COVID-19 and C. auris: A Case-Control Study from a Tertiary Care Center in Lebanon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Statistical Analysis
2.3. C. auris Speciation, Identification, and Molecular Characterization
3. Results
3.1. Study Population and Demographics
3.2. Risk Factors for C. auris in Severe COVID-19
3.3. Mortality of Patients with C. auris According to the Site of Isolation
3.4. Impact of C. auris on Death within 30 Days of Its Isolation (Early In-Hospital Mortality)
3.5. Molecular Characterization of C. auris Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, L.S.; Fisher, D. MDRO transmission in acute hospitals during the COVID-19 pandemic. Curr. Opin. Infect. Dis. 2021, 34, 365–371. [Google Scholar]
- Mastrangelo, A.; Germinario, B.N.; Ferrante, M.; Frangi, C.; Voti, R.L.; Muccini, C.; Ripa, M.; Canetti, D.; Castiglioni, B.; Oltolini, C.; et al. Candidemia in Coronavirus Disease 2019 (COVID-19) Patients: Incidence and Characteristics in a Prospective Cohort Compared with Historical Non–COVID-19 Controls. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, e2838–e2839. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J. Antimicrob. Chemother. 2021, 76, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Son, H.-J.; Kim, T.; Lee, E.; Park, S.Y.; Yu, S.; Hong, H.-L.; Kim, M.-C.; Hong, S.I.; Bae, S.; Kim, S.-H.; et al. Risk factors for isolation of multi-drug resistant organisms in coronavirus disease 2019 pneumonia: A multicenter study. Am. J. Infect. Control 2021, 49, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Candida Auris|Candida Auris|Fungal Diseases|CDC. 2021. Available online: https://www.cdc.gov/fungal/candida-auris/index.html (accessed on 27 January 2022).
- Chowdhary, A.; Sharma, A. The lurking scourge of multidrug resistant Candida auris in times of COVID-19 pandemic. J. Glob. Antimicrob. Resist. 2020, 22, 175–176. [Google Scholar] [CrossRef]
- Rodriguez, J.Y.; Le Pape, P.; Lopez, O.; Esquea, K.; Labiosa, A.L.; Alvarez-Moreno, C. Candida auris: A Latent Threat to Critically Ill Patients with Coronavirus Disease 2019. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 73, e2836–e2837. [Google Scholar] [CrossRef]
- Villanueva-Lozano, H.; Treviño-Rangel, R.D.J.; González, G.M.; Ramírez-Elizondo, M.T.; Lara-Medrano, R.; Aleman-Bocanegra, M.C.; Guajardo-Lara, C.E.; Gaona-Chávez, N.; Castilleja-Leal, F.; Torre-Amione, G.; et al. Outbreak of Candida auris infection in a COVID-19 hospital in Mexico. Clin. Microbiol. Infect. 2021, 27, 813–816. [Google Scholar] [CrossRef]
- Di Pilato, V.; Codda, G.; Ball, L.; Giacobbe, D.R.; Willison, E.; Mikulska, M.; Magnasco, L.; Crea, F.; Vena, A.; Pelosi, P.; et al. Molecular Epidemiological Investigation of a Nosocomial Cluster of C. auris: Evidence of Recent Emergence in Italy and Ease of Transmission during the COVID-19 Pandemic. J. Fungi Basel. Switz. 2021, 7, 140. [Google Scholar] [CrossRef]
- Rajni, E.; Singh, A.; Tarai, B.; Jain, K.; Shankar, R.; Pawar, K.; Mamoria, K.; Chowdhary, A. A High Frequency of Candida auris Blood Stream Infections in Coronavirus Disease 2019 Patients Admitted to Intensive Care Units, Northwestern India: A Case Control Study. Open Forum Infect Dis. 2021, 8, ofab452. [Google Scholar] [CrossRef]
