Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of blaCTX-M-14 on IncL/M Plasmid and blaCTX-M-15 on Convergent IncHI1B/IncFIB Plasmid from Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains Collection and Identification
2.2. Antimicrobial Susceptibility Testing and Calculation of Resistance Score
2.3. Determination of the Minimum Inhibitory Concentration (MIC) of Cefotaxime against Klebsiella spp. Isolates
2.4. Polymerase Chain Reaction (PCR) Detection of blaCTX-M-IV
2.5. Isolation of Plasmids Harboring blaCTX-M-IV and Plasmid Transformation
2.6. Whole Genome Sequencing (WGS) of K. pneumoniae K22 Isolate
2.7. Bioinformatics Analysis
2.8. Analysis of pEGY22_CTX-M-14 and pEGY22_CTX-M-15 to Closely Related Plasmids
3. Results and Discussion
3.1. Antimicrobial Resistance Profile and Resistance Score
3.2. Molecular Identification of blaCTX-M-IV
3.3. Purification of blaCTX-M-IV-Encoding Plasmids and Transformation Experiment
3.4. Whole Genome Sequencing of K. pneumoniae Isolate K22
3.5. Characterization of pEGY22_CTX-M-14 and Its Similarity to IncL/M Published Plasmids
3.6. Convergence of Virulence and Resistance in Plasmid pEGY22_CTX-M-15
3.7. Similarity of Plasmid pEGY22_CTX-M-15 to Other Published Plasmids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.R.; Aly, S.A.; Halby, H.M.; Ahmed, S.H.; Zakaria, A.M.; El-Asheer, O.M. Epidemiological typing of multidrug-resistant Klebsiella pneumoniae, which causes paediatric ventilator-associated pneumonia in Egypt. J. Med. Microbiol. 2017, 66, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci. Rep. 2016, 6, 38929. [Google Scholar] [CrossRef] [PubMed]
- Azab, K.S.M.; Abdel-Rahman, M.A.; El-Sheikh, H.H.; Azab, E.; Gobouri, A.A.; Farag, M.M.S. Distribution of extended-spectrum beta-lactamase (ESBL)-encoding genes among multidrug-resistant Gram-negative pathogens collected from three different countries. Antibiotics 2021, 10, 247. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Abdelaziz, N.A.; Amin, M.A.; Aziz, R.K. Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci. Rep. 2019, 9, 4224. [Google Scholar] [CrossRef]
- Peerayeh, S.N.; Derakhshan, S.; Fallah, F.; Bakhshi, B. Strain typing and molecular characterization of CTX-M-1 group ESBL in clinical Klebsiella pneumoniae isolated from children. Arch. Pediatric Infect. Dis. 2017, 5, e39193. [Google Scholar] [CrossRef] [Green Version]
- El Kholy, A.; Baseem, H.; Hall, G.S.; Procop, G.W.; Longworth, D.L. Antimicrobial resistance in Cairo, Egypt 1999-2000: A survey of five hospitals. J. Antimicrob. Chemother. 2003, 51, 625–630. [Google Scholar] [CrossRef]
- Talaat, M.; El-Shokry, M.; El-Kholy, J.; Ismail, G.; Kotb, S.; Hafez, S.; Attia, E.; Lessa, F.C. National surveillance of health care-associated infections in Egypt: Developing a sustainable program in a resource-limited country. Am. J. Infect. Control 2016, 44, 1296–1301. [Google Scholar] [CrossRef] [Green Version]
- Parveen, R.M.; Manivannan, S.; Harish, B.N.; Parija, S.C. Study of CTX-M type of extended spectrum B-lactamase among nosocomial isolates of Escherichia coli and Klebsiella pneumoniae in South India. Indian J. Microbiol. 2012, 52, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Gao, W.; Yin, J.; Sun, Z.; Ye, Y.; Gao, Y.F.; Li, X.; Li, J.B. Phenotypic and molecular characterization of two novel CTX-M enzymes carried by Klebsiella pneumoniae. Mol. Biol. Rep. 2010, 37, 1261–1267. [Google Scholar] [CrossRef]
- Liao, X.P.; Xia, J.; Yang, L.; Li, L.; Sun, J.; Liu, Y.H.; Jiang, H.X. Characterization of CTX-M-14-producing Escherichia coli from food-producing animals. Front. Microbiol 2015, 6, 1136. [Google Scholar] [CrossRef] [Green Version]
