Enterocin 7420 and Sage in Rabbit Diet and Their Effect on Meat Mineral Content and Physico-Chemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experiment Design and Diet
2.2. Slaughtering, Physico-Chemical and Mineral Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalle Zotte, A.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-C.; Lin, C.-H.; Sung, C.T.; Fang, J.-Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [PubMed] [Green Version]
- Bemena, L.D.; Mohamed, L.A.; Fernandes, A.M.; Lee, B.H. Applications of bacteriocins in food, livestock health and medicine. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 924–949. [Google Scholar]
- Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 2021, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M.A.P.; van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Diez-Gonzalez, F. Applications of bacteriocins in livestock. Curr. Issues Intest. Microbiol. 2007, 8, 15–24. [Google Scholar]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Strompfová, V.; Marciňáková, M.; Simonová, M.; Gancarčíková, S.; Jonecová, Z.; Sciránková, Ľ.; Koščová, J.; Buleca, V.; Čobanová, K.; Lauková, A. Enterococcus faecium EK13—An enterocin A-producing strain with probiotic character and its effect in piglets. Anaerobe 2006, 12, 242–248. [Google Scholar] [CrossRef]
- Lauková, A.; Kandričáková, A.; Ščerbová, J. Use of bacteriocin-producing, probiotic strain Enterococcus faecium AL41 to control intestinal microbiota in farm ostriches. Lett. Appl. Microbiol. 2015, 60, 531–535. [Google Scholar] [CrossRef]
- Lauková, A.; Guba, P.; Nemcová, R.; Vasilková, Z. Reduction of Salmonella in gnotobiotic Japanese quails caused by the enterocin A-producing EK13 strain of Enterococcus faecium. Vet. Res. Commun. 2003, 27, 275–280. [Google Scholar] [CrossRef]
- Lauková, A.; Guba, P.; Nemcová, R.; Mareková, M. Inhibition of Salmonella enterica serovar Dusseldorf by enterocin A in gnotobiotic Japanese quails. Vet. Med. 2004, 49, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Kalma, R.P.; Patel, V.K.; Joshi, A.; Umatiya, R.V.; Parmar, K.N.; Damor, S.V.; Chauhan, H.D.; Srivastava, A.K.; Sharma, H.A. Probiotic supplementation in rabbit: A review. Int. J. Agric. Sci. 2016, 8, 2811–2815. [Google Scholar]
- Mancini, S.; Paci, G. Probiotics in rabbit farming: Growth performance, health status, and meat quality. Animals 2021, 11, 3388. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A.; Celia, C.; Szendrő, Z. Herbs and spices inclusion as feedstuff or additive in growing rabbit diet and as additive in rabbit meat: A review. Livest. Sci. 2016, 189, 82–90. [Google Scholar] [CrossRef]
- Szabóová, R.; Lauková, A.; Chrastinová, Ľ.; Strompfová, V.; Pogány Simonová, M.; Vasilková, Z.; Čobanová, K.; Plachá, I.; Chrenková, M. Effect of combined administration of enterocin 4231 and sage in rabbits. Pol. J. Vet. Sci. 2011, 14, 359–366. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ. Enterococcus faecium AL 41: Its enterocin M and their beneficial use in rabbits husbandry. Probiotics Antimicrob. Proteins 2012, 4, 243–249. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ; Plachá, I.; Kandričáková, A.; Szabóová, R.; Strompfová, V.; Chrenková, M.; Čobanová, K.; Žitňan, R. Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob. Proteins 2014, 6, 41–46. [Google Scholar] [CrossRef]
