Occurrence and Identification of Yeasts in Production of White-Brined Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Enumeration and Isolation of Yeasts
2.3. Molecular Characterization of Yeast Isolates
2.3.1. Rep–PCR
2.3.2. 26S rRNA Gene Sequencing
2.3.3. Sequencing of the 5.8S rDNA-ITS Region
2.4. Phenotypic Tests
3. Results and Discussion
3.1. Yeast Viable Counts
3.2. Phylogenetic Characterization of Yeasts
3.3. Phylogenetic Characterization of Yeasts
3.4. Diversity of Yeasts in Cheese Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Geronikou, A.; Srimahaeak, T.; Rantsiou, K.; Triantafillidis, G.; Larsen, N.; Jespersen, L. Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Front. Microbiol. 2020, 11, 582778. [Google Scholar] [CrossRef] [PubMed]
- Salameh, C.; Banon, S.; Hosri, C.; Scher, J. An Overview of Recent Studies on the Main Traditional Fermented Milks and White Cheeses in the Mediterranean Region. Food Rev. Int. 2016, 32, 256–279. [Google Scholar] [CrossRef]
- Hayaloglu, A.A. Cheese Varieties Ripened Under Brine. In Cheese; Elsevier Ltd.: Malatya, Turkey, 2017; pp. 997–1040. [Google Scholar] [CrossRef]
- Šuranská, H.; Raspor, P.; Uroić, K.; Golić, N.; Kos, B.; Mihajlović, S.; Begović, J.; Šušković, J.; Topisirović, L.; Čadež, N. Characterisation of the Yeast and Mould Biota in Traditional White Pickled Cheeses by Culture-Dependent and Independent Molecular Techniques. Folia Microbiol. 2016, 61, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, M.R.; Fernández-Otero, C.; Rodríguez-Alonso, P.; Fernández-No, I.C.; Garabal, J.I.; Centeno, J.A. Characterization of Yeasts Isolated from Artisanal Short-Ripened Cows’ Cheeses Produced in Galicia (NW Spain). Food Microbiol. 2016, 53, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Buehler, A.J.; Evanowski, R.L.; Martin, N.H.; Boor, K.J.; Wiedmann, M. Internal Transcribed Spacer (ITS) Sequencing Reveals Considerable Fungal Diversity in Dairy Products. J. Dairy Sci. 2017, 100, 8814–8825. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.M.; Borelli, B.M.; Lara, C.A.; Soares, M.A.; Pataro, C.; Bodevan, E.C.; Rosa, C.A. The Influence of Seasons and Ripening Time on Yeast Communities of a Traditional Brazilian Cheese. Food Res. Int. 2015, 69, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Wyder, M.T.; Arias-Roth, E.; Jakob, E. Cheese Yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Tokak, S.; Kiliç, İ.H.; Yalçin, H.T.; Duran, T. Detection of Extracellular Lipases and Genotypic Identification from Yeast Causing Spoilage of Some Dairy Products Produced in Gaziantep. KSU J. Agric. Nat. 2019, 22, 207–212. [Google Scholar] [CrossRef]
- Banjara, N.; Suhr, M.J.; Hallen-Adams, H.E. Diversity of Yeast and Mold Species from a Variety of Cheese Types. Curr. Microbiol. 2015, 70, 792–800. [Google Scholar] [CrossRef]
- Gardini, F.; Tofalo, R.; Belletti, N.; Iucci, L.; Suzzi, G.; Torriani, S.; Guerzoni, M.E.; Lanciotti, R. Characterization of Yeasts Involved in the Ripening of Pecorino Crotonese Cheese. Food Microbiol. 