- Allaw, F.; Zahreddine, N.K.; Ibrahim, A.; Tannous, J.; Taleb, H.; Bizri, A.; Dbaibo, G.; Kanj, S. First Candida auris Outbreak during a COVID-19 Pandemic in a Tertiary-Care Center in Lebanon. Pathogens 2021, 10, 157. [Google Scholar] [CrossRef]
- Ahmad, A.; Spencer, J.E.; Lockhart, S.R.; Singleton, S.; Petway, D.J.; Bagarozzi, D.A.; Herzegh, O.T. A high-throughput and rapid method for accurate identification of emerging multidrug-resistant Candida auris. Mycoses 2019, 62, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lone, S.A.; Ahmad, A. Candida auris-the growing menace to global health. Mycoses 2019, 62, 620–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, J.R.; Master, R.N.; Azad, K.N.; Schwab, D.A.; Clark, R.B.; Jones, R.S.; Moore, E.C.; Shier, K.L. Rapid, Accurate Identification of Candida auris by Using a Novel Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Database (Library). J. Clin. Microbiol. 2018, 56, e01700-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordalewska, M.; Perlin, D.S. Identification of Drug Resistant Candida auris. Front. Microbiol. 2019, 10, 1918. [Google Scholar] [CrossRef] [PubMed]
- De Cássia Orlandi Sardi, J.; Silva, D.R.; Soares Mendes-Giannini, M.J.; Rosalen, P.L. Candida auris: Epidemiology, risk factors, virulence, resistance, and therapeutic options. Microb. Pathog. 2018, 125, 116–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudramurthy, S.; Chakrabarti, A.; Paul, R.A.; Sood, P.; Kaur, H.; Capoor, M.R.; Kindo, A.J.; Marak, R.S.K.; Arora, A.; Sardana, R.; et al. Candida auris candidaemia in Indian ICUs: Analysis of risk factors. J. Antimicrob. Chemother. 2017, 72, 1794–1801. [Google Scholar] [CrossRef] [Green Version]
- Al-Rashdi, A.; Al-Maani, A.; Al-Wahaibi, A.; Alqayoudhi, A.; Al-Jardani, A.; Al-Abri, S. Characteristics, Risk Factors, and Survival Analysis of Candida auris Cases: Results of One-Year National Surveillance Data from Oman. J. Fungi Basel Switz. 2021, 7, 31. [Google Scholar] [CrossRef]
- Janniger, E.J.; Kapila, R. Public health issues with Candida auris in COVID-19 patients. World Med. Health Policy 2021, 13, 766–772. [Google Scholar] [CrossRef]
- Chowdhary, A.; Tarai, B.; Singh, A.; Sharma, A. Multidrug-Resistant Candida auris Infections in Critically Ill Coronavirus Disease Patients, India, April-July 2020. Emerg. Infect. Dis. 2020, 26, 2694–2696. [Google Scholar] [CrossRef]
- León, C.; Ruiz-Santana, S.; Saavedra, P.; Almirante, B.; Nolla-Salas, J.; Álvarez-Lerma, F.; Garnacho-Montero, J.; León, M.A.; EPCAN Study Group. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit. Care Med. 2006, 34, 730–737. [Google Scholar] [CrossRef]
- Reslan, L.; Araj, G.F.; Finianos, M.; El Asmar, R.; Hrabak, J.; Dbaibo, G.; Bitar, I. Molecular Characterization of Candida Auris Isolates at a Major Tertiary Care Center in Lebanon. Front. Microbiol. 2022, 12, 3897. Available online: https://www.frontiersin.org/article/10.3389/fmicb.2021.770635 (accessed on 7 February 2022). [CrossRef] [PubMed]
- Antifungal Susceptibility Testing and Interpretation | Candida Auris|Fungal Diseases|CDC. 2020. Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html (accessed on 27 January 2022).
