 2021, 49, 6389–6398. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; O’Farrell, H.C.; Rife, J.P.; Culver, G.M. A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat. Struct. Mol. Biol. 2008, 15, 534–536. [Google Scholar] [CrossRef]
- Watson, Z.L.; Ward, F.R.; Méheust, R.; Ad, O.; Schepartz, A.; Banfield, J.F.; Cate, J.H. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020, 9, e60482. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Isono, S.; Sheback, A.; Isono, K. Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol. Gen. Genet. 1987, 209, 481–488. [Google Scholar] [CrossRef]
- Tanaka, S.; Matsushita, Y.; Yoshikawa, A.; Isono, K. Cloning and Molecular Characterization of the Gene rimL Which Encodes an Enzyme Acetylating Ribosomal Protein L12 of Escherichia coli K12. Mol. Gen. Genet. 1989, 217, 289–293. [Google Scholar] [CrossRef]
- Roy-Chaudhuri, B.; Kirthi, N.; Kelley, T.; Culver, G.M. Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis. Mol. Microbiol. 2008, 68, 1547–1559. [Google Scholar] [CrossRef] [Green Version]
- Kirthi, N.; Roy-Chaudhuri, B.; Kelley, T.; Culver, G.M. A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA 2006, 12, 2080–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Wunier, W.; Yao, Y.; Morigen, M. Defects in ribosome function delay the initiation of chromosome replication in Escherichia coli. J. Basic Microbiol. 2018, 58, 1091–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumberlidge, A.G.; Isono, K. Ribosomal protein modification in Escherichia coli: I. A mutant lacking the N-terminal acetylation of protein S5 exhibits thermosensitivity. J. Mol. Biol. 1979, 131, 169–189. [Google Scholar] [CrossRef]
- Poot, R.A.; Jeeninga, R.E.; Pleij, C.W.; Van Duin, J. Acetylation of ribosomal protein S5 affected by defects in the central pseudokn ot in 16S ribosomal RNA? FEBS Lett. 1997, 401, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Lövgren, J.M.; Bylund, G.O.; Srivastava, M.K.; Lundberg, L.A.C.; Persson, O.P.; Wingsle, G.; Wikström, P.M. The PRC-barrel domain of the ribosome maturation protein RimM mediates binding to ribosomal protein S19 in the 30S ribosomal subunits. RNA 2004, 10, 1798–1812. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Tatsuguchi, A.; Matsumoto, E.; Kawazoe, M.; Kaminishi, T.; Shirouzu, M.; Muto, Y.; Takemoto, C.; Yokoyama, S. Structural Characterization of the Ribosome Maturation Protein, RimM. J. Bacteriol. 2007, 189, 6397–6406. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman, V.; Aravind, L. The PRC-barrel: A widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism. Genome Biol. 2002, 3, research0061.1. [Google Scholar]
- Bylund, G.O.; Persson, B.C.; Lundberg, L.A.; Wikström, P.M. A novel ribosome-associated protein is important for efficient translation in Escherichia coli. J. Bacteriol. 1997, 179, 4567–4574. [Google Scholar] [CrossRef] [Green Version]
- Lövgren, J.M.; Wikströem, P.M. Hybrid protein between ribosomal protein S16 and RimM of Escherichia coli retains the ribosome maturation function of both proteins. J. Bacteriol. 2001, 183, 5352–5357. [Google Scholar] [CrossRef] [Green Version]
- Bunner, A.E.; Nord, S.; Wikström, P.M.; Williamson, J.R. The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution. J. Mol. Biol. 2010, 398, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Pang, E.; He, H.; Kwang, J. Identification of novel attenuated Salmonella enteritidis mutants. FEMS Immunol. Med. Microbiol. 