2006, 23, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Brandl, H.; Fricker-Feer, C.; Ziegler, D.; Mandal, J.; Stephan, R.; Lehner, A. Distribution and Identification of Culturable Airborne Microorganisms in a Swiss Milk Processing Facility. J. Dairy Sci. 2014, 97, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Stobnicka-Kupiec, A.; Gołofit-Szymczak, M.; Górny, R. Microbial Contamination Level and Microbial Diversity of Occupational Environment in Commercial and Traditional Dairy Plants. Ann. Agric. Environ. Med. 2019, 26, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Beletsiotis, E.; Ghikas, D.; Kalantzi, K. Incorporation of Microbiological and Molecular Methods in HACCP Monitoring Scheme of Molds and Yeasts in a Greek Dairy Plant: A Case Study. Procedia Food Sci. 2011, 1, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, S.; Park, W.S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.H.; Oh, M.H.; Ham, J.S. Characterisation of Fungal Contamination Sources for Use in Quality Management of Cheese Production Farms in Korea. Asian-Australas. J. Anim. Sci. 2020, 33, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Masotti, F.; Vallone, L.; Ranzini, S.; Silvetti, T.; Morandi, S.; Brasca, M. Effectiveness of Air Disinfection by Ozonation or Hydrogen Peroxide Aerosolization in Dairy Environments. Food Control 2019, 97, 32–38. [Google Scholar] [CrossRef]
- Masotti, F.; Cattaneo, S.; Stuknytė, M.; De Noni, I. Airborne Contamination in the Food Industry: An Update on Monitoring and Disinfection Techniques of Air. Trends Food Sci. Technol. 2019, 90, 147–156. [Google Scholar] [CrossRef]
- Van Der Aa Kühle, A.; Jespersen, L. The Taxonomic Position of Saccharomyces Boulardii as Evaluated by Sequence Analysis of the D1/D2 Domain of 26S RDNA, the ITS1-5.8S RDNA-ITS2 Region and the Mitochondrial Cytochrome-c Oxidase II Gene. Syst. Appl. Microbiol. 2003, 26, 564–571. [Google Scholar] [CrossRef]
- Naumova, E.S.; Naumov, G.I.; Nikitina, T.N.; Sadykova, A.Z.; Kondratieva, V.I. Molecular Genetic and Physiological Differentiation of Kluyveromyces Lactis and Kluyveromyces Marxianus: Analysis of Strains from the All-Russian Collection of Microorganisms (VKM). Microbiology 2012, 81, 216–223. [Google Scholar] [CrossRef]
- Petersen, K.M.; Moller, P.L.; Jespersen, L. DNA Typing Methods for Differentiation of Debaryomyces Hansenii Strains and Other Yeasts Related to Surface Ripened Cheeses. Int. J. Food Microbiol. 2001, 69, 11–24. [Google Scholar] [CrossRef]
- Jespersen, L.; Nielsen, D.S.; Hønholt, S.; Jakobsen, M. Occurrence and Diversity of Yeasts Involved in Fermentation of West African Cocoa Beans. FEMS Yeast Res. 2005, 5, 441–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In The Yeasts: A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 87–110. [Google Scholar] [CrossRef]
- Pangallo, D.; Šaková, N.; Koreňová, J.; Puškárová, A.; Kraková, L.; Valík, L.; Kuchta, T. Microbial Diversity and Dynamics during the Production of May Bryndza Cheese. Int. J. Food Microbiol. 2014, 170, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Büchl, N.R.; Seiler, H. Yeasts and Molds: Yeasts in Milk and Dairy Products. Encyclopedia of Dairy Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 744–753. [Google Scholar] [CrossRef]
- Simon, X.; Duquenne, P. Assessment of Workers’ Exposure to Bioaerosols in a French Cheese Factory. Ann. Occup. Hyg. 2014, 58, 677–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salustiano, V.C.; Andrade, N.J.; Brandão, S.C.C.; Azeredo, R.M.C.; Lima, S.A.K. Microbiological Air Quality of Processing Areas in a Dairy Plant as Evaluated by the Sedimentation Technique and a One-Stage Air Sampler. Braz. J. Microbiol. 2003, 34, 255–259. [Google Scholar] [CrossRef]
- Luck, H.; Gavron, H. Quality Control in the Dairy Industry. In Dairy Microbiology—The Microbiology of Milk Products; Robinson, R.K., Ed.; Elsevier Applied Science: London, UK, 1990; pp. 345–392. [Google Scholar]