- Prestel, C. Candida Auris Outbreak in a COVID-19 Specialty Care Unit—Florida, July–August 2020. MMWR Morb. Mortal. Wkly Rep. 2021, 70, 56. Available online: https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e3.htm (accessed on 28 January 2022). [CrossRef] [PubMed]
- Nobrega de Almeida, J.; Brandão, I.B.; Francisco, E.C.; de Almeida, S.L.R.; de Oliveira Dias, P.; Pereira, F.M.; Ferreira, F.S.; de Andrade, T.S.; de Miranda Costa, M.M.; de Souza Jordão, R.T.; et al. Axillary Digital Thermometers uplifted a multidrug-susceptible Candida auris outbreak among COVID-19 patients in Brazil. Mycoses 2021, 64, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Moin, S.; Farooqi, J.; Rattani, S.; Nasir, N.; Zaka, S.; Jabeen, K.C. auris and non-C. auris candidemia in hospitalized adult and pediatric COVID-19 patients; single center data from Pakistan. Med. Mycol. 2021, 59, 1238–1242. [Google Scholar] [CrossRef]
- Macauley, P.; Epelbaum, O. Epidemiology and Mycology of Candidaemia in non-oncological medical intensive care unit patients in a tertiary center in the United States: Overall analysis and comparison between non-COVID-19 and COVID-19 cases. Mycoses 2021, 64, 634–640. [Google Scholar] [CrossRef]
- Bishburg, E.; Okoh, A.; Nagarakanti, S.R.; Lindner, M.; Migliore, C.; Patel, P. Fungemia in COVID-19 ICU patients, a single medical center experience. J. Med. Virol. 2021, 93, 2810–2814. [Google Scholar] [CrossRef]
- Omrani, A.S.; Koleri, J.; Ben Abid, F.; Daghfel, J.; Odaippurath, T.; Peediyakkal, M.Z.; Baiou, A.; Sarsak, E.; Elayana, M.; Kaleeckal, A.; et al. Clinical characteristics and risk factors for COVID-19-associated Candidemia. Med. Mycol. 2021, 59, 1262–1266. [Google Scholar] [CrossRef]
- Pandya, N.; Cag, Y.; Pandak, N.; Pekok, A.U.; Poojary, A.; Ayoade, F.; Fasciana, T.; Giammanco, A.; Caskurlu, H.; Rajani, D.P.; et al. International Multicentre Study of Candida auris Infections. J. Fungi Basel Switz. 2021, 7, 878. [Google Scholar] [CrossRef]
- Ruiz-Gaitán, A.; Moret, A.M.; Tasias-Pitarch, M.; Aleixandre-López, A.I.; Morel, H.M.; Calabuig, E.; Salavert-Lletí, M.; Ramírez, P.; López-Hontangas, J.L.; Hagen, F.; et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018, 61, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Tleyjeh, I.M.; Kashour, Z.; Damlaj, M.; Riaz, M.; Tlayjeh, H.; Altannir, M.; Altannir, Y.; Al-Tannir, M.; Tleyjeh, R.; Hassett, L.; et al. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2020, 27, 215–227. [Google Scholar] [CrossRef]