- Canton, R.; Gonzalez-Alba, J.M.; Galan, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalaf, N.G.; Eletreby, M.M.; Hanson, N.D. Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae clinical isolates from Cairo, Egypt. BMC Infect. Dis. 2009, 9, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fam, N.; Leflon-Guibout, V.; Fouad, S.; Aboul-Fadl, L.; Marcon, E.; Desouky, D.; El- Defrawy, I.; Abou- Aitta, A.; Klena, J.; Nicolas-Chanoine, M. High prevalence of CTX-M-15 extended spectrum β-lactamase producing bacterial clinical isolates in both community and hospital settings in Egypt. Egypt. J. Med. Microbiol. 2010, 19, 71–82. [Google Scholar]
- Zorgani, A.; Almagatef, A.; Sufya, N.; Bashein, A.; Tubbal, A. Detection of CTX-M-15 among uropathogenic Escherichia coli isolated from five major hospitals in Tripoli, Libya. Oman Med. J. 2017, 32, 322–327. [Google Scholar] [CrossRef]
- Yoon, E.J.; Gwon, B.; Liu, C.; Kim, D.; Won, D.; Park, S.G.; Choi, J.R.; Jeong, S.H. Beneficial chromosomal integration of the genes for CTX-M extended-spectrum beta-lactamase in Klebsiella pneumoniae for stable propagation. mSystems 2020, 5, e00459-20. [Google Scholar] [CrossRef]
- Li, P.; Liang, Q.; Liu, W.; Zheng, B.; Liu, L.; Wang, W.; Xu, Z.; Huang, M.; Feng, Y. Convergence of carbapenem resistance and hypervirulence in a highly-transmissible ST11 clone of K. pneumoniae: An epidemiological, genomic and functional study. Virulence 2021, 12, 377–388. [Google Scholar] [CrossRef]
- Abdelwahab, R.; Alhammadi, M.M.; Hassan, E.A.; Ahmed, E.H.; Abu-Faddan, N.H.; Daef, E.A.; Busby, S.J.W.; Browning, D.F. Antimicrobial resistance and comparative genome analysis of Klebsiella pneumoniae strains isolated in Egypt. Microorganisms 2021, 9, 1880. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Document M100; CLSI: Malvern, PA, USA, 2021. [Google Scholar]
- Skulj, M.; Okrslar, V.; Jalen, S.; Jevsevar, S.; Slanc, P.; Strukelj, B.; Menart, V. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microb. Cell Fact. 2008, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Karimian, M.; Rostamzad, A.; Shoaei, P. Extended spectrum β-Lactamase-producing strains of Escherichia coli in hospitalized children in Isfahan, Iran. Avicenna J. Clin. Microb. Infec. 2015, 2, e27096. [Google Scholar] [CrossRef]
- Tu, Z.; He, G.; Li, K.; Chen, M.J.; Chang, J.; Chen, L.; Yao, Q.; Liu, D.P.; Ye, H.; Shi, J.; et al. An improved system for competent cell preparation and high efficiency plasmid transformation using different Escherichia coli strains. Electron. J. Biotechnol. 2005, 8, 114–120. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Domany, R.A.; Awadalla, O.A.; Shabana, S.A.; El-Dardir, M.A.; Emara, M. Analysis of the correlation between antibiotic resistance patterns and virulence determinants in pathogenic Klebsiella pneumoniae isolates from Egypt. Microb. Drug Resist. 2021, 27, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Yakout, M.A.; Ali, G.H. Multidrug resistance in integron bearing Klebsiella pneumoniae isolated from Alexandria University Hospitals, Egypt. Curr. Microbiol. 2020, 77, 3897–3902. [Google Scholar] [CrossRef]
- Hassuna, N.A.; AbdelAziz, R.A.; Zakaria, A.; Abdelhakeem, M. Extensively-drug resistant Klebsiella pneumoniae recovered from neonatal sepsis cases from a major NICU in Egypt. Front. Microbiol. 2020, 11, 1375. [Google Scholar] [CrossRef]
- Palmieri, M.; Wyres, K.L.; Mirande, C.; Qiang, Z.; Liyan, Y.; Gang, C.; Goossens, H.; van Belkum, A.; Yan Ping, L. Genomic evolution and local epidemiology of Klebsiella pneumoniae from a major hospital in Beijing, China, over a 15 year period: Dissemination of known and novel high-risk clones. Microb. Genom. 2019, 7, 000520. [Google Scholar] [CrossRef]
