Antibiotic Resistance in Campylobacter spp. Isolated from Broiler Chicken Meat and Human Patients in Estonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Campylobacter Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Whole-Genome Sequencing and Analysis of Resistant Genes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snelling, W.J.; Matsuda, M.; Moore, J.E.; Dooley, J.S.G. Campylobacter jejuni. Lett. Appl. Microbiol. 2005, 41, 297–302. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority, European Centre for Disease Prevention and Control. The European union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, e07209. [Google Scholar] [CrossRef]
- Mäesaar, M.; Tedersoo, T.; Meremäe, K.; Roasto, M. The Source Attribution Analysis Revealed the Prevalent Role of Poultry Over Cattle and Wild Birds in Human Campylobacteriosis Cases in the Baltic States. PLoS ONE 2020, 15, e0235841. [Google Scholar] [CrossRef] [PubMed]
- Di Giannatale, E.; Di Serafino, G.; Zilli, K.; Alessiani, A.; Sacchini, L.; Garofolo, G.; Aprea, G.; Marotta, F. Characterization of antimicrobial resistance patterns and detection of virulence genes in Campylobacter isolates in Italy. Sensors 2014, 14, 3308–3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECDC; EFSA; EMA. ECDC/EFSA/EMA Second Joint Report on the Integrated Analysis of the Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Human and Food-producing Animals (JIACRA Report). EFSA J. 2017, 15, 4872. [Google Scholar]
- Stella, S.; Soncini, G.; Ziino, G.; Panebianco, A.; Pedonese, F.; Nuvoloni, R.; Di Giannatale, E.; Colavita, G.; Alberghini, L.; Giaccone, V. Prevalence and quantification of thermophilic Campylobacter spp. in Italian retail poultry meat: Analysis of influencing factors. Food Microbiol. 2017, 62, 232–238. [Google Scholar] [CrossRef]
- World Health Organization. Campylobacter Fact Sheet; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter (accessed on 22 March 2021).
- Walling, A.; Dickson, G. Guillain-Barré syndrome. Am. Fam. Physician 2013, 87, 191–197. [Google Scholar]
- Alfredson, D.A.; Korolik, V. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol. Lett. 2007, 1, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Blaser, M.J.; Engberg, J. Clinical aspects of Campylobacter jejuni and Campylobacter coli infections. Campylobacter 2008, 3, 97–121. [Google Scholar]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef]
- Geissler, A.L.; Bustos Carrillo, F.; Swanson, K.; Patrick, M.E.; Fullerton, K.E.; Bennett, C.; Barrett, K.; Mahon, B.E. Increasing Campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004–2012. Clin. Infect. Dis. 2017, 65, 1624–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic resistance in Campylobacter: Emergence, transmission and persistence. Future Med. 2009, 4, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.E.; Barton, M.D.; Blair, I.S.; Corcoran, D.; Dooley, J.S.; Fanning, S.; Kempf, I.; Lastovica, A.J.; Lowery, C.J.; Matsuda, M.; et al. The epidemiology of antibiotic resistance in Campylobacter. Microbes Infect. 2006, 8, 1955–1966. [Google Scholar] [CrossRef]
- Du, Y.; Wang, C.; Ye, Y.; Liu, Y.; Wang, A.; Li, Y.; Zhou, X.; Pan, H.; Zhang, J.; Xu, X. Molecular identification of multidrug-resistant Campylobacter species from diarrheal patients and poultry meat in Shanghai, China. Front. Microbiol. 2018, 9, 1642. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority, European Centre for Disease Prevention and Control. The European union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018, 16, e5182. [Google Scholar] [CrossRef]
- Isenbarger, D.W.; Hoge, C.W.; Srijan, A.; Pitarangsi, C.; Vithayasai, N.; Bodhidatta, L.; Hickey, K.W.; Cam, P.D. Comparative antibiotic resistance of diarrheal pathogens from Vietnam and Thailand, 1996–1999. Emerg. Infect. Dis. 2002, 8, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Nachamkin, I.; Ung, H.; Li, M. Increasing Fluoroquinolone Resistance in Campylobacter jejuni, Pennsylvania, USA, 1982–20011. Emerg. Infect. Dis. 2002, 8, 1501. [Google Scholar] [CrossRef]