- Morena, V.; Milazzo, L.; Oreni, L.; Bestetti, G.; Fossali, T.; Bassoli, C.; Torre, A.; Cossu, M.V.; Minari, C.; Ballone, E.; et al. Off-label use of tocilizumab for the treatment of SARS-CoV-2 pneumonia in Milan, Italy. Eur. J. Intern. Med. 2020, 76, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Antinori, S.; Bonazzetti, C.; Gubertini, G.; Capetti, A.; Pagani, C.; Morena, V.; Rimoldi, S.; Galimberti, L.; Sarzi-Puttini, P.; Ridolfo, A.L. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: An increased risk for candidemia? Autoimmun. Rev. 2020, 19, 102564. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; Flanders, S.A. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 72, e533–e541. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yang, Q.; Xu, M.; Kong, H.; Chen, H.; Fu, Y.; Yao, Y.; Zhou, H.; Zhou, J. Secondary Bacterial Infections in Critical Ill Patients With Coronavirus Disease 2019. Open Forum Infect. Dis. 2020, 7, ofaa220. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Ferrer Gómez, C.; Solís Albamonte, P.; Delgado Navarro, C.; Salvador García, C.; Tormo Palop, N.; Andrés Ibáñez, J.A. Analysis of Candida auris candidemia cases in an Intensive Care Unit of a tertiary hospital. Rev. Esp. Anestesiol. Reanim. 2021, 68, 431–436. [Google Scholar] [CrossRef]
- Sayeed, M.A.; Farooqi, J.; Jabeen, K.; Awan, S.; Mahmood, S.F. Clinical spectrum and factors impacting outcome of Candida auris: A single center study from Pakistan. BMC Infect. Dis. 2019, 19, 384. [Google Scholar] [CrossRef] [Green Version]
- Morales-López, S.E.; Parra-Giraldo, C.M.; Ceballos-Garzón, A.; Martínez, H.P.; Rodríguez, G.J.; Álvarez-Moreno, C.A.; Rodríguez, J.Y. Invasive Infections with Multidrug-Resistant Yeast Candida auris, Colombia. Emerg. Infect. Dis. 2017, 23, 162–164. [Google Scholar] [CrossRef] [Green Version]
- Alshamrani, M.M.; El-Saed, A.; Mohammed, A.; Alghoribi, M.F.; Al Johani, S.M.; Cabanalan, H.; Balkhy, H.H. Management of Candida auris outbreak in a tertiary-care setting in Saudi Arabia. Infect. Control. Hosp. Epidemiol. 2021, 42, 149–155. [Google Scholar] [CrossRef]
- Emara, M.; Ahmad, S.; Khan, Z.; Joseph, L.; Al-Obaid, I.; Purohit, P.; Bafna, R. Candida auris Candidemia in Kuwait, 2014. Emerg. Infect. Dis. 2015, 21, 1091–1092. [Google Scholar] [CrossRef] [Green Version]
- Al-Siyabi, T.; Al Busaidi, I.; Balkhair, A.; Al-Muharrmi, Z.; Al-Salti, M.; Al’Adawi, B. First report of Candida auris in Oman: Clinical and microbiological description of five candidemia cases. J. Infect. 2017, 75, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, J.; Hagen, F.; Al-Balushi, Z.A.M.; de Hoog, G.S.; Chowdhary, A.; Meis, J.F.; Al-Hatmi, A.M.S. The first cases of Candida auris candidaemia in Oman. Mycoses 2017, 60, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almaghrabi, R.S.; AlBalawi, R.; Mutabagani, M.; Atienza, E.; Aljumaah, S.; Gade, L.; Forsberg, K.; Litvintseva, A.; Althawadi, S. Molecular characterisation and clinical outcomes of Candida auris infection: Single-centre experience in Saudi Arabia. Mycoses 2020, 63, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, W.; Dhar, R.; Albarrag, A.; Al-Abdely, H. The emerging pathogen Candida auris: A focus on the Middle-Eastern countries. J. Infect. Public Health 2019, 12, 451–459. [Google Scholar] [CrossRef] [PubMed]
