Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrolate
2.2. Head Space GC-MS Analysis
2.3. Bacterial Strain
2.4. Exposure of L. monocytogenes Cells to Sublethal CHY Concentrations and Phenotype Microarray Determination
2.5. Data Analysis
2.6. Confocal Laser Scanning Microscopy (CLSM)
2.7. Cell Surface Hydrophobicity (%CSH) Assay
3. Results
3.1. Head Space GC-MS Analysis
3.2. Effect of C. capitatus HY Treatment on L. monocytogenes Growth in Presence of Different Substrates
3.3. Effect of C. capitatus HY Treatment on L. monocytogenes Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA. The European union one health 2020 zoonoses report. EFSA J. 2021, 19, 6971. [Google Scholar] [CrossRef]
- Rossi, C.; Maggio, F.; Chaves-López, C.; Valbonetti, L.; Berrettoni, M.; Paparella, A.; Serio, A. Effectiveness of selected essential oils and one hydrolate to prevent and remove Listeria monocytogenes biofilms on polystyrene and stainless steel food-contact surfaces. J. Appl. Microbiol. 2021, 132, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Conficoni, D.; Losasso, C.; Cortini, E.; Di Cesare, A.; Cibin, V.; Giaccone, V.; Corno, G.; Ricci, A. Resistance to Biocides in Listeria monocytogenes Collected in Meat-Processing Environments. Front. Microbiol. 2016, 7, 1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, B.; Daeschel, M. Food Biopreservatives of Microbial Origin, 1st ed.; CRC Press: Boca Raton, FL, USA, 1992; p. 19. [Google Scholar]
- D’Amato, S.; Serio, A.; Chaves-López, C.; Paparella, A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Rossi, C.; Chaves-López, C.; Serio, A.; Casaccia, M.; Maggio, F.; Paparella, A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit. Rev. Food Sci. Nutr. 2020, 30, 2172–2191. [Google Scholar] [CrossRef]
- Lautieri, C.; Maggio, F.; Serio, A.; Festino, A.R.; Paparella, A.; Vergara, A. Overcoming multidrug resistance in Salmonella spp. isolates obtained from the swine food chain by using essential oils: An In Vitro study. Front. Microbiol. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M. Introduction to the Special Issue: Application of Essential Oils in Food Systems. Foods 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Di Vito, M.; Bellardi, M.G.; Colaizzi, P.; Ruggiero, D.; Mazzuca, C.; Micheli, L.; Sotgiu, S.; Iannuccelli, S.; Michelozzi, M.; Mondello, F.; et al. Hydrolates and gellan: An eco-innovative synergy for safe cleaning of paper artworks. Stud. Conserv. 2018, 63, 13–23. [Google Scholar] [CrossRef]
- Maggio, F.; Rossi, C.; Chaves-López, C.; Valbonetti, L.; Desideri, G.; Paparella, A.; Serio, A. A single exposure to a sublethal concentration of Origanum vulgare essential oil initiates response against food stressors and restoration of antibiotic susceptibility in Listeria monocytogenes. Food Control 2022, 132, 108562. [Google Scholar] [CrossRef]
- Paparella, A.; Mazzarrino, G.; Chaves-López, C.; Rossi, C.; Sacchetti, G.; Guerrieri, O.; Serio, A. Chitosan boosts the antimicrobial activity of Origanum vulgare essential oil in modified atmosphere packaged pork. Food Microbiol. 2016, 59, 23–31. [Google Scholar] [CrossRef]
- Chaiboonchoe, A.; Dohai, B.S.; Cai, H.; Nelson, D.R.; Jijakli, K.; Salehi-Ashtiani, K. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling. Front. Bioeng. Biotechnol. 2014, 2, 68. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Ruan, X.; Deng, X.; Tan, M.; Yu, C.; Zhang, M.; Sun, Y.; Jiang, N. In vitro antibiofilm activity of resveratrol against avian pathogenic Escherichia coli. BMC Vet. Res. 2021, 17, 249. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Chaves-López, C.; Serio, A.; Anniballi, F.; Valbonetti, L.; Paparella, A. Effect of Origanum vulgare essential oil on biofilm formation and motility capacity of Pseudomonas fluorescens strains isolated from discoloured Mozzarella cheese. J. Appl. Microbiol. 2018, 124, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Popovici, J.; White, C.P.; Hoelle, J.; Kinkle, B.K.; Lytle, D.A. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements. Colloids Surf. B 2014, 118, 126–132. [Google Scholar] [CrossRef]