- Mostert, J.; Jooste, P. Quality Control in the Dairy Industry. In Dairy Microbiology Handbook—The Microbiology of Milk and Milk Products; Robinson, R.K., Ed.; John Wiley and Sons: New York, NY, USA, 2002; pp. 655–736. [Google Scholar]
- Sveum, W.H.; Moberg, L.J.; Rude, R.; Frank, J.F. Microbiological Monitoring of the Food Processing Environment in Compendium of Methods for the Microbiological Examination of Foods. In Compendium of Methods for the Microbiological Examination of Foods; Vanderzant, C., Splittstoeser, D.F., Eds.; APHA: Washington, DC, USA, 1992; pp. 51–75. [Google Scholar]
- Shale, K.; Lues, J.F.R. The Etiology of Bioaerosols in Food Environments. Food Rev. Int. 2007, 23, 73–90. [Google Scholar] [CrossRef]
- Lachance, M.A. Kluyveromyces van Der Walt. In The Yeasts: A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011; Volume 2, pp. 471–481. [Google Scholar] [CrossRef]
- Rantsiou, K.; Urso, R.; Dolci, P.; Comi, G.; Cocolin, L. Microflora of Feta Cheese from Four Greek Manufacturers. Int. J. Food Microbiol. 2008, 126, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Chipilev, N.; Daskalov, H.; Stoyanchev, T. Study on the Prevalence of Lipolytic Yeasts and Moulds in Raw Cow Milk and White Brined Cheese. Bulg. J. Vet. Med. 2016, 19, 117–126. [Google Scholar] [CrossRef]
- Togay, S.O.; Capece, A.; Siesto, G.; Aksu, H.; Altunatmaz, S.S.; Aksu, F.Y.; Romano, P.; Yuceer, Y.K. Molecular Characterization of Yeasts Isolated from Traditional Turkish Cheeses. Food Sci. Technol. 2020, 40, 871–876. [Google Scholar] [CrossRef]
- Lavoie, K.; Touchette, M.; St-Gelais, D.; Labrie, S. Characterization of the Fungal Microflora in Raw Milk and Specialty Cheeses of the Province of Quebec. Dairy Sci. Technol. 2012, 92, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.P.; Melo, C.N.; Genisheva, Z.; Schwan, R.F.; Duarte, W.F. Yeasts from Canastra Cheese Production Process: Isolation and Evaluation of Their Potential for Cheese Whey Fermentation. Food Res. Int. 2017, 91, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Haastrup, M.K.; Johansen, P.; Malskær, A.H.; Castro-Mejía, J.L.; Kot, W.; Krych, L.; Arneborg, N.; Jespersen, L. Cheese Brines from Danish Dairies Reveal a Complex Microbiota Comprising Several Halotolerant Bacteria and Yeasts. Int. J. Food Microbiol. 2018, 285, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Delavenne, E.; Mounier, J.; Asmani, K.; Jany, J.L.; Barbier, G.; Le Blay, G. Fungal Diversity in Cow, Goat and Ewe Milk. Int. J. Food Microbiol. 2011, 151, 247–251. [Google Scholar] [CrossRef] [PubMed]
- von Neubeck, M.; Baur, C.; Krewinkel, M.; Stoeckel, M.; Kranz, B.; Stressler, T.; Fischer, L.; Hinrichs, J.; Scherer, S.; Wenning, M. Biodiversity of Refrigerated Raw Milk Microbiota and Their Enzymatic Spoilage Potential. Int. J. Food Microbiol. 2015, 211, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.R.; Chow, N.; Forsberg, K.; Litvintseva, A.P.; Lockhart, S.R.; Welsh, R.; Vallabhaneni, S.; Chiller, T. On the Origins of a Species: What Might Explain the Rise of Candida Auris? J. Fungi 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Spivak, E.S.; Hanson, K.E. Candida auris: An Emerging Fungal Pathogen. J. Clin. Microbiol. 2018, 56, e01588-17. [Google Scholar] [CrossRef] [Green Version]