(C. auris+/COV−) | (C. auris+/COV+) | (C. auris−/COV+) | |
---|---|---|---|
C. auris (n = 24) | C. auris and COVID-19 (n = 32) | COVID-19 (n = 130) | |
Patients’ Characteristics | |||
Age—mean (sd) | 70.5 (14.9) | 68.4 (14.2) | 69.5 (12.2) |
Male—no. (%) | 10 (41.7) | 19 (59.4) | 91 (70.0) |
qSOFA score—mean (sd) | 1.58 (0.78) | 1.63 (0.79) | 1.06 (0.84) |
Charlson score—mean (sd) | 5.38 (2.16) | 5.00 (2.87) | 4.54 (2.48) |
Candida score—mean (sd) | 2.42 (1.38) | 1.59 (0.98) | 1.39 (1.17) |
Length of stay in the hospital in days—mean (sd) | 48.3 (30.9) | 65.5 (51.9) | 27.0 (17.6) |
Comorbidities | |||
Diabetes mellitus—no. (%) | 8 (33.3) | 13 (40.6) | 53 (40.8) |
Chronic kidney disease—no. (%) | 2 (8.3) | 6 (18.8) | 26 (20.0) |
Chronic lung disease—no. (%) | 5 (20.8) | 7 (21.9) | 19 (14.6) |
Active hematological malignancy—no. (%) | 3 (12.5) | 3 (9.4) | 7 (5.4) |
Active solid malignancy—no. (%) | 8 (33.3) | 4 (12.5) | 16 (12.3) |
Chemotherapy within 30 days of C. auris or SARS-CoV-2 infection—no. (%) | 1 (4.2) | 4 (12.5) | 12 (9.2) |
Active immunosuppressive therapy within 30 days of C. auris or SARS-CoV-2 infection—no. (%) | 3 (12.5) | 2 (6.3) | 9 (6.9) |
Previous surgery within 30 days of C. auris isolation—no. (%) | 12 (50.0) | 6 (18.8) | - |
Presence of indwelling devices | |||
Central venous catheter—no. (%) | 20 (83.3) | 30 (93.8) | 94 (72.3) |
Urinary catheter—no. (%) | 24 (100) | 32 (100) | 111 (85.4) |
Mechanical ventilation—no. (%) | 16 (66.7) | 27 (84.4) | 108 (83.1) |
Non-invasive ventilation—no. (%) | 4 (16.7) | 24 (75.0) | 115 (88.5) |
Nasogastric tube—no. (%) | 19 (79.2) | 28 (87.5) | 96 (73.8) |
Hemodialysis—no. (%) | 6 (25.0) | 8 (25.0) | 37 (28.5) |
Parenteral nutrition—no. (%) | 8 (33.3) | 1 (3.1) | 11 (8.5) |
Drugs often used for COVID-19 | |||
Baricitinib—no. (%) | 0 (0.0) | 6 (18.8) | 16 (12.3) |
Tocilizumab—no. (%) | 0 (0.0) | 21 (65.6) | 64 (49.2) |
Prednisone—no. (%) | 6 (25.0) | 32 (100.0) | 130 (100.0) |
Antibiotic use | |||
Any antibiotic use—no. (%) | 24 (100) | 32 (100.0) | 128 (98.5) |
Cephalosporin—no. (%) | 14 (58.3) | 20 (62.5) | 73 (56.6) |
Quinolone—no. (%) | 4 (16.7) | 19 (59.4) | 91 (70.5) |
Piperacillin-tazobactam—no. (%) | 15 (62.5) | 27 (84.4) | 102 (79.1) |
Carbapenem—no. (%) | 18 (75.0) | 23 (82.1) | 20 (71.4) |
Ceftazidime-avibactam—no. (%) | 10 (41.7) | 20 (62.5) | 60 (46.5) |
Aminoglycoside—no. (%) | 7 (29.2) | 22 (68.8) | 98 (76.0) |
Ceftolozane-tazobactam—no. (%) | 2 (8.3) | 7 (21.9) | 25 (19.4) |
Glycopeptide—no. (%) | 12 (50.0) | 24 (75.0) | 100 (77.5) |
Linezolid—no. (%) | 1 (4.2) | 9 (28.1) | 20 (15.5) |
Tigecycline—no. (%) | 6 (25.0) | 15 (46.9) | 60 (46.5) |
Colistin—no. (%) | 8 (33.3) | 8 (25.0) | 33 (25.4) |
