Interaction of Bdellovibrio bacteriovorus with Gram-Negative and Gram-Positive Bacteria in Dual Species and Polymicrobial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cultivation
2.2. Co-Culture Assays
2.3. Dual Species Assays
2.4. Polymicrobial Assay
2.5. Culture-Based Analysis
2.6. Molecular Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Co-Culture of B. bacteriovorus PF13 with P. fluorescens, K. pneumonia, S. aureus or E. faecium
3.2. Dual Species Interaction of B. bacteriovorus PF13 with Combinations of Gram-Negative and Gram-Positive Bacteria
3.3. Polymicrobial Assays
3.4. Predation Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, H.N.; Chen, H. Environmental regulation of the distribution and ecology of Bdellovibrio and like organisms. Front. Microbiol. 2020, 11, 545070. [Google Scholar] [CrossRef] [PubMed]
- Dwidar, M.; Monnappa, A.K.; Mitchel, R.J. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012, 45, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negus, D.; Moore, C.; Baker, M.; Raghunatham, D.; Tyson, J.; Sockett, R.E. Predator versus pathogen: How does predatory Bdellovibrio bacteriovorus interface with the challenges of killing Gram-negative pathogens in a host setting? Annu. Rev. Microbiol. 2017, 71, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Schwudke, D.; Linscheid, M.; Strauch, E.; Appel, B.; Zähringer, U.; Moll, H.; Müller, M.; Brecker, L.; Gronow, S.; Lindner, B. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-d-Mannoses that replace phosphate residues: Similarities and differences between the lipid A’s and the lipopolysaccharides of the wild-type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J. Biol. Chem. 2003, 278, 27502–27512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saralegui, C.; Herencias, C.; Halperin, A.; De Dios-Caballero, J.; Pérez-Viso, B.; Salgado-Briegas, S.; Fernández-Lanza, V.; Cantón, R.; Baquero, F.; Prieto, A.; et al. Predation efficiency upon clinical isolates: Bdellovibrio bacteriovorus is prey specific and origin dependent. bioRxiv 2021. [Google Scholar] [CrossRef]
- Dashiff, A.; Junka, R.A.; Libera, M.; Kadouri, D.E. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol. 2010, 110, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Iebba, V.; Etotino, V.; Esantangelo, F.; Egagliardi, A.; Eciotoli, L.; Evirga, A.; Ambrosi, C.; Epompili, M.; Biase, R.V.E.; Eselan, L.; et al. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Front. Microbiol. 2014, 5, 280. [Google Scholar] [CrossRef] [PubMed]
- Monnappa, A.K.; Dwidar, M.; Seo, J.K.; Hur, J.-H.; Mitchell, R.J. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci. Rep. 2014, 4, 3811–3819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, H.; Dwidar, M.; Mitchell, R.J. Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. 2018, 12, 2090–2095. [Google Scholar] [CrossRef] [PubMed]
- Pantanella, F.; Iebba, V.; Mura, F.; Dini, L.; Totino, V.; Neroni, B. Behaviour of Bdellovibrio bacteriovorus in the presence of Gram-positive Staphylococcus aureus. New Microbiol. 2018, 41, 145–152. [Google Scholar] [PubMed]