- Lauková, A.; Pogány Simonová, M.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Plachá, I.; Čobanová, K.; Formelová, Z.; Ondruška, Ľ.; Štrkolcová, G.; et al. Beneficial effect of bacteriocin-producing strain Enterococcus durans ED 26E/7 in model experiment using broiler rabbits. Czech J. Anim. Sci. 2017, 62, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Lauková, A.; Pogány Simonová, M.; Chrastinová, Ľ.; Gancarčíková, S.; Kandričáková, A.; Plachá, I.; Chrenková, M.; Formelová, Z.; Ondruška, Ľ.; Ščerbová, J.; et al. Assessment of lantibiotic type bacteriocin gallidermin application in model experiment with broiler rabbits. Int. J. Anim. Sci. 2018, 2, 1028. [Google Scholar]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Szabóová, R.; Kandričáková, A.; Pogány Simonová, M.; Formelová, Z.; Ondruška, Ľ.; Goldová, M.; Chrenková, M.; et al. Enterocin 55 produced by non rabbit-derived strain Enterococcus faecium EF55 in relation with microbiota and selected parameters in broiler rabbits. Int. J. Environ. Agricult. Res. 2017, 3, 45–52. [Google Scholar]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Strompfová, V.; Faix, Š.; Vasilková, Z.; Ondruška, Ľ.; Jurčík, R.; Rafay, J. Enterococcus faecium CCM7420, bacteriocin PPB CCM7420 and their effect in the digestive tract of rabbits. Czech J. Anim. Sci. 2009, 54, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Pogány Simonová, M.; Lauková, A.; Plachá, I.; Čobanová, K.; Strompfová, V.; Szabóová, R.; Chrastinová, Ľ. Can enterocins affect phagocytosis and glutathione peroxidase in rabbits? Cent. Eur. J. Biol. 2013, 8, 730–734. [Google Scholar]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Autochtonous strain Enterococcus faecium EF2019(CCM7420), its bacteriocin and their beneficial effects in broiler rabbits: A review. Animals 2020, 10, 1188. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Kandričáková, A.; Gancarčíková, S.; Bino, E.; Plachá, I.; Ščerbová, J.; Strompfová, V.; Žitňan, R.; Lauková, A. Can have enterocin M in combination with sage beneficial effect on microbiota, blood biochemistry, phagocytic activity and jejunal morphometry in broiler rabbits? Animals 2020, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Enterocin Ent7420 and sage application as feed additives for broiler rabbits to improve meat carcass parameters and amino acid profile. Meat Sci. 2022, 183, 108656. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Chrastinová,, Ľ.; Lauková, A. Lantibiotic nisin applied in broiler rabbits and its effect on the growth performance and carcass quality. Probiotics Antimicrob. Proteins 2019, 11, 1414–1417. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Chrastinová, Ľ.; Chrenková, M.; Formelová, Z.; Kandričáková, A.; Bino, E.; Lauková, A. Benefit of enterocin M and sage combination on physico-chemical traits, fatty acid, amino acid, and mineral content of rabbit meat. Probiotics Antimicrob. Proteins 2020, 12, 1235–1245. [Google Scholar] [CrossRef]
- Chrastinová, Ľ.; Lauková, A.; Chrenková, M.; Poláčiková, M.; Formelová, Z.; Kandričáková, A.; Glatzová, E.; Ščerbová, J.; Bučko, O.; Ondruška, Ľ.; et al. Effects of enterocin M and durancin ED26E/7 substances applied in drinking water on the selected carcass characteristics and meat quality of broiler rabbits. Arch. Zootech. 2018, 21, 5–17. [Google Scholar]