- Kim, J.; Jeon, S.; Rhie, H.; Lee, B.; Park, M.; Lee, H.; Lee, J.; Kim, S. Rapid detection of extended spectrum β-Lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infect. Chemother. 2009, 41, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Sherif, M.; Palmieri, M.; Mirande, C.; El-Mahallawy, H.; Rashed, H.G.; Abd-El-Reheem, F.; El-Manakhly, A.R.; Abdel-Latif, R.A.R.; Aboulela, A.G.; Saeed, L.Y.; et al. Whole-genome sequencing of Egyptian multidrug-resistant Klebsiella pneumoniae isolates: A multi-center pilot study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1451–1460. [Google Scholar] [CrossRef]
- Tawfik, A.F.; Alswailem, A.M.; Shibl, A.M.; Al-Agamy, M.H. Prevalence and genetic characteristics of TEM, SHV, and CTX-M in clinical Klebsiella pneumoniae isolates from Saudi Arabia. Microb. Drug Resist. 2011, 17, 383–388. [Google Scholar] [CrossRef]
- Zaman, T.U.; Alrodayyan, M.; Albladi, M.; Aldrees, M.; Siddique, M.I.; Aljohani, S.; Balkhy, H.H. Clonal diversity and genetic profiling of antibiotic resistance among multidrug/carbapenem-resistant Klebsiella pneumoniae isolates from a tertiary care hospital in Saudi Arabia. BMC Infect. Dis. 2018, 18, 205. [Google Scholar] [CrossRef] [Green Version]
- Papagiannitsis, C.C.; Giakkoupi, P.; Vatopoulos, A.C.; Tryfinopoulou, K.; Miriagou, V.; Tzouvelekis, L.S. Emergence of Klebsiella pneumoniae of a novel sequence type (ST383) producing VIM-4, KPC-2 and CMY-4 beta-lactamases. Int. J. Antimicrob. Agents 2010, 36, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Dimou, V.; Dhanji, H.; Pike, R.; Livermore, D.M.; Woodford, N. Characterization of Enterobacteriaceae producing OXA-48-like carbapenemases in the UK. J. Antimicrob. Chemother. 2012, 67, 1660–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Yang, Y.; Yang, Y.; Yan, B.; Chen, G.; Hassan, R.M.; Zhong, L.L.; Chen, Y.; Roberts, A.P.; Wu, Y.; et al. Emergence of hypervirulent carbapenem-resistant Klebsiella pneumoniae coharboring a blaNDM-1-carrying virulent plasmid and a blaKPC-2-carrying plasmid in an Egyptian hospital. mSphere 2021, 6, e00088-21. [Google Scholar] [CrossRef]
- Turton, J.F.; Payne, Z.; Coward, A.; Hopkins, K.L.; Turton, J.A.; Doumith, M.; Woodford, N. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and ‘non-hypervirulent’ types ST147, ST15 and ST383. J. Med. Microbiol. 2018, 67, 118–128. [Google Scholar] [CrossRef]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence factors in hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef]
- Walker, K.A.; Miller, V.L. The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in Klebsiella pneumoniae. Curr. Opin. Microbiol. 2020, 54, 95–102. [Google Scholar] [CrossRef]
- Benulic, K.; Pirs, M.; Couto, N.; Chlebowicz, M.; Rossen, J.W.A.; Zorec, T.M.; Seme, K.; Poljak, M.; Lejko Zupanc, T.; Ruzic-Sabljic, E.; et al. Whole genome sequencing characterization of Slovenian carbapenem-resistant Klebsiella pneumoniae, including OXA-48 and NDM-1 producing outbreak isolates. PLoS ONE 2020, 15, e0231503. [Google Scholar] [CrossRef]
- Awosile, B.B.; Agbaje, M. Genetic environments of plasmid-mediated blaCTXM-15 beta-lactamase gene in Enterobacteriaceae from Africa. Microbiol. Res. 2021, 12, 383–394. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Nordmann, P.; Carattoli, A.; Poirel, L. Comparative genomics of IncL/M-type plasmids: Evolution by acquisition of resistance genes and insertion sequences. Antimicrob. Agents Chemother. 2013, 57, 674–676. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Li, W.; Jiang, G.Z.; Zhang, W.H.; Ding, H.Z.; Liu, Y.H.; Zeng, Z.L.; Jiang, H.X. Characterization of a P1-like bacteriophage carrying CTX-M-27 in Salmonella spp. resistant to third generation cephalosporins isolated from pork in China. Sci. Rep. 2017, 7, 40710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Liu, L.; Feng, Y.; Zong, Z. A P7 Phage-Like Plasmid Carrying mcr-1 in an ST15 Klebsiella pneumoniae Clinical Isolate. Front. Microbiol. 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, L.; de Been, M.; Rogers, M.R.C.; Schurch, A.C.; Scharringa, J.; van der Zee, A.; Bonten, M.J.M.; Fluit, A.C. Sequence-based epidemiology of an OXA-48 plasmid during a hospital outbreak. Antimicrob. Agents Chemother. 2019, 63, e01204-19. [Google Scholar] [CrossRef] [PubMed]