- Varon, M. Interaction of Bdellovibrio with its prey in mixed microbial populations. Microb. Ecol. 1981, 7, 97–105. [Google Scholar] [CrossRef]
- Hobley, L.; King, J.R.; Sockett, R.E. Bdellovibrio predation in the presence of decoys: Three-way bacterial interactions revealed by mathematical and experimental analyses. Appl. Environ. Microbiol. 2006, 72, 6757–6765. [Google Scholar] [CrossRef] [Green Version]
- Rogosky, A.M.; Moak, P.L.; Emmert, E.A. Differential predation by Bdellovibrio bacteriovorus 109J. Curr. Microbiol. 2006, 52, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Im, H.; Choi, S.Y.; Son, S.; Mitchel, R.J. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Nat. Sci. Rep. 2017, 7, 14415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratanis, E.; Andersson, T.; Lood, R.; Bukowska-Faniband, E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol. 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Atterbury, R.J.; Tyson, J. Predatory bacteria as living antibiotics-where are we now? Microbiology 2021, 167, 1. [Google Scholar] [CrossRef] [PubMed]
- Waso, M.; Khan, S.; Khan, W. Assessment of predatory bacteria and prey interactions using culture-based methods and EMA-qPCR. Microbiol. Res. 2019, 228, 126305. [Google Scholar] [CrossRef]
- Waso, M.; Khan, S.; Singh, A.; McMichael, S.; Ahmed, W.; Fernández-Ibáñez, P.; Byrne, J.A.; Khan, W. Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. Water Res. 2020, 169, 115281. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, S.; Chen, Z.; Li, C. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement. Front. Environ. Sci. Eng. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Reyneke, B.; Ndlovu, T.; Khan, S.; Khan, W. Comparison of EMA-, PMA- and DNase qPCR for the determination of microbial cell viability. Appl. Microbiol. Biotechnol. 2017, 101, 7371–7383. [Google Scholar] [CrossRef]
- Scales, B.S.; Dickson, R.P.; LiPuma, J.J.; Huffnagle, G.B. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin. Microbiol. Rev. 2014, 27, 927–948. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 30 August 2021).
- Saxon, E.B.; Jackson, R.W.; Bhumbra, S. Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiol. 2014, 14, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadouri, D.E.; To, K.; Shanks, R.M.Q.; Doi, Y. Predatory bacteria: A potential ally against multidrug-resistant Gram-negative pathogens. PLoS ONE 2013, 8, e63397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatzkes, K.; Singleton, E.; Tang, C.; Zuena, M.; Shukla, S.; Gupta, S.; Dharani, S.; Onyile, O.; Rinaggio, J.; Connell, N.D.; et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. mBio 2016, 7, e01847-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauch, E.; Beck, S.; Appel, B. Bdellovibrio and like organisms: Potential sources for new biochemicals and therapeutic agents? In Predatory Prokaryotes. Microbiology Monographs; Jurkevitch, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Brinkman, F.; Schoofs, G.; Hancock, R.; De Mot, R. Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens. J. Bacteriol. 1999, 181, 4746–4754. [Google Scholar] [CrossRef] [PubMed]