- Chrastinová, Ľ.; Chrenková, M.; Formelová, Z.; Lauková, A.; Pogány Simonová, M.; Rajský, M.; Poláčiková, M.; Plachá, I.; Bačová, K.; Bučko, O.; et al. Use of enterocin M substance applied in drinking water and natural zeolite as dietary supplements for growing rabbits. Slovak J. Anim. Sci. 2020, 53, 12–18. [Google Scholar]
- Simonová, M.; Lauková, A. Bacteriocin activity of enterococci from rabbits. Vet. Res. Comm. 2007, 31, 143–152. [Google Scholar] [CrossRef]
- Wiseman, J.; Edmunds, B.K.; Shepperson, N. The apparent metabolisable energy of sunflower oil and sunflower acid oil for broiler chickens. Anim. Feed Sci. Technol. 1992, 36, 41–45. [Google Scholar] [CrossRef]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of the antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 9, 9–20. [Google Scholar] [CrossRef]
- Strmiska, F.; Holčíkova, K.; Simonová, E.; Mrázova, E.; Hodeková, J.; Votaššaková, A.; Pristašová, M.; Strmiska, J.; Strmisková, G.; Krupařová, M.; et al. Požívatinové Tabuľky I–Potravinárske Suroviny, Food Tables I—Primary Foods; Výskumný Ústav Potravinársky (Food Research Institute): Bratislava, Slovakia, 1998; p. 189, (In Slovak with English Summary and Register). [Google Scholar]
- Hašek, O.; Palanská, O. Determination of water holding capacity in meat by instruments at constant pressure (in Slovak). Poultry Ind. 1976, 8, 228–233. [Google Scholar]
- Pogány Simonová, M.; Chrastinová, Ľ.; Mojto, J.; Lauková, A.; Szabóová, R.; Rafay, J. Quality of rabbit meat and phyto-additives. Czech J. Food Sci. 2010, 28, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Dietary supplementation of a bacteriocinogenic and probiotic strain of Enterococcus faecium CCM7420 and its effect on the mineral content and quality of Musculus longissimus dorsi in rabbits. Anim. Prod. Sci. 2016, 56, 2140–2145. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Effect of beneficial strain Enterococcus faecium EF9a isolated from Pannon White rabbit on growth performance and meat quality of rabbits. Ital. J. Anim. Sci. 2020, 19, 650–655. [Google Scholar] [CrossRef]
- Meineri, G.; Cornale, P.; Tassone, S.; Peiretti, P.G. Effects of Chia (Salvia hispanica L.) seed supplementation on rabbit meat quality, oxidative stability and sensory traits. Ital. J. Anim. Sci. 2010, 9, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Rotolo, L.; Gai, F.; Nicola, S.; Zoccarato, I.; Brugiapaglia, A.; Gasco, L. Dietary supplementation of oregano and sage dried leaves on performances and meat quality of rabbits. J. Integr. Agric. 2013, 12, 1937–1945. [Google Scholar] [CrossRef]
- Kozioł, K.; Maj, D.; Bieniek, J. Changes in the color and pH of rabbit meat in the aging process. Med. Weter. 2015, 71, 104–108. [Google Scholar]
- Dalle Zotte, A. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Pla, M.; Guerrero, L.; Guardia, D.; Olive, M.A.; Blasco, A. Carcass characteristics and meat quality of rabbit lines selected for different objectives: I. Between lines comparison. Livest. Prod. Sci. 1998, 54, 115–123. [Google Scholar] [CrossRef]
- Hermida, M.; Gonzalez, M.; Miranda, M.; Rodríguez-Otero, J.L. Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Sci. 2016, 73, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Nistor, E.; Bampidis, V.A.; Păcăla, N.; Pentea, M.; Tozer, J.; Prundeanu, H. Nutrient content of rabbit meat as compared to chicken, beef and pork meat. J. Anim. Prod. Adv. 2013, 3, 172–176. [Google Scholar] [CrossRef]