Isolation of an MDR pathogen | |||
VRE—no. (%) | 3 (12.5) | 3 (9.4) | 11 (8.5) |
CRE—no. (%) | 4 (16.7) | 1 (3.1) | 9 (6.9) |
MRSA—no. (%) | 0 (0.0) | 2 (6.3) | 5 (3.8) |
MDR Acinetobacter spp.—no. (%) | 0 (0.0) | 0 (0.0) | 7 (5.4) |
MDR Pseudomonas aeruginosa—no. (%) | 0 (0.0) | 1 (3.1) | 3 (2.3) |
ESBL Enterobacterales—no. (%) | 11 (45.8) | 6 (18.8) | 19 (14.6) |
Outcome | |||
Discharged home—no. (%) | 8 (33.3) | 9 (28.1) | 23 (17.7) |
In hospital death—no. (%) | 15 (62.5) | 19 (59.4) | 94 (72.3) |
(C. auris+/COV+) | (C. auris−/COV+) | p-Value | |
---|---|---|---|
(n = 32) | (n = 130) | ||
Patients’ Characteristics | |||
Age—mean (sd) | 68.44 (14.21) | 69.52 (12.17) | 0.66 |
Male—no. (%) | 19 (59.4) | 91 (70.0) | 0.25 |
qSOFA score—mean (sd) | 1.63 (0.79) | 1.06 (0.84) | <0.001 * |
Charlson score—mean (sd) | 5.00 (2.87) | 4.54 (2.48) | 0.36 |
Candida score—mean (sd) | 1.59 (0.98) | 1.39 (1.17) | 0.35 |
Comorbidities and Risk Factors | |||
Diabetes mellitus—no. (%) | 13 (40.6) | 53 (40.8) | 0.99 |
Chronic kidney disease—no. (%) | 6 (18.8) | 26 (20.0) | 0.87 |
Chronic lung disease—no. (%) | 7 (21.9) | 19 (14.6) | 0.32 |
Active hematological malignancy—no. (%) | 3 (9.4) | 7 (5.4) | 0.42 |
Active solid malignancy—no. (%) | 4 (12.5) | 16 (12.3) | 0.68 |
Chemotherapy within 30 days—no. (%) | 4 (12.5) | 12 (9.2) | 0.58 |
Active immunosuppressive therapy—no. (%) | 2 (6.3) | 9 (6.9) | 0.89 |
Previous surgery within 30 days—no. (%) | 6 (18.8) | - | - |
ICU stay | |||
Central venous catheter—no. (%) | 30 (93.8) | 94 (72.3) | 0.01 * |
Urinary catheter—no. (%) | 32 (100) | 111 (85.4) | 0.015 * |
Mechanic ventilation—no. (%) | 27 (84.4) | 108 (83.1) | 0.86 |
Non-invasive ventilation—no. (%) | 24 (75.0) | 115 (88.5) | 0.051 |
Nasogastric tube—no. (%) | 28 (87.5) | 96 (73.8) | 0.10 |
Parenteral nutrition—no. (%) | 1 (3.1) | 11 (8.5) | 0.30 |
Hemodialysis—no. (%) | 8 (25.0) | 37 (28.5) | 0.70 |
Length of stay in the hospital—mean (sd) | 35.3 (20.5) | 27.0 (17.6) | 0.02 * |
Drugs often used for COVID-19 | |||
Baricitinib—no. (%) | 6 (18.8) | 16 (12.3) | 0.34 |
Tocilizumab—no. (%) | 21 (65.6) | 64 (49.2) | 0.10 |
Prednisone—no. (%) | 32 (100.0) | 130 (100.0) | - |
Antibiotic use | |||
Antibiotic use—no. (%) | 32 (100.0) | 128 (98.5) | 0.48 |
Cephalosporin—no. (%) | 20 (62.5) | 73 (56.2) | 0.56 |
Quinolone—no. (%) | 19 (59.4) | 91 (70.0) | 0.22 |
Piperacillin-tazobactam—no. (%) | 27 (84.4) | 101 (77.7) | 0.50 |
Carbapenem—no. (%) | 25 (78.1) | 105 (80.7) | 0.68 |
Ceftazidime-avibactam—no. (%) | 20 (62.5) | 60 (46.2) | 0.11 |
Aminoglycoside—no. (%) | 22 (68.8) | 98 (75.4) | 0.40 |
Ceftolozane-tazobactam—no. (%) | 7 (21.9) | 25 (19.2) | 0.75 |
Glycopeptide—no. (%) | 24 (75.0) | 100 (76.9) | 0.76 |
Linezolid—no. (%) | 9 (28.1) | 19 (14.6) | 0.18 |
Tigecycline—no. (%) | 15 (46.9) | 60 (46.2) | 0.97 |