- Borelli, B.M.; Ferreira, E.G.; Lacerda, I.C.A.; Franco, G.R.; Rosa, C.A. Yeast Populations Associated with the Artisanal Cheese Produced in the Region of Serra Da Canastra, Brazil. World J. Microbiol. Biotechnol. 2006, 22, 1115–1119. [Google Scholar] [CrossRef]
- Trofa, D.; Gácser, A.; Nosanchuk, J.D. Candida Parapsilosis, an Emerging Fungal Pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. [Google Scholar] [CrossRef] [Green Version]
- Lima, G.B.L.; Rosa, C.A.; Johann, S.; De Lourdes Almeida Vieira, M.; De Cássia Oliveira Gomes, F. Yeasts Isolated from Tropical Fruit Ice Creams: Diversity, Antifungal Susceptibility and Adherence to Buccal Epithelial Cells. Braz. J. Food Technol. 2019, 22, e2018197. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Bae, J.H.; Ko, H.J.; Lee, S.H.; Sung, B.H.; Han, J.I.; Sohn, J.H. Low-PH Production of d-Lactic Acid Using Newly Isolated Acid Tolerant Yeast Pichia Kudriavzevii NG7. Biotechnol. Bioeng. 2018, 115, 2232–2242. [Google Scholar] [CrossRef]
- Johansen, P.G.; Owusu-Kwarteng, J.; Parkouda, C.; Padonou, S.W.; Jespersen, L. Occurrence and Importance of Yeasts in Indigenous Fermented Food and Beverages Produced in Sub-Saharan Africa. Front. Microbiol. 2019, 10, 1789. [Google Scholar] [CrossRef] [Green Version]
- Padilla, B.; Belloch, C.; López-Díez, J.J.; Flores, M.; Manzanares, P. Potential Impact of Dairy Yeasts on the Typical Flavour of Traditional Ewes’ and Goats’ Cheeses. Int. Dairy J. 2014, 35, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Vasdinyei, R.; Deák, T. Characterization of Yeast Isolates Originating from Hungarian Dairy Products Using Traditional and Molecular Identification Techniques. Int. J. Food Microbiol. 2003, 86, 123–130. [Google Scholar] [CrossRef]
- Bai, M.; Qing, M.; Guo, Z.; Zhang, Y.; Chen, X.; Bao, Q.; Zhang, H.; Sun, T.S. Occurrence and Dominance of Yeast Species in Naturally Fermented Milk from the Tibetan Plateau of China. Can. J. Microbiol. 2010, 56, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Liu, J.L.; Jiang, T.M.; Li, L.; Fang, G.Z.; Liu, Y.P.; Chen, L.J. Influence of Kluyveromyces Marxianus on Proteins, Peptides, and Amino Acids in Lactobacillus-Fermented Milk. Food Sci. Biotechnol. 2017, 26, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Sádecká, J.; Šaková, N.; Pangallo, D.; Koreňová, J.; Kolek, E.; Puškárová, A.; Bučková, M.; Valík, L.; Kuchta, T. Microbial Diversity and Volatile Odour-Active Compounds of Barrelled Ewes’ Cheese as an Intermediate Product That Determines the Quality of Winter Bryndza Cheese. LWT—Food Sci. Technol. 2016, 70, 237–244. [Google Scholar] [CrossRef]
- Gonçalves Dos Santos, M.T.P.; Benito, M.J.; de Guía Córdoba, M.; Alvarenga, N.; de Herrera, S.R.-M.S. Yeast Community in Traditional Portuguese Serpa Cheese by Culture-Dependent and -Independent DNA Approaches. Int. J. Food Microbiol. 2017, 262, 63–70. [Google Scholar] [CrossRef]
- Aponte, M.; Pepe, O.; Blaiotta, G. Short Communication: Identification and Technological Characterization of Yeast Strains Isolated from Samples of Water Buffalo Mozzarella Cheese. J. Dairy Sci. 2010, 93, 2358–2361. [Google Scholar] [CrossRef]
- Liu, X.Z.; Wang, Q.M.; Göker, M.; Groenewald, M.; Kachalkin, A.V.; Lumbsch, H.T.; Millanes, A.M.; Wedin, M.; Yurkov, A.M.; Boekhout, T.; et al. Towards an Integrated Phylogenetic Classification of the Tremellomycetes. Stud. Mycol. 2015, 81, 85–147. [Google Scholar] [CrossRef] [Green Version]