- Shakir, Z.M.; Alhatami, A.O.; Ismail Khudhair, Y.; Muhsen Abdulwahab, H. Antibiotic Resistance Profile and Multiple Antibiotic Resistance Index of Campylobacter Species Isolated from Poultry. Arch. Razi Inst. 2021, 76, 1677–1686. [Google Scholar]
- Collignon, P.C.; Conly, J.M.; Andremont, A.; McEwen, S.A.; Aidara-Kane, A.; Agerso, Y.; Andremont, A.; Collignon, P.; Conly, J.; Dang Ninh, T.; et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin. Infect. Dis. 2016, 63, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- Kovalenko, K.; Roasto, M.; Liepinš, E.; Mäesaar, M.; Hörman, A. High occurrence of Campylobacter spp. in Latvian broiler chicken production. Food Control 2013, 29, 188–191. [Google Scholar] [CrossRef]
- Mäesaar, M.; Praakle, K.; Meremäe, K.; Kramarenko, T.; Sõgel, J.; Viltrop, A.; Muutra, K.; Kovalenko, K.; Matt, D.; Hörman, A.; et al. Prevalence and counts of Campylobacter spp. in poultry meat at retail level in Estonia. Food Control 2014, 44, 72–77. [Google Scholar] [CrossRef]
- Aksomaitiene, J.; Ramonaite, S.; Tamuleviciene, E.; Novoslavskij, A.; Alter, T.; Malakauskas, M. Overlap of antibiotic resistant Campylobacter jejuni MLST genotypes isolated from humans, broiler products, dairy cattle and wild birds in Lithuania. Front. Microbiol. 2019, 10, 1377. [Google Scholar] [CrossRef] [PubMed]
- Meistere, I.; Ķibilds, J.; Eglīte, L.; Alksne, L.; Avsejenko, J.; Cibrovska, A.; Makarova, S.; Streikiša, M.; Grantiņa-Ieviņa, L.; Bērziņš, A. Campylobacter species prevalence, characterisation of antimicrobial resistance and analysis of whole-genome sequence of isolates from livestock and humans, Latvia, 2008 to 2016. Eurosurveillance 2019, 24, 1800357. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, T.; Roasto, M.; Mäesaar, M.; Kisand, V.; Ivanova, M.; Meremäe, K. The Prevalence, Counts and MLST Genotypes of Campylobacter in Poultry Meat and Genomic Comparison with Clinical Isolates. Poult. Sci. 2022, 101, 101703. [Google Scholar] [CrossRef] [PubMed]
- ISO. Microbiology of the Food Chain—Horizontal Method for Detection and Enumeration of Campylobacter spp.—Part 1: Detection Method; International Organization for Standardization: Geneva, Switzerland, 2017; pp. 10272–10281. [Google Scholar]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 16, 12728. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Off. J. Eur. Union. 2003, 268, 29–43. [Google Scholar]
- Elhadidy, M.; Miller, W.G.; Arguello, H.; Álvarez-Ordóñez, A.; Duarte, A.; Dierick, K.; Botteldoorn, N. Genetic basis and clonal population structure of antibiotic resistance in Campylobacter jejuni isolated from broiler carcasses in Belgium. Front. Microbiol. 2018, 9, 1014. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, K.; Cawthraw, S.A.; Cooles, S.W.; Coldham, N.G.; La Ragione, R.M.; Newell, D.G.; Ridley, A.M. Selecting for development of fluoroquinolone resistance in a Campylobacter jejuni strain 81116 in chickens using various enrofloxacin treatment protocols. J. Appl. Microbiol. 2010, 109, 1132–1138. [Google Scholar] [CrossRef]
- DANMAP 2020. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. 2021. ISBN 978-87-93565-81-4. Available online: https://www.danmap.org/-/media/sites/danmap/downloads/reports/2020/summary_danmap_2020_17112021_version-4_low.pdf (accessed on 22 March 2021).
- Björkman, I.; Röing, M.; Sternberg Lewerin, S.; Stålsby Lundborg, C.; Eriksen, J. Animal Production with Restrictive Use of Antibiotics to Contain Antimicrobial Resistance in Sweden—A Qualitative Study. Front. Vet. Sci. 2021, 15, 1197. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agecy. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017. Eur. Med. Agecy. 2020. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2017_en.pdf (accessed on 22 March 2021).
- Swedres-Svarm. In Sales of Antibiotics and Occurrence of Resistance in Sweden; Public Health Agency Sweden National Veterinary Institute: Uppsala, Sweden, 2019; ISSN 1650-6332.
- Finnish Food Authority. FINRES-Vet 2020. Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents; Finnish Food Authority: Helsinki, Finland, 2021; ISBN 978-952-358-029-9.