- Bodilis, J.; Barray, S. Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas. Microbiology 2006, 152, 1075–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fito-Boncompte, L.; Chapalain, A.; Bouffartigues, E.; Chaker, H.; Lesouhaitier, O.; Gicquel, G.; Bazire, A.; Madi, A.; Connil, N.; Véron, W.; et al. Full virulence of Pseudomonas aeruginosa requires OprF. Infect. Immunol. 2011, 79, 1176–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassin, E.K.; Tseng, B.S. Pushing beyond the envelope: The potential roles of OprF in Pseudomonas aeruginosa biofilm formation and pathogenicity. J. Bacteriol. 2019, 201, e00050-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.M.; Bachman, M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Llobet, E.; Martínez-Moliner, V.; Moranta, D.; Dahlström, K.M.; Regueiro, V.; Tomás, A.; Cano, V.; Pérez-Gutiérrez, C.; Frank, C.G.; Fernández-Carrasco, H.; et al. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure. Proc. Natl. Acad. Sci. USA 2015, 112, E6369–E6378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koval, S.F.; Bayer, M.E. Bacterial capsules: No barrier against Bdellovibrio. Microbiology 1997, 143, 749–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drutz, D.J. Response of Neisseria gonorrhoeae to Bdellovibrio species. Infect. Immunol. 1976, 13, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Varon, M.; Shilo, M. Attachment of Bdellovibrio bacteriovorus to cell wall mutants of Salmonella spp. and Escherichia coli. J. Bacteriol. 1969, 97, 977–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koval, S.F.; Hynes, S.H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol. 1991, 173, 2244–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, C.; Smith, M.C.; Sockett, R.E. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ. Microbiol. 2003, 5, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Rendulic, S.; Jagtap, P.; Rosinus, A.; Eppinger, M.; Baar, C.; Lanz, C.; Keller, H.; Lambert, C.; Evans, K.J.; Goesmann, A.; et al. A predator unmasked: Life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 2004, 303, 689–692. [Google Scholar] [CrossRef]
- Bellehumeur, C.; Boyle, B.; Charette, S.J.; De Mot, R. Propidium monoazide (PMA) and ethidium bromide monoazide (EMA) improve DNA array and high-throughput sequencing of porcine reproductive and respiratory syndrome virus identification. J. Virol. Methods 2015, 222, 182–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reller, B.L.; Weinstein, M.P.; Petti, C.A. Detection and identification of microorganisms by gene amplification and sequencing. Clin. Infect. Dis. 2007, 44, 1108–1114. [Google Scholar] [CrossRef]
- Roosa, S.; Wauven, C.V.; Billon, G.; Matthijs, S.; Wattiez, R.; Gillan, D.C. The Pseudomonas community in metal contaminated sediments as revealed by quantitative PCR: A link with metal bioavailability. Res. Microbiol. 2014, 165, 647–656. [Google Scholar] [CrossRef] [PubMed]
Experimental Group | Prey and Predator Combinations | Culture-Based Analysis | EMA-qPCR Analysis | ||||
---|---|---|---|---|---|---|---|
Initial Cell Count (PFU/mL) | Final Cell Count (PFU/mL) | Log Change | Initial Gene Copies (GC/mL) | Final Gene Copies (GC/mL) c | Log Change | ||