Colistin—no. (%) | 8 (25.0) | 33 (25.4) | 0.96 |
MDR pathogen | |||
VRE—no. (%) | 3 (9.4) | 11 (8.5) | 0.87 |
CRE—no. (%) | 1 (3.1) | 9 (6.9) | 0.42 |
MRSA—no. (%) | 2 (6.3) | 5 (3.8) | 0.55 |
MDR Acinetobacter spp.—no. (%) | 0 (0.0) | 7 (5.4) | 0.18 |
MDR Pseudomonas aeruginosa—no. (%) | 1 (3.1) | 3 (2.3) | 0.79 |
ESBL—no. (%) | 6 (18.8) | 19 (14.6) | 0.56 |
Unadjusted OR | p-Value | Adjusted OR | p-Value | |
---|---|---|---|---|
qSOFA | 0.12 (0.05–0.29) | <0.001 | 0.108 (0.04–0.29) | <0.001 |
Length of stay in the hospital | – | 0.02 | 1.024 (1.00–1.05) | 0.008 |
Sites of C. auris Isolation (Total 58) * | Mortality—no. (%) | |||||
---|---|---|---|---|---|---|
(C. auris+/COV−) | (C. auris+/COV+) | Total | (C. auris+/COV−) | (C. auris+/COV−) | Total | |
Bloodstream | 5 | 3 | 8 (13.8) | 4 (80) | 2 (66.7) | 6 (75) |
DTA | 9 | 17 | 26 (44.8) | 4 (44.4) | 7 (41.2) | 11 (42.3) |
Urine | 10 | 10 | 20 (34.7) | 5 (50) | 6 (60) | 11 (55) |
Wound | 1 | 3 | 4 (6.8) | 0 (0) | 2 (66.7) | 2 (50) |
Alive (n = 28) | Death (n = 28) | p-Value | |
---|---|---|---|
Patients’ Characteristics | |||
Male—no. (%) | 15 (53.6) | 14 (50.6) | 0.79 |
Age—mean (sd) | 66.14 (13.7) | 72.54 (14.6) | 0.10 |
qSOFA score—mean (sd) | 1.46 (0.8) | 1.75 (0.8) | 0.18 |
Charlson score—mean (sd) | 4.64 (2.7) | 5.68 (2.4) | 0.13 |
Candida score—mean (sd) | 1.54 (1.3) | 2.4 (0.9) | 0.01 * |
Comorbidities and Risk Factors | |||
Diabetes mellitus—no. (%) | 9 (32.1) | 12 (42.9) | 0.41 |
Chronic kidney disease—no. (%) | 2 (7.1) | 6 (21.4) | 0.13 |
Chronic lung disease—no. (%) | 6 (21.4) | 6 (21.4) | 1.00 |
Active hematological malignancy—no. (%) | 3 (10.7) | 3 (10.7) | 1.00 |
Active solid malignancy—no. (%) | 6 (21.4) | 6 (21.4) | 1.00 |
Chemotherapy within 30 days—no. (%) | 1 (3.6) | 4 (14.3) | 0.16 |
Active immunosuppressive therapy—no. (%) | 1 (3.6) | 4 (14.3) | 0.16 |
Previous surgery within 30 days—no. (%) | 8 (28.6) | 10 (35.7) | 0.57 |
Central venous catheter—no. (%) | 26 (92.9) | 24 (85.7) | 0.39 |
Urinary catheter—no. (%) | 28 (100.0) | 28 (100.0) | - |
Mechanic ventilation—no. (%) | 21 (75.0) | 22 (78.6) | 0.75 |
BIPAP—no. (%) | 11 (39.3) | 15 (53.6) | 0.28 |
High flow nasal cannula—no. (%) | 8 (28.6) | 3 (10.7) | 0.09 |
Non-invasive ventilation—no. (%) | 13 (46.4) | 15 (53.6) | 0.59 |
Nasogastric tube—no. (%) | 21 (75.0) | 26 (92.9) | 0.07 |
Parenteral nutrition—no. (%) | 5 (17.9) | 4 (14.3) | 0.72 |
Hemodialysis—no. (%) | 5 (17.9) | 9 (32.1) | 0.22 |
COVID-19 infection—no. (%) | 16 (57.1) | 16 (57.1) | 1.00 |
Treatment | |||
Antifungal therapy for more than 7 days after C. auris isolation—no. (%) | 19 (67.9) | 11 (39.3) | 0.03 * |
Prednisone—no. (%) | 18 (64.3) | 20 (71.4) | 0.57 |
Antibiotic use | |||
Antibiotic use—no. (%) | 28 (100.0) | 28 (100.0) | - |
Cephalosporin—no. (%) | 17 (60.7) | 17 (60.7) | 1.00 |