- Garnier, L.; Valence, F.; Pawtowski, A.; Auhustsinava-Galerne, L.; Frotté, N.; Baroncelli, R.; Deniel, F.; Coton, E.; Mounier, J. Diversity of Spoilage Fungi Associated with Various French Dairy Products. Int. J. Food Microbiol. 2017, 241, 191–197. [Google Scholar] [CrossRef]
- Prakash, A.; Randhawa, H.S.; Khan, Z.U.; Ahmad, S.; Hagen, F.; Meis, J.F.; Chowdhary, A. Environmental Distribution of Cryptococcus Species and Some Other Yeast-like Fungi in India. Mycoses 2018, 61, 305–313. [Google Scholar] [CrossRef]
- de Oliveira Brito, M.; de Souza Bessa, M.A.; de Paula Menezes, R.; de Brito Röder, D.V.D.; Penatti, M.P.A.; Pimenta, J.P.; de Aguiar, P.A.D.F.; Pedroso, R.D.S. Isolation of Cryptococcus Species from the External Environments of Hospital and Academic Areas. J. Infect. Dev. Ctries. 2019, 13, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Zajc, J.; Gostinčar, C.; Černoša, A.; Gunde-Cimerman, N. Stress-Tolerant Yeasts: Opportunistic Pathogenicity versus Biocontrol Potential. Genes 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kot, A.M.; Błażejak, S.; Kurcz, A.; Gientka, I.; Kieliszek, M. Rhodotorula Glutinis—Potential Source of Lipids, Carotenoids, and Enzymes for Use in Industries. Appl. Microbiol. Biotechnol. 2016, 100, 6103–6117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Ghoshal, G. Optimization of Carotenoids Production by Rhodotorula Mucilaginosa (MTCC-1403) Using Agro-Industrial Waste in Bioreactor: A Statistical Approach. Biotechnol. Rep. 2020, 25, e00407. [Google Scholar] [CrossRef] [PubMed]
Production Line | Sample ID a | Trial | Sample Description | Log (CFU/g or CFU/mL) b |
---|---|---|---|---|
Cheese vats (A) | A1 | T1 | Pasteurized milk before adding cultures | <2 |
A2 | T1 | Cheese curd before pumping from the cheese vat into the mold | <2 | |
Mechanical tunnel (B) | B1 | T1 | Cheese curd before drained off onto conveyor belt | <2 |
B2 | T1 | Curd fines from saver | <2 | |
B3 | T1 | Cheese curd in molds | <2 | |
B4 | T1, T2 | Old cheese curd under the turning machine of molds | 5.44 ± 1.07 | |
B7a | T2 | Whey after pumping (Fresh) | <1 | |
B7b | T2 | Whey after pumping (Recirculated) | 1.48 ± 0.01 | |
B8a | T2 | Whey after pumping (Fresh) c | <1 | |
B8b | T2 | Whey after pumping (Recirculated) c | 6.27 ± 0.01 | |
Draining room (C) | C1 | T1 | Cheese curd entering the draining room | <2 |
C2 | T1, T2 | Cheese curd at package pH (stacks of molds leaving the draining room) | <2 | |
Packaging (D, E) | D1 | T1, T2 | Cheese on conveyor belt before heat bath | <2 |
D2 | T1, T2 | Cheese on conveyor belt after heat bath | <2 | |
D3 | T1 | Cheese surface before heat bath | <2 | |
D4 | T1 | Cheese surface after heat bath | <2 | |
D5 | T1 | Cheese cubes | <2 | |
D7 | T1 | Brine in tank | <1 | |
D8 | T1, T2 | Cheese cubes in brine | <2 | |
E1 | T1 | Ingredients: Vegetables | <2 | |
E2 | T1 | Ingredients: Spices | <2 | |
E3 | T1 | Ingredients: Oil | <1 | |
E4 | T1, T2 | Packaged cheese after welding (final product at t = 0) | <2 | |
E5 | T1 | Cheese cubes after the filling machine | <2 |
Production Line | Sample ID a | Trial | Sample Description | Log (CFU/m3 or CFU/m2) b |
---|---|---|---|---|
Mechanical tunnel (B) | B6 | T1, T2 | Air sample close to the turning machine | <1 |
Draining room (C) | C3 | T1, T2 | Air sample | 1.02 ± 0.12 |
Packaging (D) | D6 | T1 | Swab Test of cube cutter | <1 |
D9 | T1, T2 | Air sample close to heat bath | <1 |
Sample Description | Species | Length D1/D2 Region, bp | Homology to GenBank, % | Identities Gen Bank | Isolate Code a | GenBank Accession No |