- NORM/NORM-VET 2020. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway; Norway Veterinary Institute: Oslo, Norway, 2021; ISSN 1502-2307. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016; Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed on 22 March 2021).
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, e06490. [Google Scholar]
- Ju, C.Y.; Zhang, M.J.; Ping, Y.; Lu, J.R.; Yu, M.H.; Hui, C.H.E.N.; Liu, C.Y.; Gu, Y.X.; Fu, Y.Y.; Duan, Y.X. Genetic and antibiotic resistance characteristics of Campylobacter jejuni isolated from diarrheal patients, poultry and cattle in Shenzhen. Biomed. Environ. Sci. 2018, 31, 579–585. [Google Scholar] [PubMed]
- Lynch, C.T.; Lynch, H.; Egan, J.; Whyte, P.; Bolton, D.; Coffey, A.; Lucey, B. Antimicrobial resistance of Campylobacter isolates recovered from broilers in the Republic of Ireland in 2017 and 2018: An update. Br. Poult. Sci. 2020, 61, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sanchez, L.; Melero, B.; Diez, A.M.; Jaime, I.; Rovira, J. Characterization of Campylobacter species in Spanish retail from different fresh chicken products and their antimicrobial resistance. Food Microbiol. 2018, 76, 457–465. [Google Scholar] [CrossRef]
- Torralbo, A.; Borge, C.; García-Bocanegra, I.; Méric, G.; Perea, A.; Carbonero, A. Higher resistance of Campylobacter coli compared to Campylobacter jejuni at chicken slaughterhouse. Comp. Immunol. Microbiol. Infect. Dis. 2015, 39, 47–52. [Google Scholar] [CrossRef]
- Mäesaar, M.; Kramarenko, T.; Meremäe, K.; Sõgel, J.; Lillenberg, M.; Häkkinen, L.; Ivanova, M.; Kovalenko, K.; Hörman, A.; Hänninen, M.L.; et al. Antimicrobial resistance profiles of Campylobacter spp. isolated from broiler chicken meat of Estonian, Latvian and Lithuanian origin at Estonian retail level and from patients with severe enteric infections in Estonia. Zoonoses Public Health. 2016, 63, 89–96. [Google Scholar] [CrossRef]
- Endtz, H.P.; Ruijs, G.J.; van Klingeren, B.; Jansen, W.H.; van der Reyden, T.; Mouton, R.P. Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother. 1991, 27, 199–208. [Google Scholar] [CrossRef]
- Kovaļenko, K.; Roasto, M.; Šantare, S.; Bērziņš, A.; Hörman, A. Campylobacter species and their antimicrobial resistance in Latvian broiler chicken production. Food Control 2014, 46, 86–90. [Google Scholar] [CrossRef]
- Gaudreau, C.; Michaud, S. Cluster of erythromycin-and ciprofloxacin-resistant Campylobacter jejuni subsp. jejuni from 1999 to 2001 in men who have sex with men, Quebec, Canada. Clin. Infect. Dis. 2003, 37, 131–136. [Google Scholar]
- Gupta, A.; Nelson, J.M.; Barrett, T.J.; Tauxe, R.V.; Rossiter, S.P.; Friedman, C.R.; Joyce, K.W.; Smith, K.E.; Jones, T.F.; Hawkins, M.A.; et al. Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg. Infect. Dis. 2004, 10, 1102. [Google Scholar] [CrossRef] [PubMed]
- Ocejo, M.; Oporto, B.; Lavín, J.L.; Hurtado, A. Whole genome-based characterisation of antimicrobial resistance and genetic diversity in Campylobacter jejuni and Campylobacter coli from ruminants. Sci. Rep. 2021, 11, 8998. [Google Scholar] [CrossRef] [PubMed]
