How a PCR Sequencing Strategy Can Bring New Data to Improve the Diagnosis of Ethionamide Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mycobacterium tuberculosis Complex Clinical Isolates
2.2. Phenotypic Drug Susceptibility Testing and Quality Controls
2.3. DNA Sequencing of Genes Associated with Ethionamide Resistance
2.4. Databases
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization WHO. Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Brossier, F.; Sougakoff, W. French National Reference Center for Mycobacteria. Molecular Detection Methods of Resistance to Antituberculosis Drugs in Mycobacterium Tuberculosis. Med. Mal. Infect. 2017, 47, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Baulard, A.R.; Betts, J.C.; Engohang-Ndong, J.; Quan, S.; McAdam, R.A.; Brennan, P.J.; Locht, C.; Besra, G.S. Activation of the Pro-Drug Ethionamide Is Regulated in Mycobacteria. J. Biol. Chem. 2000, 275, 28326–28331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dover, L.G.; Alahari, A.; Gratraud, P.; Gomes, J.M.; Bhowruth, V.; Reynolds, R.C.; Besra, G.S.; Kremer, L. EthA, a Common Activator of Thiocarbamide-Containing Drugs Acting on Different Mycobacterial Targets. Antimicrob. Agents Chemother. 2007, 51, 1055–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quémard, A.; Lanéelle, G.; Lacave, C. Mycolic Acid Synthesis: A Target for Ethionamide in Mycobacteria? Antimicrob. Agents Chemother. 1992, 36, 1316–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brossier, F.; Veziris, N.; Truffot-Pernot, C.; Jarlier, V.; Sougakoff, W. Molecular Investigation of Resistance to the Antituberculous Drug Ethionamide in Multidrug-Resistant Clinical Isolates of Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2011, 55, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L.G.; Barry, C.E. Ethionamide Activation and Sensitivity in Multidrug-Resistant Mycobacterium Tuberculosis. Proc. Natl. Acad. Sci. USA 2000, 97, 9677–9682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Target Product Profile for Next-Generation Drug-Susceptibility Testing at Peripheral Centres; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003236-1. [Google Scholar]
- Canetti, G.; Rist, N.; Grosset, J. Measurement of sensitivity of the tuberculous bacillus to antibacillary drugs by the method of proportions. Methodology, resistance criteria, results and interpretation. Rev. Tuberc. Pneumol. 1963, 27, 217–272. [Google Scholar]
- Barrera, L.; Cooreman, E.; de Dieu Iragena, J.; Drobniewski, F.; Duda, P.; Havelkova, M.; Hoffner, S.; Kam, K.M.; Kim, S.J.; Labelle, S.; et al. Policy Guidance on Drug-Susceptibility Testing (DST) of Second-Line Antituberculosis Drugs; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Kam, K.M.; Sloutsky, A.; Yip, C.W.; Bulled, N.; Seung, K.J.; Zignol, M.; Espinal, M.; Kim, S.J. Determination of Critical Concentrations of Second-Line Anti-Tuberculosis Drugs with Clinical and Microbiological Relevance. Int. J. Tuberc. Lung Dis. 2010, 14, 282–288. [Google Scholar]
- Phelan, J.E.; O’Sullivan, D.M.; Machado, D.; Ramos, J.; Oppong, Y.E.A.; Campino, S.; O’Grady, J.; McNerney, R.; Hibberd, M.L.; Viveiros, M.; et al. Integrating Informatics Tools and Portable Sequencing Technology for Rapid Detection of Resistance to Anti-Tuberculous Drugs. Genome Med. 2019, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Coll, F.; McNerney, R.; Preston, M.D.; Guerra-Assunção, J.A.; Warry, A.; Hill-Cawthorne, G.; Mallard, K.; Nair, M.; Miranda, A.; Alves, A.; et al. Rapid Determination of Anti-Tuberculosis Drug Resistance from Whole-Genome Sequences. Genome Med. 2015, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Feuerriegel, S.; Schleusener, V.; Beckert, P.; Kohl, T.A.; Miotto, P.; Cirillo, D.M.; Cabibbe, A.M.; Niemann, S.; Fellenberg, K. PhyResSE: A Web Tool Delineating Mycobacterium Tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 1908–1914. [Google Scholar] [CrossRef] [Green Version]