---|---|---|---|---|---|---|
B4: Old curd under the turning machine of molds | Candida auris | 557 | 99.4 | 476/479 | T2-1 | OL744636 |
566 | 99.4 | 476/479 | T2-17 | OL744651 | ||
Candida intermedia | 533 | 100 | 533/533 | T1-5 | OL744633 | |
533 | 100 | 533/533 | T2-2 | OL744637 | ||
533 | 100 | 533/533 | T2-6 | OL744641 | ||
512 | 100 | 512/512 | T2-8 | OL744643 | ||
514 | 100 | 514/514 | T2-11 | OL744646 | ||
526 | 100 | 526/526 | T2-16 | OL744650 | ||
Candida pseudoglaebosa | 583 | 99.8 | 574/575 | T2-4 | OL744639 | |
549 | 99.8 | 548/549 | T2-20 | OL744654 | ||
Candida sojae | 561 | 100 | 561/561 | T2-19 | OL744653 | |
592 | 99.7 | 572/574 | T2-21 | OL744655 | ||
Cutaneotrichosporon curvatus | 564 | 100 | 564/564 | T2-14 | OL744648 | |
Kluyveromyces marxianusb | 547 | 100 | 547/547 | T2-5 | OL744640 | |
542 | 99.8 | 541/542 | T2-10 | OL744645 | ||
Papiliotrema flavescens | 555 | 100 | 555/555 | T1-1 | OL744629 | |
613 | 99.8 | 612/613 | T1-4 | OL744632 | ||
Pichia kudriavzevii | 564 | 100 | 564/564 | T2-3 | OL744638 | |
505 | 100 | 505/505 | T2-7 | OL744642 | ||
571 | 100 | 571/571 | T2-15 | OL744649 | ||
541 | 100 | 541/541 | T2-18 | OL744652 | ||
Rhodotorula mucilaginosa | 568 | 100 | 568/568 | T1-2 | OL744630 | |
Vanrija humicola | 527 | 100 | 527/527 | T2-9 | OL744644 | |
593 | 99.8 | 592/593 | T2-12 | OL744647 | ||
Wickerhamiella sorbophila | 575 | 99.2 | 393/396 | T1-3 | OL744631 | |
B6: Air sample close to turning machine | Kluyveromyces marxianusb | 551 | 100 | 551/551 | T2-22 | OL744656 |
B7b: Whey after pumping (Recirculated, t = 0 h, 25 °C) | Pichia kudriavzevii | 579 | 100 | 579/579 | T2-24 | OL744657 |
553 | 100 | 553/553 | T2-25 | OL744658 | ||
562 | 100 | 562/562 | T2-26 | OL744659 | ||
B8b: Whey after pumping (Recirculated, t = 48 h, 25 °C) | Kluyveromyces marxianusb | 528 | 100 | 528/528 | T2-27 | OL744660 |
552 | 99.8 | 551/552 | T2-28 | OL744661 | ||
523 | 100 | 523/523 | T2-29 | OL744662 | ||
Pichia kudriavzevii | 574 | 100 | 574/574 | T2-30 | OL744663 | |
568 | 99.8 | 567/568 | T2-31 | OL744664 | ||
564 | 100 | 564/564 | T2-32 | OL744665 | ||
D1: Cheese on conveyor belt before heat bath | Candida intermedia | 521 | 100 | 521/521 | T2-33 | OL744666 |
520 | 100 | 520/520 | T2-34 | OL744667 | ||
C3: Air sample in the draining room | Candida parapsilosis | 585 | 99.7 | 583/585 | T1-6 | OL744634 |
Cutaneotrichosporon moniliiforme | 605 | 100 | 605/605 | T1-7 | OL744635 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geronikou, A.; Larsen, N.; Lillevang, S.K.; Jespersen, L. Occurrence and Identification of Yeasts in Production of White-Brined Cheese. Microorganisms 2022, 10, 1079. https://doi.org/10.3390/microorganisms10061079
Geronikou A, Larsen N, Lillevang SK, Jespersen L. Occurrence and Identification of Yeasts in Production of White-Brined Cheese. Microorganisms. 2022; 10(6):1079. https://doi.org/10.3390/microorganisms10061079
Chicago/Turabian StyleGeronikou, Athina, Nadja Larsen, Søren K. Lillevang, and Lene Jespersen. 2022. "Occurrence and Identification of Yeasts in Production of White-Brined Cheese" Microorganisms 10, no. 6: 1079. https://doi.org/10.3390/microorganisms10061079
APA StyleGeronikou, A., Larsen, N., Lillevang, S. K., & Jespersen, L. (2022). Occurrence and Identification of Yeasts in Production of White-Brined Cheese. Microorganisms, 10(6), 1079. https://doi.org/10.3390/microorganisms10061079