Co-culture Experiments | PF13 + P. fluorescens | 2.10 ± 0.9 × 103 | 1.30 ± 0.3× 109 (48 h) 2.85 ± 1.38 × 104 (96 h) | +5.79 (p < 0.001) +1.13 (p = 0.20) | 2.38 ± 2.36 × 103 | 1.39 ± 0.28 × 107 (48 h) 9.99 ± 0.89 × 106 (96 h) | +3.77 (p = 0.04) +3.62 (p = 0.008) |
PF13 + K. pneumoniae | 1.41 ± 1.22 × 104 | 2.10 ± 0.17 × 109 (48 h) 5.10 ± 2.77 × 103 (96 h) | +5.17 (p = 0.006) −0.44 (p = 0.55) | 3.86 ± 3.46 × 104 | 3.89 ± 0.80 × 107 (48 h) 2.55 ± 1.01 × 107 (96 h) | +3.00 (p = 0.04) +2.82 (p = 0.13) | |
PF13 + S. aureus | NVP a | NVPa | ND b | 2.84 ± 1.90 × 103 | 5.60 ± 3.40 × 104 | +1.25 (p = 0.38) | |
PF13 + E. faecium | NVP a | NVPa | ND b | 1.73± 1.10 × 104 | 6.23 ± 4.43 × 106 | +2.56 (p = 0.296) | |
Dual species Experiments | PF13 + P. fluorescens + K. pneumoniae | 5.66 ± 1.92 × 106 | 5.03 ± 0.54 × 108 (24 h) 1.75 ± 0.51 × 107 (96 h) | +1.95 (p < 0.001) +0.49 (p = 0.004) | 2.81 ± 0.014 × 106 | 3.21 ± 0.98 × 107 (24 h) 7.21 ± 0.037 × 107 (96 h) | +1.06 (p = 0.0001) +1.41 (p < 0.001) |
PF13 + P. fluorescens + S. aureus | NVP a | NVP a | ND b | 6.31 ± 3.62 × 101 | 7.09 ± 0.15 × 106 | +5.05 (p < 0.001) | |
PF13 + P. fluorescens + E. faecium | NVP a | NVP a | ND b | 3.24 ± 4.35 × 103 | 6.37 ± 9.32 × 106 | +3.29 (p = 0.021) | |
PF13 + K. pneumoniae + S. aureus | NVP a | NVP a | ND b | 1.08 ± 0.32 × 103 | 1.75 ± 0.067 × 107 | +4.21 (p = 0.0015) | |
PF13 + K. pneumoniae + E. faecium | NVP a | NVP a | ND b | 5.03 ± 0.89 × 104 | 4.29 ± 0.042 × 107 | +2.93 (p < 0.01) | |
Polymicrobial Experiments | PF13 + P. fluorescens + K. pneumoniae + S. aureus + E. faecium | NVP a | NVP a | ND b | 4.18 ± 0.88 × 104 | 1.86 ± 0.58 × 107 | +2.65 (p = 0.086) |
Experimental Group | Prey and Predator Combinations | Culture-Based Analysis | EMA-qPCR Analysis | ||||
---|---|---|---|---|---|---|---|
Initial Cell Count (CFU/mL) | Final Cell Count (CFU/mL) a | Log Change | Initial Gene Copies (GC/mL) | Final Gene Copies (GC/mL) a | Log Change | ||
A: P. fluorescens | |||||||
Co-culture Experiment | P. fluorescens + PF13 | 2.73 ± 1.00 × 109 | 3.36 ± 3.30 × 106 | −2.91 (p = 0.11) | 1.01 ± 0.0067 × 106 | 2.67 ± 0.80 × 104 | −1.58 (p = 0.0001) |
Dual species Experiments | P. fluorescens + K. pneumoniae + PF13 | 5.17 ± 2.28 × 108 | 4.98 ± 1.46 × 108 | −0.02 (p = 0.46) | 7.34 ± 4.52 × 104 | 4.11 ± 0.29 × 105 | +0.75 (p < 0.0001) |
P. fluorescens + S. aureus + PF13 | 3.43 ± 0.37 × 109 | 3.33 ± 4.71 × 106 | −3.01 (p < 0.001) | 5.76 ± 0.034 × 105 | 3.53 ± 0.18 × 104 | −1.22 (p = 0.007) | |
P. fluorescens + E. faecium + PF13 | 8.53 ± 2.56 × 109 | 2.20 ± 0.73 × 105 | −4.59 (p = 0.009) | 7.90 ± 0.63 × 105 | 1.65 ± 0.047× 104 | −1.68 (p = 0.006) | |
Polymicrobial Experiment | P. fluorescens + K. pneumoniae + S. aureus + E. faecium + PF13 | ND b | ND b | ND b | 1.15 ± 0.14 × 106 | 5.34 ± 1.80 × 106 | +0.67 (p = 0.007) |
B: K. pneumoniae | |||||||
Co-culture Experiment | K. pneumoniae + PF13 | 6.50 ± 2.17 × 108 | 1.20 ± 1.07× 105 | −3.73 (p = 0.095) | 2.48 ± 0.93 × 107 | 3.06 ± 2.79 × 105 | −1.91 (p = 0.12) |