2008, 53, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Gunasekera, A.H.; Mack, J.; Olejniczak, E.T.; Chovan, L.E.; Ruan, X.; Towne, D.L.; Lerner, C.G.; Fesik, S.W. Solution structure and function of a conserved protein SP14.3 encoded by an essential Streptococcus pneumoniae gene. J. Mol. Biol. 2001, 311, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Poonam; Yennamalli, R.M.; Bisht, G.S.; Shrivastava, R. Ribosomal maturation factor (RimP) is essential for survival of nontuberculous mycobacteria Mycobacterium fortuitum under in vitro acidic stress conditions. 3 Biotech 2019, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Weng, X.; Law, C.O.K.; Kong, H.-K.; Lau, J.; Li, S.; Pham, H.Q.; Wang, R.; Zhang, L.; Kao, R.Y.T.; et al. The ribosomal maturation factor P from Mycobacterium smegmatis facilitates the ribosomal biogenesis by binding to the small ribosomal protein S12. J. Biol. Chem. 2019, 294, 372–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schedlbauer, A.; Ochoa-Lizarralde, B.; Iturrioz, I.; Çapuni, R.; Diercks, T.; de Astigarraga, E.; Fucini, P.; Connell, S.R. Backbone and sidechain NMR assignments for the ribosome maturation factor RimP from Escherichia coli. Biomol. NMR Assign. 2020, 14, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Sashital, D.G.; Greeman, C.A.; Lyumkis, D.; Potter, C.S.; Carragher, B.; Williamson, J.R. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. eLife 2014, 3, e04491. [Google Scholar] [CrossRef]
- Franze de Fernandez, M.T.; Eoyang, L.; August, J.T. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 1968, 219, 588–590. [Google Scholar] [CrossRef]
- Schuppli, D.; Miranda, G.; Tsui, H.-C.T.; Winkler, M.E.; Sogo, J.M.; Weber, H. Altered 3′-terminal RNA structure in phage Qβ adapted to host factor-less Escherichia coli. Proc. Natl. Acad. Sci. USA 1997, 94, 10239–10242. [Google Scholar] [CrossRef] [Green Version]
- Kajitani, M.; Kato, A.; Wada, A.; Inokuchi, Y.; Ishihama, A. Regulation of the Escherichia coli hfq gene encoding the host factor for phage Q beta. J. Bacteriol. 1994, 176, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.A.; Pearson, R.F.; Møller, T.; Valentin-Hansen, P.; Brennan, R.G. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: A bacterial Sm-like protein. EMBO J. 2002, 21, 3546–3556. [Google Scholar] [CrossRef] [Green Version]
- Hermann, H.; Fabrizio, P.; Raker, V.A.; Foulaki, K.; Hornig, H.; Brahms, H.; Lührmann, R. snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J. 1995, 14, 2076–2088. [Google Scholar] [CrossRef] [PubMed]
- Séraphin, B. Sm and Sm-like proteins belong to a large family: Identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J. 1995, 14, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Garrido, J.; Bragado-Nilsson, E.; Kandels-Lewis, S.; Séraphin, B. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J. 1999, 18, 3451–3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kufel, J.; Allmang, C.; Petfalski, E.; Beggs, J.; Tollervey, D. Lsm Proteins are required for normal processing and stability of ribosomal RNAs. J. Biol. Chem. 2003, 278, 2147–2156. [Google Scholar] [CrossRef] [Green Version]
- Vogel, J.; Luisi, B.F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 2011, 9, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Hajnsdorf, E.; Boni, I.V. Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie 2012, 94, 1544–1553. [Google Scholar] [CrossRef]
- Updegrove, T.B.; Zhang, A.; Storz, G. Hfq: The flexible RNA matchmaker. Curr. Opin. Microbiol. 2016, 30, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Quendera, A.P.; Seixas, A.F.; Dos Santos, R.F.; Santos, I.; Silva, J.P.N.; Arraiano, C.M.; Andrade, J.M. RNA-Binding Proteins Driving the Regulatory Activity of Small Non-coding RNAs in Bacteria. Front. Mol. Biosci. 2020, 7, 78. [Google Scholar] [CrossRef]
- Hajnsdorf, E.; Régnier, P. Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc. Natl. Acad. Sci. USA 2000, 97, 1501–1505. [Google Scholar] [CrossRef] [Green Version]