- Guernier-Cambert, V.; Trachsel, J.; Maki, J.; Qi, J.; Sylte, M.J.; Hanafy, Z.; Kathariou, S.; Looft, T. Natural Horizontal Gene Transfer of Antimicrobial Resistance Genes in Campylobacter spp. From Turkeys and Swine. Front. Microbiol. 2021, 12, 732969. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Díaz, J.F.; González del Río, P.; Álvarez-Ordóñez, A. Whole Resistome Analysis in Campylobacter jejuni and C. coli Genomes Available in Public Repositories. Front. Microbiol. 2021, 1155. [Google Scholar] [CrossRef]
- Fabre, A.; Oleastro, M.; Nunes, A.; Santos, A.; Sifré, E.; Ducournau, A.; Bénéjat, L.; Buissonnière, A.; Floch, P.; Mégraud, F.; et al. Whole-genome sequence analysis of multidrug-resistant Campylobacter isolates: A focus on aminoglycoside resistance determinants. J. Clin. Microbiol. 2018, 56, e00390-18. [Google Scholar] [CrossRef] [Green Version]
- Fiedoruk, K.; Daniluk, T.; Rozkiewicz, D.; Oldak, E.; Prasad, S.; Swiecicka, I. Whole-genome comparative analysis of Campylobacter jejuni strains isolated from patients with diarrhea in northeastern Poland. Gut Pathogens. 2019, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zhang, W.; Lu, Q.; Wen, G.; Zhao, Z.; Luo, Q.; Shao, H.; Zhang, T. Point Deletion or Insertion in CmeR-Box, A2075G Substitution in 23S rRNA, and Presence of erm (B) Are Key Factors of Erythromycin Resistance in Campylobacter jejuni and Campylobacter coli Isolated from Central China. Front. Microbiol. 2020, 11, 203. [Google Scholar] [CrossRef] [Green Version]
- Mäesaar, M.; Roasto, M. Whole-genome multilocus sequence typing of closely related broiler chicken meat origin Campylobacter jejuni ST-5 isolates. Poult. Sci. 2019, 98, 1610–1614. [Google Scholar] [CrossRef]
Antibiotic | Resistant Campylobacter spp. Number of Isolates Depending on Origin/Total Isolates Tested (%) | |||
---|---|---|---|---|
Estonia | Latvia | Lithuania | Human | |
Nalidixic acid | 0/4 (0) | 16/16 (100) | 26/26 (100) | 13/15 (86.7) |
Ciprofloxacin | 0/4 (0) | 16/16 (100) | 26/26 (100) | 13/15 (86.7) |
Tetracycline | 0/4 (0) | 3/16 (18.8) | 20/26 (76.9) | 12/15 (80.0) |
Streptomycin | 0/4 (0) | 11/16 (68.8) | 11/26 (42.3) | 4/15 (26.7) |
Erythromycin | 0/4 (0) | 1/16 (6.3) | 3/26 (11.5) | 0/15 (0) |
Gentamicin | 0/4 (0) | 0/16 (0) | 0/26 (0) | 0/15 (0) |
Antibiotic Resistance Phenotype a,b | Campylobacter spp. Number of Strains (%) | |||
---|---|---|---|---|
Estonia (n = 4) | Latvia (n = 16) | Lithuania (n = 26) | Human (n = 15) | |
Cip/Nal/Tet/Str/Ery | - | - | 3 (11.5) | - |
Cip/Nal/Tet/Str | - | 2 (12.5) | 8 (30.8) | 4 (26.7) |
Cip/Nal/Tet | - | 1 (6.2) | 9 (34.6) | 8 (53.3) |
Cip/Nal/Str | - | 9 (56.3) | - | - |
Cip/Nal/Ery | - | 1 (6.2) | - | - |
Cip/Nal | - | 3 (18.8) | 6 (23.1) | 1 (6.7) |
Resistant to one or more antibiotics | 0 (0) | 16 (100) | 26 (100) | 13 (86.7) |
Susceptible to all antibiotics | 4 (100) | - | - | 2 (13.3) |
Multidrug resistant c | 0 (0) | 2 (12.5) | 10 (38.5) | 4 (26.7) |
Total number of tested isolates | 4 (100) | 16 (100) | 26 (100) | 15 (100) |
No. of Isolates | AA d | No. of Isolates with MIC Value (µg/mL) of a | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | ||
46 b | ERY | - | - | - | 40 | 2 | - | - | - | - | - | 4 (4) |
CIP | 4 | - | - | - | 1 | 3 | 17 | 21 (8) | - | - | - | |
TET | - | - | 23 | - | - | - | - | 1 | 2 | 20 (16) | - | |
GEN | 7 | 13 | 20 | 6 | - | - | - | - | - | - | - | |
NAL | - | - | - | - | 1 | - | - | - | 3 | 39 (23) | - | |