Quinolone—no. (%) | 13 (46.4) | 10 (35.7) | 0.42 |
Piperacillin-tazobactam—no. (%) | 21 (75.0) | 21 (75.0) | 1.00 |
Carbapenem—no. (%) | 23 (82.1) | 20 (71.4) | 0.34 |
Ceftazidime-avibactam—no. (%) | 14 (50.0) | 16 (57.1) | 0.59 |
Aminoglycoside—no. (%) | 15 (53.6) | 14 (50.0) | 0.79 |
Ceftolozane-tazobactam—no. (%) | 7 (25.0) | 2 (7.1) | 0.07 |
Glycopeptide—no. (%) | 18 (64.3) | 18 (64.3) | 1.00 |
Linezolid—no. (%) | 5 (17.9) | 5 (17.9) | 1.00 |
Tigecycline—no. (%) | 5 (17.9) | 16 (57.1) | 0.01 * |
Colistin—no. (%) | 10 (35.7) | 6 (21.4) | 0.24 |
Isolation of MDR pathogen | |||
VRE—no. (%) | 3 (10.7) | 3 (10.7) | 1.00 |
CRE—no. (%) | 3 (10.7) | 2 (7.1) | 0.64 |
MRSA—no. (%) | 0 (0.0) | 2 (7.1) | 0.15 |
MDR Acinetobacter spp.—no. (%) | 0 (0.0) | 0 (0.0) | – |
MDR Pseudomonas aeruginosa—no. (%) | 0 (0.0) | 1 (3.6) | 0.31 |
ESBL Enterobacterales—no. (%) | 8 (28.6) | 9 (32.1) | 0.77 |
Patients’ outcome | |||
Septic shock—no. (%) | 10 (35.7) | 27 (96.4) | <0.001 * |
Microbiologic eradication—no. (%) | 7 (26.9) | 5 (19.2) | 0.74 |
Length of stay in the hospital in days—mean (sd) | 72.6 (57.1) | 43.7 (19.3) | 0.02 * |
Antifungal Agent | Susceptibility Findings | |||||
---|---|---|---|---|---|---|
MIC50 | MIC90 | MIC Range | %S | %I | %R | |
Fluconazole | 32 | ≥32 | 16–≥32 | 0 | 0 | 0 |
Voriconazole | 0.25 | 0.25 | 0.12 to 4 | 36 | 61 | 3 |
Caspofungin | 0.25 | 0.25 | 0.25–0.25 | 100 | 0 | 0 |
Micafungin | 0.12 | 0.12 | 0.064–0.12 | 100 | 0 | 0 |
Amphotericin B | 8 | 8 | 2–16 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allaw, F.; Haddad, S.F.; Habib, N.; Moukarzel, P.; Naji, N.S.; Kanafani, Z.A.; Ibrahim, A.; Zahreddine, N.K.; Spernovasilis, N.; Poulakou, G.; et al. COVID-19 and C. auris: A Case-Control Study from a Tertiary Care Center in Lebanon. Microorganisms 2022, 10, 1011. https://doi.org/10.3390/microorganisms10051011
Allaw F, Haddad SF, Habib N, Moukarzel P, Naji NS, Kanafani ZA, Ibrahim A, Zahreddine NK, Spernovasilis N, Poulakou G, et al. COVID-19 and C. auris: A Case-Control Study from a Tertiary Care Center in Lebanon. Microorganisms. 2022; 10(5):1011. https://doi.org/10.3390/microorganisms10051011
Chicago/Turabian StyleAllaw, Fatima, Sara F. Haddad, Nabih Habib, Pamela Moukarzel, Nour Sabiha Naji, Zeina A. Kanafani, Ahmad Ibrahim, Nada Kara Zahreddine, Nikolaos Spernovasilis, Garyphallia Poulakou, and et al. 2022. "COVID-19 and C. auris: A Case-Control Study from a Tertiary Care Center in Lebanon" Microorganisms 10, no. 5: 1011. https://doi.org/10.3390/microorganisms10051011
APA StyleAllaw, F., Haddad, S. F., Habib, N., Moukarzel, P., Naji, N. S., Kanafani, Z. A., Ibrahim, A., Zahreddine, N. K., Spernovasilis, N., Poulakou, G., & Kanj, S. S. (2022). COVID-19 and C. auris: A Case-Control Study from a Tertiary Care Center in Lebanon. Microorganisms, 10(5), 1011. https://doi.org/10.3390/microorganisms10051011