Dual species Experiments | K. pneumoniae + P. fluorescens + PF13 | 2.29 ± 2.35 × 108 | 5.90 ± 2.03 × 104 | −3.59 (p = 0.038) | 8.63 ± 0.92 × 106 | 2.75 ± 0.51 × 105 | −1.50 (p = 0.007) |
K. pneumoniae + S. aureus + PF13 | 2.67 ± 0.42 × 108 | 2.00 ± 0.82 × 104 | −4.12 (p = 0.001) | 1.58 ± 0.01 × 107 | 4.27 ± 0.014× 104 | −2.57 (p < 0.001) | |
K. pneumoniae + E. faecium + PF13 | 6.33 ± 3.40 × 108 | 6.67 ± 2.62 × 104 | −3.98 (p = 0.057) | 1.23 ± 0.008 × 107 | 4.89 ± 0.078 × 105 | −1.40 (p < 0.001) | |
Polymicrobial Experiment | P. fluorescens + K. pneumoniae + S. aureus + E. faecium + PF13 | ND b | ND b | ND b | 1.25 ± 0.96 × 106 | 5.74 ± 1.04× 103 (24 h) 2.37 ± 7.13× 105 (96 h) | −2.34 (p < 0.001) −0.72 (p < 0.001) |
C: S. aureus | |||||||
Co-culture Experiment | S. aureus + PF13 | 1.97 ± 2.59 × 109 | 2.27 ± 2.50 × 107 | −1.94 (p = 0.003) | 2.86 ± 3.23 × 106 | 3.76 ± 5.29 × 105 | −0.88 (p = 0.75) |
Dual species Experiments | S. aureus + P. fluorescens + PF13 | 4.90 ± 1.14 × 109 | 1.73 ± 0.13 × 108 | −1.45 (p = 0.004) | 6.49 ± 1.61 × 106 | 4.84 ± 1.28 × 104 | −2.13 (p < 0.001) |
S. aureus + K. pneumoniae + PF13 | 2.00 ± 0.82 × 108 | 1.50 ± 0.29 × 105 | −3.12 (p = 0.026) | 2.42 ± 1.62 × 105 | 2.00 ± 1.59 × 105 | −0.083 | |
Polymicrobial Experiment | P. fluorescens + K. pneumoniae + S. aureus + E. faecium + PF13 | ND b | ND b | ND b | 5.23 ± 2.93 × 106 | 1.55 ± 0.67 × 106 | −0.53 (p = 0.05) |
D: E. faecium | |||||||
Co-culture Experiment | E. faecium + PF13 | 1.28 ± 1.67 × 109 | 4.82 ± 2.62 × 107 | −1.43 (p = 0.004) | 2.64 ± 3.08 × 107 | 4.35 ± 3.50 × 107 | −0.78 (p = 0.42) |
Dual species Experiments | E. faecium + P. fluorescens + PF13 | 1.13 ± 0.11 × 109 | 5.33 ± 2.62 × 106 | −2.32 (p < 0.001) | 2.37 ± 0.19 × 107 | 1.07 ± 0.0038× 107 | −0.35 (p = 0.02) |
E. faecium + K. pneumoniae + PF13 | 1.00 ± 0.00 × 108 | 1.10 ± 0.22 × 107 | −0.96 (p < 0.001) | 1.19 ± 0.025 × 107 | 3.09 ± 0.021 × 106 | −0.59 (p < 0.001) | |
Polymicrobial Experiment | P. fluorescens + K. pneumoniae + S. aureus + E. faecium + PF13 | ND b | ND b | ND b | 1.74 ± 0.026 × 107 | 1.39 ± 0.16 × 107 | −0.098 (p = 0.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waso-Reyneke, M.; Khan, S.; Khan, W. Interaction of Bdellovibrio bacteriovorus with Gram-Negative and Gram-Positive Bacteria in Dual Species and Polymicrobial Communities. Microorganisms 2022, 10, 793. https://doi.org/10.3390/microorganisms10040793
Waso-Reyneke M, Khan S, Khan W. Interaction of Bdellovibrio bacteriovorus with Gram-Negative and Gram-Positive Bacteria in Dual Species and Polymicrobial Communities. Microorganisms. 2022; 10(4):793. https://doi.org/10.3390/microorganisms10040793
Chicago/Turabian StyleWaso-Reyneke, Monique, Sehaam Khan, and Wesaal Khan. 2022. "Interaction of Bdellovibrio bacteriovorus with Gram-Negative and Gram-Positive Bacteria in Dual Species and Polymicrobial Communities" Microorganisms 10, no. 4: 793. https://doi.org/10.3390/microorganisms10040793
APA StyleWaso-Reyneke, M., Khan, S., & Khan, W. (2022). Interaction of Bdellovibrio bacteriovorus with Gram-Negative and Gram-Positive Bacteria in Dual Species and Polymicrobial Communities. Microorganisms, 10(4), 793. https://doi.org/10.3390/microorganisms10040793