- Hoefel, D.; Grooby, W.L.; Monis, P.T.; Andrews, S.; Saint, C.P. A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity. J. Microbiol. Methods 2003, 52, 379–388. [Google Scholar] [CrossRef]
- Crowley, L.C.; Scott, A.P.; Marfell, B.J.; Boughaba, J.A.; Chojnowski, G.; Waterhouse, N.J. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb. Protoc. 2016, 2016, pdb-prot087163. [Google Scholar] [CrossRef]
- Bertrand, R.L. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 2019, 201, 697–718. [Google Scholar] [CrossRef]
- Hamill, P.G.; Stevenson, A.; McMullan, P.E.; Williams, J.P.; Lewis, A.D.R.; Sudharsan, S.; Stevenson, K.E.; Farnsworth, K.D.; Khroustalyova, G.; Takemoto, J.Y.; et al. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci. Rep. 2020, 10, 5948. [Google Scholar] [CrossRef]
- Erol, Z.; Tasci, F. Overview of Listeria monocytogenes as a foodborne pathogen: Traditional review. Turkiyw Klinikleri J. Vet. Sci. 2021, 12, 37–48. [Google Scholar] [CrossRef]
- Pellegrini, M.; Rossi, C.; Palmieri, S.; Maggio, F.; Chaves-López, C.; Lo Sterzo, C.; Paparella, A.; De Medici, D.; Ricci, A.; Serio, A. Salmonella enterica control in stick carrots trough incorporation of coriander seeds essential oil in sustainable washing treatments. Front. Sustain. Food Syst. 2020, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bergholz, T.M.; Shah, M.K.; Burall, L.S.; Rakic-Martinez, M.; Datta, A.R. Genomic and phenotypic diversity of Listeria monocytogenes clonal complexes associated with human listeriosis. Appl. Microbiol. Biotechnol. 2018, 102, 3475–3485. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, B.; Cabanes, D.; Zhang, W.; Cossart, P. Listeria monocytogenes. In Food Microbiology: Fundamentals and Frontiers, 3rd ed.; Doyle, M.P., Beuchat, L.R., Eds.; ASM Press: Washington, DC, USA, 2007; Volume 1, pp. 503–546. [Google Scholar]
- Zhou, L.; Liao, T.; Liu, W.; Zou, L.; Liu, C.; Terefe, N.S. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit. Rev. Food Sci. Nutr. 2020, 60, 3594–3621. [Google Scholar] [CrossRef] [PubMed]
- Kimkes, T.E.P.; Heinemann, M. How bacteria recognize and respond to surface contact. FEMS Microbiol. Rev. 2020, 44, 106–122. [Google Scholar] [CrossRef]
- Arfa, A.B.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Qun, L.; Ailing, G.; Ling, L.; Lihong, G.; Wukang, L.; Xinshuai, Z.; Yao, R. Transcriptome analysis of suspended aggregates formed by Listeria monocytogenes co-cultured with Ralstonia insidiosa. Food Control 2021, 130, 108237. [Google Scholar] [CrossRef]
- Wang, Y.; Baptist, J.A.; Dykes, G.A. Garcinia mangostana extract inhibits the attachment of chicken isolates of Listeria monocytogenes to cultured colorectal cells potentially due to a high proanthocyanidin content. J. Food Saf. 2021, 41, e12889. [Google Scholar] [CrossRef]
- Paul, S.; Chaudhuri, K.; Chatterjee, A.N.; Das, J. Presence of exposed phospholipidsin the outer membrane of Vibrio cholerae. J. Gen. Microbiol. 1992, 138, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Liu, X.; Nakamoto, S.T.; Wall, M.; Li, Y. Antimicrobial Activity of Ohelo Berry (Vaccinium calycinum) Juice against Listeria monocytogenes and Its Potential for Milk Preservation. Microorganisms 2022, 10, 548. [Google Scholar] [CrossRef]
N° | Component | MW | MF | LRIm | LRIt | m/z | C. c. (Peak Area %) |
---|---|---|---|---|---|---|---|
1 | β-pinene | 136.2340 | C10H16 | 972 | 969 | 93, 41, 69, 136 | 0.1 ± 0.02 |
2 | borneol | 154.2493 | C10H18O | 1151 | 1154 | 95, 110, 154 | 0.2 ± 0.02 |
3 | terpinen-4-ol | 154.2493 | C10H18O | 1178 | 1182 | 71, 111, 93, 154 | 0.4 ± 0.01 |
4 | α-terpineol | 154.2493 | C10H18O | 1180 | 1183 | 59, 93, 121, 136, 154 | 0.1 ± 0.00 |