- Espedido, B.A.; Steen, J.A.; Ziochos, H.; Grimmond, S.M.; Cooper, M.A.; Gosbell, I.B.; van Hal, S.J.; Jensen, S.O. Whole genome sequence analysis of the first Australian OXA-48-producing outbreak-associated Klebsiella pneumoniae isolates: The resistome and in vivo evolution. PLoS ONE 2013, 8, e59920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Both, A.; Buttner, H.; Huang, J.; Perbandt, M.; Belmar Campos, C.; Christner, M.; Maurer, F.P.; Kluge, S.; Konig, C.; Aepfelbacher, M.; et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 2017, 72, 2483–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghoribi, M.F.; Alqurashi, M.; Okdah, L.; Alalwan, B.; AlHebaishi, Y.S.; Almalki, A.; Alzayer, M.A.; Alswaji, A.A.; Doumith, M.; Barry, M. Successful treatment of infective endocarditis due to pandrug-resistant Klebsiella pneumoniae with ceftazidime-avibactam and aztreonam. Sci. Rep. 2021, 11, 9684. [Google Scholar] [CrossRef]
- Shankar, C.; Vasudevan, K.; Jacob, J.J.; Baker, S.; Isaac, B.J.; Neeravi, A.R.; Sethuvel, D.P.M.; George, B.; Veeraraghavan, B. Mosaic antimicrobial resistance/virulence plasmid in hypervirulent ST2096 Klebsiella pneumoniae in India: The rise of a new superbug? bioRxiv 2020. [Google Scholar] [CrossRef]
- Xie, M.; Chen, K.; Ye, L.; Yang, X.; Xu, Q.; Yang, C.; Dong, N.; Chan, E.W.; Sun, Q.; Shu, L.; et al. Conjugation of virulence plasmid in clinical Klebsiella pneumoniae strains through formation of a fusion plasmid. Adv. Biosyst. 2020, 4, e1900239. [Google Scholar] [CrossRef]
- Wei, L.; Feng, Y.; Wen, H.; Ya, H.; Qiao, F.; Zong, Z. NDM-5-producing carbapenem-resistant Klebsiella pneumoniae of sequence type 789 emerged as a threat for neonates: A multicentre, genome-based study. Int. J. Antimicrob. Agents 2022, 59, 106508. [Google Scholar] [CrossRef]
- Turton, J.; Davies, F.; Turton, J.; Perry, C.; Payne, Z.; Pike, R. Hybrid resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms 2019, 7, 326. [Google Scholar] [CrossRef] [Green Version]
- Starkova, P.; Lazareva, I.; Avdeeva, A.; Sulian, O.; Likholetova, D.; Ageevets, V.; Lebedeva, M.; Gostev, V.; Sopova, J.; Sidorenko, S. Emergence of hybrid resistance and virulence plasmids harboring New Delhi metallo-beta-Lactamase in Klebsiella pneumoniae in Russia. Antibiotics 2021, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Cheng, J.; Dong, H.; Li, L.; Liu, W.; Zhang, C.; Feng, X.; Qin, S. Emergence of a novel conjugative hybrid virulence multidrug-resistant plasmid in extensively drug-resistant Klebsiella pneumoniae ST15. Int. J. Antimicrob. Agents 2020, 55, 105952. [Google Scholar] [CrossRef] [PubMed]
- Villa, L.; Poirel, L.; Nordmann, P.; Carta, C.; Carattoli, A. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. J. Antimicrob. Chemother. 2012, 67, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
K. pneumoniae Isolates | Source a | Resistance Score b | Resistance Profile c |
---|---|---|---|
K1 | Blood | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K2 | Pleural fluid | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K3 | Blood | 13 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, IPM, MEM, AMK, GEN, TOB, SXT |