- Scholz-Ahrens, K.E.; Adolphi, B.; Rochat, F.; Barclay, D.V.; de Vrese, M.; Açil, Y.; Schrezenmeir, J. Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats—Impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over. NFS J. 2016, 3, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.H.; Macfarlane, G.T.; Englyst, H.N. Prebiotic digestion and fermentation. Am. J. Clin. Nutr. 2011, 73, 415S–420S. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Effect of Enterococcus faecium AL41 (CCCM8558) and its enterocin M on the physicochemical properties and mineral content of rabbit meat. Agriculture 2021, 11, 1045. [Google Scholar] [CrossRef]
- Verma, C.; Tapadia, K.; Soni, A.B. Determination of iron (III) in food, biological and environmental samples. Food Chem. 2017, 221, 1415–1420. [Google Scholar] [CrossRef]
- Shah, A.A.; Liu, Z.; Qian, C.; Wu, J.; Sultana, N.; Zhong, X. Potential effect of the microbial fermented feed utilization on physicochemical traits, antioxidant enzyme and trace mineral analysis in rabbit meat. J. Anim. Physiol. Anim. Nutr. 2020, 104, 767–775. [Google Scholar] [CrossRef]
Feed Ingredients (%) | Chemical Composition, Minerals and Vitamins (g/kg Feed) | ||
---|---|---|---|
Dehydrated lucerne meal | 36.0 | Crude protein (N*6.25) | 175.0 |
Extracted sunflower meal | 5.5 | Crude fiber | 188.3 |
Oats | 13.0 | Fat | 32.0 |
Wheat bran | 9.0 | Ash | 66.40 |
Dry malting sprouts | 15.0 | Organic matter | 847.5 |
Extracted rapeseed meal | 5.5 | Acid detergent fiber (ADF) | 185.1 |
Barley | 8.0 | Neutral detergent fiber (NDF) | 315.5 |
DDGS | 5.0 | Lignine | 42.3 |
Sodium chloride | 0.3 | Hemicellulose | 148.5 |
Premix minerals 1 | 1.7 | Cellulose | 148.8 |
Limestone | 1.0 | Starch | 127.2 |
Calcium | 7.5 | ||
Phosphorus | 5.9 | ||
Metabolic energy (MJ/kg) | 10.3 |
Parameter | Day of Experiment | E | S | E + S | C | Significance of Effects | ||
---|---|---|---|---|---|---|---|---|
Treatment | Time | Interaction | ||||||
pH 24 h after killing | 21 | 5.82 ± 0.06 | 5.88 ± 0.01 | 5.84 ± 0.09 | 5.90 ± 0.01 | 1.0000 | 0.9741 | 1.0000 |
42 | 5.66 ± 0.06 | 5.67 ± 0.08 | 5.67 ± 0.09 | 5.73 ± 0.02 | ||||
Water content (g/100 g) | 21 | 75.17 ± 0.11 | 75.03 ± 0.06 | 75.20 ± 0.26 | 74.97 ± 0.47 | 1.0000 | 0.9503 | 1.0000 |
42 | 75.30 ± 0.10 | 75.63 ± 0.35 | 75.33 ± 0.29 | 75.47 ± 0.38 | ||||
Protein content (g/100 g) | 21 | 22.50 ± 0.00 | 22.63 ± 0.06 | 22.33 ± 0.25 | 22.63 ± 0.38 | 1.0000 | 0.9689 | 0.9999 |
42 | 22.27 ± 0.06 | 21.97 ± 0.15 | 22.60 ± 0.30 | 22.40 ± 0.37 | ||||
Fat content (g/100 g) | 21 | 1.33 ± 0.12 | 1.33 ± 0.06 | 1.47 ± 0.21 | 1.40 ± 0.17 | 1.0000 | 0.9854 | 1.0000 |
42 | 1.43 ± 0.15 | 1.40 ± 0.20 | 1.07 ± 0.15 | 1.23 ± 0.06 | ||||
Ash content (g/100 g) | 21 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.0000 | 1.0000 | 1.0000 |
42 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | ||||
L* (lightness) | 21 | 50.06 ± 3.30 | 47.63 ± 2.39 | 50.48 ± 2.39 | 49.97 ± 5.46 | 0.9996 | 0.9985 | 0.9983 |
42 | 48.65 ± 5.75 | 51.42 ± 1.31 | 46.06 ± 5.74 | 51.88 ± 3.24 | ||||
a* (redness) | 21 | 0.72 ± 0.60 | 2.82 ± 1.57 | 3.63 ± 0.35 | 1.18 ± 0.97 | 0.4560 | 0.0809 | 0.0693 |
42 | 1.64 ± 0.86 | 0.55 ± 0.20 | 0.93 ± 0.43 | 1.30 ± 0.40 | ||||
b* (yellowness) | 21 | 7.39 ± 2.23 | 7.80 ± 1.70 | 6.86 ± 1.14 | 7.25 ± 0.91 | 0.4954 | 0.4411 | 0.9302 |