5 | thymol | 150.2176 | C10H14O | 1290 | 1287 | 135, 150, 91 | 0.1 ± 0.00 |
6 | carvacrol | 150.2176 | C10H14O | 1310 | 1304 | 135, 150, 91 | 98.9 ± 0.04 |
Sum | 99.8 |
NaCl Concentration | CHY (µL mL−1) | Lag Phase (h) | Maximum Rate (Omnilog Unit/h) | Vf (Omnilog Unit) | R2 | SE | Model |
---|---|---|---|---|---|---|---|
1% | 0 (Ctrl) | 1.08 ± 0.16 | 50.22 ± 2.91 | 170.19 ± 1.56 | 0.996 | 4.24 | Complete |
1% | 250 | - | 25.43 ± 1.28 | 149.94 ± 1.93 | 0.990 | 50.4 | No lag |
1% | 300 | 5.37 ± 0.28 | 38.94 ± 3.68 | 169.75 ± 2.69 | 0.990 | 8.04 | Complete |
1% | 350 | 13.15 ± 0.18 | 58.37 ± 5.52 | 191.33 ± 2.43 | 0.993 | 7.53 | Complete |
1% | 400 | 14.88 ±0.13 | 39.87 ± 2.19 | 160.42 ± 0.66 | 0.996 | 4.15 | Complete |
1% | 500 | - | - | - | - | - | Unmodelable |
4% | 0 (Ctrl) | 1.60 ± 0.12 | 34.64 ± 1.04 | 168.28 ± 1.07 | 0.999 | 2.46 | Complete |
4% | 250 | - | 17.55 ± 0.68 | 143.01 ± 2.04 | 0.993 | 4.17 | No lag |
4% | 300 | 8.18 ± 0.23 | 34.14 ± 2.86 | 159.09 ± 3.39 | 0.991 | 60.87 | Complete |
4% | 350 | 17.63 ± 0.13 | 44.20 ± 2.45 | 185.64 ± 1.58 | 0.997 | 4.56 | Complete |
4% | 400 | 19.30 ± 0.22 | 34.20 ± 3.10 | 151.04 ± 2.09 | 0.991 | 60.74 | Complete |
4% | 500 | - | - | - | - | - | Unmodelable |
8% | 0 (Ctrl) | 2.03 ± 0.20 | 19.03 ± 0.59 | 161.92 ± 1.79 | 0.998 | 2.62 | Complete |
8% | 250 | - | 11.26 ± 0.39 | 151.58 ± 1.98 | 0.991 | 4.90 | No lag |
8% | 300 | 11.77 ± 0.77 | 11.62 ± 1.07 | - | 0.940 | 11.11 | No asymptote |
8% | 350 | 30.72 ± 0.47 | 16.25 ± 1.73 | 148.68 ± 1.77 | 0.980 | 8.17 | Complete |
8% | 400 | 33.46 ±0.20 | 16.50 ± 0.80 | 134.00 ± 0.92 | 0.995 | 3.55 | Complete |
8% | 500 | - | - | - | - | - | Unmodelable |
pH Value | CHY (µL mL−1) | Lag Phase (h) | Maximum Rate (Omnilog Unit/h) | Vf (Omnilog Unit) | R2 | SE | Model |
---|---|---|---|---|---|---|---|
6.0 | 0 (Ctrl) | 2.53 ± 0.08 | 105.08 ± 7.50 | 186.55 ± 1.46 | 0.997 | 4.60 | Complete |
6.0 | 250 | 1.09 ± 0.50 | 28.41 ± 2.88 | 168.79 ± 2.92 | 0.980 | 8.57 | Complete |
6.0 | 300 | 6.54 ± 0.23 | 62.51 ± 8.14 | 185.90 ± 4.84 | 0.987 | 9.31 | Complete |
6.0 | 350 | 13.36 ± 0.14 | 56.29 ± 3.79 | 220.15 ± 3.10 | 0.995 | 6.12 | Complete |
6.0 | 400 | 14.28 ± 0.19 | 46.67 ± 4.13 | 176.93 ± 3.31 | 0.991 | 6.60 | Complete |
6.0 | 500 | - | - | - | - | - | Unmodelable |
5.0 | 0 (Ctrl) | 4.78 ± 0.21 | 56.60 ± 6.56 | 160.06 ± 2.25 | 0.990 | 7.23 | Complete |
5.0 | 250 | 8.24 ± 0.29 | 44.58 ± 6.58 | 162.51 ± 3.32 | 0.983 | 9.08 | Complete |
5.0 | 300 | 17.16 ± 0.24 | 45.93 ± 5.84 | 161.80 ± 4.19 | 0.982 | 7.97 | Complete |
5.0 | 350 | 22.69 ± 0.18 | 81.56 ± 13.86 | 189.28 ± 4.12 | 0.981 | 8.76 | Complete |
5.0 | 400 | 35.45 ± 1.18 | 4.98 ± 0.48 | - | 0.876 | 9.71 | No asymptote |
5.0 | 500 | - | - | - | - | - | Unmodelable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buccioni, F.; Purgatorio, C.; Maggio, F.; Garzoli, S.; Rossi, C.; Valbonetti, L.; Paparella, A.; Serio, A. Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study. Microorganisms 2022, 10, 920. https://doi.org/10.3390/microorganisms10050920
Buccioni F, Purgatorio C, Maggio F, Garzoli S, Rossi C, Valbonetti L, Paparella A, Serio A. Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study. Microorganisms. 2022; 10(5):920. https://doi.org/10.3390/microorganisms10050920
Chicago/Turabian StyleBuccioni, Francesco, Chiara Purgatorio, Francesca Maggio, Stefania Garzoli, Chiara Rossi, Luca Valbonetti, Antonello Paparella, and Annalisa Serio. 2022. "Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study" Microorganisms 10, no. 5: 920. https://doi.org/10.3390/microorganisms10050920
APA StyleBuccioni, F., Purgatorio, C., Maggio, F., Garzoli, S., Rossi, C., Valbonetti, L., Paparella, A., & Serio, A. (2022). Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study. Microorganisms, 10(5), 920. https://doi.org/10.3390/microorganisms10050920