K4 | BAL | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K5 | ETT | 13 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, GEN, TOB, SXT |
K6 | Blood | 10 | CTX, TIC, PIP, CAZ, FEP, ATM, AMK, GEN, TOB, CIP, SXT |
K7 | Blood | 14 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP |
K8 | mini-BAL | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K9 | Blood | 14 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP |
K10 | Blood | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K11 | Blood | 13.5 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP |
K12 | Urine | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K13 | Aspirate | 7 | CTX, TIC, PIP, CAZ, FEP, ATM, SXT |
K14 | Blood | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K15 | Blood | 7.5 | CTX, TIC, TIM, PIP, CAZ, FEP, ATM, GEN |
K16 | Swab | 7 | CTX, TIC, TIM, PIP, CAZ, FEP, ATM, SXT |
K17 | Blood | 14 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, SXT |
K18 | Blood | 13.5 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, TOB, CIP, SXT |
K19 | Swab | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K20 | Aspirate | 14.5 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K21 | Blood | 14 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP |
K22 | Blood | 15 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, MEM, AMK, GEN, TOB, CIP, SXT |
K23 | Swab | 13.5 | CTX, TIC, TIM, PIP, TZP, CAZ, FEP, ATM, IPM, AMK, GEN, TOB, CIP, SXT |
K. pneumoniae Isolates | Cefotaxime MIC (μg/mL) | Fold Increase in Cefotaxime MIC a | Resistance Profile b |
---|---|---|---|
K7 | 1024 | - | AMC, CAZ, IPM, CTX, FEP, DO, GEN, CIP |
Transformant of K7 | 8 | 64 | AMC, CAZ, CTX |
K14 | 1024 | - | AMC, CAZ, IPM, CTX, SXT, FEP, GEN, CIP |
Transformant of K14 | 16 | 128 | AMC, CAZ, CTX |
K23 | 1024 | - | AMC, CAZ, IPM, CTX, SXT, FEP, DO, GEN, CIP |
Transformant of K23 | 4 | 32 | AMC, CAZ, CTX |
ST a | CPS b | LPS c | wzc- allele d | wzi- typing e | Resistance Profile f | Plasmid Replicon Type g | Virulence h | ||
---|---|---|---|---|---|---|---|---|---|
Antimicrobial Class | Antimicrobial Resistance Genes | Virulence Determinants | Heavy Metal Resistance | ||||||
ST383 | K51 | O1 | wzc-50 | wzi-705 | Phenicols | catA1, catB3 | Col(KPHS6) ColRNAI Col440II IncFIBK IncFIB IncHI1B IncFIIK IncL/M | irp1 fyuA ybtAEPQSTUX iutA iucABCD rmpA, rmpA2 rmpC mrkABDFHIJ | terABCDEWXYZ arsABCDR pcoABCDRSE silABCEFGPRS |
Sulphonamides | sul1, sul2 | ||||||||
Fosfomycin | fosA | ||||||||
Trimethoprim | dfrA5 | ||||||||
β-Lactams | blaSHV-26, blaTEM-1, blaNDM-5, blaOXA-1, blaOXA-9, blaOXA-48, blaCTX-M-14b, blaCTX-M-15 | ||||||||
Aminoglycosides | aph(6)-Id, aph(3″)-Ib, aph(3′)-VIb, aadA1, aph(3′)-VI, aac(6′)-Ib, armA | ||||||||
Macrolides, lincosamides and streptogramin B | mphE, msrE, mphA | ||||||||
Fluoroquinolones | aac(6′)-Ib-cr, qnrS1, oqxA, oqxB | ||||||||
Tetracycline | tetA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edward, E.A.; Mohamed, N.M.; Zakaria, A.S. Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of blaCTX-M-14 on IncL/M Plasmid and blaCTX-M-15 on Convergent IncHI1B/IncFIB Plasmid from Egypt. Microorganisms 2022, 10, 1097. https://doi.org/10.3390/microorganisms10061097
Edward EA, Mohamed NM, Zakaria AS. Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of blaCTX-M-14 on IncL/M Plasmid and blaCTX-M-15 on Convergent IncHI1B/IncFIB Plasmid from Egypt. Microorganisms. 2022; 10(6):1097. https://doi.org/10.3390/microorganisms10061097
Chicago/Turabian StyleEdward, Eva A., Nelly M. Mohamed, and Azza S. Zakaria. 2022. "Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of blaCTX-M-14 on IncL/M Plasmid and blaCTX-M-15 on Convergent IncHI1B/IncFIB Plasmid from Egypt" Microorganisms 10, no. 6: 1097. https://doi.org/10.3390/microorganisms10061097