42 | 7.27 ± 0.12 | 7.26 ± 0.38 | 5.80 ± 1.09 | 7.14 ± 0.94 | ||||
Water-holding capacity (g/100 g) | 21 | 36.44 ± 0.74 | 36.91 ± 1.81 | 37.27 ± 1.91 | 34.47 ±4.21 | 0.4967 | 0.5436 | 0.2302 |
42 | 35.86 ± 1.56 | 37.08 ± 1.07 | 34.04 ± 1.93 | 36.09 ± 3.50 | ||||
Energy value (kJ/100 g) | 21 | 427.12 ± 4.35 | 429.35 ± 1.89 | 428.89 ± 8.10 | 431.86 ± 10.70 | 0.8339 | 0.0060 | 0.3941 |
42 | 426.97 ± 4.86 | 420.69 ± 10.06 | 418.74 ± 6.28 | 420.00 ± 7.14 |
Parameter | Day of Experiment | E | S | E + S | C | Significance of Effects | ||
---|---|---|---|---|---|---|---|---|
Treatment | Time | Interaction | ||||||
Calcium (mg/100 g) | 21 | 6.20 ± 0.01 a | 8.20 ± 0.04 ab | 11.30 ± 0.04 bc | 12.80 ± 0.01 c | <0.0001 | <0.0001 | <0.0001 |
42 | 8.13 ± 0.01 a | 9.10 ± 0.01 b | 7.73 ± 0.01 ac | 16.77 ± 0.04 d | ||||
Phosphorus (mg/100 g) | 21 | 201.93 ± 0.44 | 228.47 ± 0.12 | 218.77 ± 0.06 | 206.20 ± 0.18 | 0.0126 | 0.8122 | 0.3519 |
42 | 221.03 ± 0.17 a | 185.63 ± 0.26 b | 195.33 ± 0.04 ab | 225.33 ± 0.09 b | ||||
Magnesium (mg/100 g) | 21 | 25.10 ± 0.01 | 25.37 ± 0.01 | 25.40 ± 0.01 | 24.77 ± 0.01 | 0.6447 | 0.1187 | <0.0001 |
42 | 26.73 ± 0.01 | 26.30 ± 0.01 | 27.07 ± 0.01 | 26.13 ± 0.01 | ||||
Natrium (mg/100 g) | 21 | 31.63 ± 0.02 | 30.53 ± 0.02 | 34.10 ± 0.03 | 29.27 ± 0.02 | 1.0000 | 1.0000 | 0.9684 |
42 | 29.07 ± 0.02 | 29.73 ± 0.01 | 25.17 ± 0.01 | 29.50 ± 0.01 | ||||
Potassium (mg/100 g) | 21 | 413.67 ± 0.14 | 400.47 ± 0.03 | 396.67 ± 0.06 | 401.77 ± 0.22 | 0.6994 | 0.3619 | 0.1928 |
42 | 411.53 ± 0.16 | 410.73 ± 0.10 | 407.43 ± 0.03 | 406.30 ± 0.11 | ||||
Iron (mg/100 g) | 21 | 0.579 ± 0.035 a | 0.341 ± 0.124 b | 0.465 ± 0.092 b | 0.365 ± 0.146 b | 0.0491 | 0.0088 | 0.2693 |
42 | 0.481 ± 0.035 | 0.410 ± 0.081 | 0.355 ± 0.024 | 0.465 ± 0.053 | ||||
Manganese (mg/100 g) | 21 | 0.064 ± 0.004 a | 0.061 ± 0.009 a | 0.066 ± 0.025 b | 0.084 ± 0.010 a | 0.0775 | <0.0001 | 0.0524 |
42 | 0.029 ± 0.012 a | 0.027 ± 0.051 a | 0.018 ± 0.007 a | 0.082 ± 0.048 b | ||||
Zinc (mg/100 g) | 21 | 1.350 ± 0.244 | 1.123 ± 0.141 | 1.216 ± 0.143 | 1.043 ± 0.190 | 0.2357 | 0.0126 | 0.0002 |
42 | 1.779 ± 0.517 a | 1.647 ± 0.504 a | 1.989 ± 0.485 ab | 1.190 ± 0.131 b | ||||
Copper (mg/100 g) | 21 | 0.117 ± 0.017 a | 0.119 ± 0.015 a | 0.195 ± 0.025 b | 0.120 ± 0.079 a | 0.0026 | 0.0519 | 0.0824 |
42 | 0.208 ± 0.034 a | 0.109 ± 0.001 b | 0.138 ± 0.013 bc | 0.200 ± 0.066 ac |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Enterocin 7420 and Sage in Rabbit Diet and Their Effect on Meat Mineral Content and Physico-Chemical Properties. Microorganisms 2022, 10, 1094. https://doi.org/10.3390/microorganisms10061094
Pogány Simonová M, Chrastinová Ľ, Lauková A. Enterocin 7420 and Sage in Rabbit Diet and Their Effect on Meat Mineral Content and Physico-Chemical Properties. Microorganisms. 2022; 10(6):1094. https://doi.org/10.3390/microorganisms10061094
Chicago/Turabian StylePogány Simonová, Monika, Ľubica Chrastinová, and Andrea Lauková. 2022. "Enterocin 7420 and Sage in Rabbit Diet and Their Effect on Meat Mineral Content and Physico-Chemical Properties" Microorganisms 10, no. 6: 1094. https://doi.org/10.3390/microorganisms10061094
APA StylePogány Simonová, M., Chrastinová, Ľ., & Lauková, A. (2022). Enterocin 7420 and Sage in Rabbit Diet and Their Effect on Meat Mineral Content and Physico-Chemical Properties. Microorganisms, 10(6), 1094. https://doi.org/10.3390/microorganisms10061094