- Sonnleitner, E.; Hagens, S.; Rosenau, F.; Wilhelm, S.; Habel, A.; Jäger, K.-E.; Bläsi, U. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 2003, 35, 217–228. [Google Scholar] [CrossRef]
- Takada, A.; Wachi, M.; Kaidow, A.; Takamura, M.; Nagai, K. DNA Binding Properties of the hfq Gene Product of Escherichia coli. Biochem. Biophys. Res. Commun. 1997, 236, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.; Dos Santos, R.F.; Chelysheva, I.; Ignatova, Z.; Arraiano, C.M. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J. 2018, 37, e97631. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.F.; Andrade, J.M.; Pissarra, J.; Deutscher, M.P.; Arraiano, C.M. Hfq and RNase R Mediate rRNA Processing and Degradation in a Novel RNA Quality Control Process. mBio 2020, 11, e02398-20. [Google Scholar] [CrossRef]
- Andrade, J.M.; Hajnsdorf, E.; Régnier, P.; Arraiano, C.M. The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase, R. RNA 2009, 15, 316–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strader, M.B.; Hervey, W.J.; Costantino, N.; Fujigaki, S.; Chen, C.Y.; Akal-Strader, A.; Ihunnah, C.A.; Makusky, A.J.; Court, D.L.; Markey, S.P.; et al. A Coordinated Proteomic Approach for Identifying Proteins that Interact with the E. coli Ribosomal Protein S12. J. Proteome Res. 2013, 12, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, K.; Fujimura, R.K.; Nomura, M. Reconstitution of functionally active ribosomes from inactive subparticles and proteins. Proc. Natl. Acad. Sci. USA 1966, 55, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Traub, P.; Nomura, M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. Natl. Acad. Sci. USA 1968, 59, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Traub, P.; Nomura, M. Structure and function of Escherichia coli ribosomes. I. Partial fractionation of the functionally active ribosomal proteins and reconstitution of artificial subribosomal particles. J. Mol. Biol. 1968, 34, 575–593. [Google Scholar] [CrossRef]
- Traub, P.; Nomura, M. Studies on the assembly of ribosomes in vitro. Cold Spring Harb. Symp. Quant. Biol. 1969, 34, 63–67. [Google Scholar] [CrossRef]
- Talkington, M.W.T.; Siuzdak, G.; Williamson, J.R. An assembly landscape for the 30S ribosomal subunit. Nature 2005, 438, 628–632. [Google Scholar] [CrossRef] [Green Version]
- Adilakshmi, T.; Bellur, D.L.; Woodson, S.A. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature 2008, 455, 1268–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridgeway, W.K.; Millar, D.P.; Williamson, J.R. Quantitation of ten 30S ribosomal assembly intermediates using fluorescence triple correlation spectroscopy. Proc. Natl. Acad. Sci. USA 2012, 109, 13614–13619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Abeysirigunawarden, S.C.; Chen, K.; Mayerle, M.; Ragunathan, K.; Luthey-Schulten, Z.; Ha, T.; Woodson, S.A. Protein-guided RNA dynamics during early ribosome assembly. Nature 2014, 506, 334–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimova, E.; Kravchenko, O.; Korepanov, A.; Stolboushkina, E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022, 10, 747. https://doi.org/10.3390/microorganisms10040747
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms. 2022; 10(4):747. https://doi.org/10.3390/microorganisms10040747
Chicago/Turabian StyleMaksimova, Elena, Olesya Kravchenko, Alexey Korepanov, and Elena Stolboushkina. 2022. "Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria" Microorganisms 10, no. 4: 747. https://doi.org/10.3390/microorganisms10040747
APA StyleMaksimova, E., Kravchenko, O., Korepanov, A., & Stolboushkina, E. (2022). Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms, 10(4), 747. https://doi.org/10.3390/microorganisms10040747