STR | - | - | 6 | 4 | 9 | 3 | - | 22 (20) | - | - | - | |
15 c | ERY | - | - | - | 15 | - | - | - | - | - | - | - |
CIP | 2 | - | - | - | - | 1 | 7 | 5 (2) | - | - | - | |
TET | - | - | 3 | - | - | - | - | - | 1 | 11 (6) | - | |
GEN | 2 | 2 | 7 | 3 | 1 | - | - | - | - | - | - | |
NAL | - | - | - | - | - | 1 | 1 | - | 1 | 12 (6) | - | |
STR | - | - | - | 2 | 5 | 4 | - | 4 (3) | - | - | - |
Antibiotic (Class) | Phenotype/Genotype (n/n) | Mechanism (n) | Pattern (n) a | Source (n) | Country (n: j/c) b |
---|---|---|---|---|---|
Streptomycin (Aminoglycosides) | 16/16 | aadE (5) c | CIP/NAL/TET/STR (5) | Chicken (5) | Lithuania (5: 4j/1c) |
aadE-Cc (3) | CIP/NAL/TET/STR/ERY (3) | Chicken (3) | Lithuania (3: 3c) | ||
aph(3’)-IIIa (8) | CIP/NAL/STR (5) | Chicken (5) | Latvia (5: 5j) | ||
CIP/NAL/TET/STR (3) | Chicken (2) | Latvia (1: 1j) | |||
Lithuania (1: 1j) | |||||
Human (1) | Estonia (1: 1j) | ||||
Erythromycin (Macrolides) d | 4/4 | 23S A2075G (4) | CIP/NAL/TET/STR/ERY (3) | Chicken (3) | Lithuania (3: 3c) |
CIP/NAL/ERY (1) | Chicken (1) | Latvia (1: 1c) | |||
Ciprofloxacin/ Nalidixic acid (Quinolones) | 35/35 | gyrA T86I (35) | CIP/NAL/TET (12) | Chicken (8) | Lithuania (7: 6j/1c) |
Latvia (1: 1j) | |||||
Human (4) | Estonia (4: 3j/1c) | ||||
CIP/NAL/TET/STR (8) | Chicken (7) | Lithuania (6: 5j/1c) | |||
Latvia (1: 1j) | |||||
Human (1) | Estonia (1: 1j) | ||||
CIP/NAL (6) | Chicken (5) | Lithuania (4: 4j) | |||
Latvia (1: 1c) | |||||
Human (1) | Estonia (1: 1j) | ||||
CIP/NAL/STR (5) | Chicken (5) | Latvia (5: 5j) | |||
CIP/NAL/TET/STR/ERY (3) | Chicken (3) | Lithuania (3: 3c) | |||
CIP/NAL/ERY (1) | Chicken (1) | Latvia (1: 1c) | |||
Tetracycline (Tetracyclines) | 23/23 | tetO (23) | CIP/NAL/TET (12) | Chicken (8) | Lithuania (7: 6j/1c) |
Latvia (1: 1j) | |||||
Human (4) | Estonian (4: 3j/1c) | ||||
CIP/NAL/TET/STR (8) | Chicken (7) | Lithuania (6: 5j/1c) | |||
Latvia (1: 1j) | |||||
Human (1) | Estonia (1: 1j) | ||||
CIP/NAL/TET/STR/ERY (3) | Chicken (3) | Lithuania (3: 3j) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedersoo, T.; Roasto, M.; Mäesaar, M.; Häkkinen, L.; Kisand, V.; Ivanova, M.; Valli, M.H.; Meremäe, K. Antibiotic Resistance in Campylobacter spp. Isolated from Broiler Chicken Meat and Human Patients in Estonia. Microorganisms 2022, 10, 1067. https://doi.org/10.3390/microorganisms10051067
Tedersoo T, Roasto M, Mäesaar M, Häkkinen L, Kisand V, Ivanova M, Valli MH, Meremäe K. Antibiotic Resistance in Campylobacter spp. Isolated from Broiler Chicken Meat and Human Patients in Estonia. Microorganisms. 2022; 10(5):1067. https://doi.org/10.3390/microorganisms10051067
Chicago/Turabian StyleTedersoo, Triin, Mati Roasto, Mihkel Mäesaar, Liidia Häkkinen, Veljo Kisand, Marina Ivanova, Marikki Heidi Valli, and Kadrin Meremäe. 2022. "Antibiotic Resistance in Campylobacter spp. Isolated from Broiler Chicken Meat and Human Patients in Estonia" Microorganisms 10, no. 5: 1067. https://doi.org/10.3390/microorganisms10051067
APA StyleTedersoo, T., Roasto, M., Mäesaar, M., Häkkinen, L., Kisand, V., Ivanova, M., Valli, M. H., & Meremäe, K. (2022). Antibiotic Resistance in Campylobacter spp. Isolated from Broiler Chicken Meat and Human Patients in Estonia. Microorganisms, 10(5), 1067. https://doi.org/10.3390/microorganisms10051067