- Manson, A.L.; Cohen, K.A.; Abeel, T.; Desjardins, C.A.; Armstrong, D.T.; Barry, C.E.; Brand, J.; Chapman, S.B.; Cho, S.-N.; et al.; TBResist Global Genome Consortium Genomic Analysis of Globally Diverse Mycobacterium Tuberculosis Strains Provides Insights into the Emergence and Spread of Multidrug Resistance. Nat. Genet. 2017, 49, 395–402. [Google Scholar] [CrossRef]
- Vilchèze, C.; Jacobs, W.R. Resistance to Isoniazid and Ethionamide in Mycobacterium Tuberculosis: Genes, Mutations, and Causalities. Microbiol. Spectr. 2014, 2, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.L.; Yip, C.W.; Yeung, Y.L.; Wong, K.L.; Chan, W.Y.; Chan, M.Y.; Kam, K.M. Usefulness of Resistant Gene Markers for Predicting Treatment Outcome on Second-Line Anti-Tuberculosis Drugs. J. Appl. Microbiol. 2010, 109, 2087–2094. [Google Scholar] [CrossRef]
- Coll, F.; Phelan, J.; Hill-Cawthorne, G.A.; Nair, M.B.; Mallard, K.; Ali, S.; Abdallah, A.M.; Alghamdi, S.; Alsomali, M.; Ahmed, A.O.; et al. Genome-Wide Analysis of Multi- and Extensively Drug-Resistant Mycobacterium Tuberculosis. Nat. Genet. 2018, 50, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Tan, Y.; Hameed, H.M.A.; Liu, Z.; Chhotaray, C.; Liu, Y.; Lu, Z.; Cai, X.; Tang, Y.; Gao, Y.; et al. Detection of Novel Mutations Associated with Independent Resistance and Cross-Resistance to Isoniazid and Prothionamide in Mycobacterium Tuberculosis Clinical Isolates. Clin. Microbiol. Infect. 2019, 25, 1041.e1–1041.e7. [Google Scholar] [CrossRef]
- WHO. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Coll, F.; McNerney, R.; Guerra-Assunção, J.A.; Glynn, J.R.; Perdigão, J.; Viveiros, M.; Portugal, I.; Pain, A.; Martin, N.; Clark, T.G. A Robust SNP Barcode for Typing Mycobacterium Tuberculosis Complex Strains. Nat. Commun. 2014, 5, 4812. [Google Scholar] [CrossRef] [Green Version]
- Engohang-Ndong, J.; Baillat, D.; Aumercier, M.; Bellefontaine, F.; Besra, G.S.; Locht, C.; Baulard, A.R. EthR, a Repressor of the TetR/CamR Family Implicated in Ethionamide Resistance in Mycobacteria, Octamerizes Cooperatively on Its Operator. Mol. Microbiol. 2004, 51, 175–188. [Google Scholar] [CrossRef]
- Dover, L.G.; Corsino, P.E.; Daniels, I.R.; Cocklin, S.L.; Tatituri, V.; Besra, G.S.; Fütterer, K. Crystal Structure of the TetR/CamR Family Repressor Mycobacterium Tuberculosis EthR Implicated in Ethionamide Resistance. J. Mol. Biol. 2004, 340, 1095–1105. [Google Scholar] [CrossRef]
- Blondiaux, N.; Moune, M.; Desroses, M.; Frita, R.; Flipo, M.; Mathys, V.; Soetaert, K.; Kiass, M.; Delorme, V.; Djaout, K.; et al. Reversion of Antibiotic Resistance InMycobacterium Tuberculosisby Spiroisoxazoline SMARt-420. Science 2017, 355, 1206–1211. [Google Scholar] [CrossRef]
- Flipo, M.; Frita, R.; Bourotte, M.; Martínez-Martínez, M.S.; Boesche, M.; Boyle, G.W.; Derimanov, G.; Drewes, G.; Gamallo, P.; Ghidelli-Disse, S.; et al. The Small-Molecule SMARt751 Reverses Mycobacterium Tuberculosis Resistance to Ethionamide in Acute and Chronic Mouse Models of Tuberculosis. Sci. Transl. Med. 2022, 14, eaaz6280. [Google Scholar] [CrossRef]
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux Rapport Annuel D’activité. Available online: http://cnrmyctb.free.fr/IMG/pdf/rapport-CNR-MyRMA-2019b_web.pdf (accessed on 16 July 2021).
- Coll, F.; Preston, M.; Guerra-Assunção, J.A.; Hill-Cawthorn, G.; Harris, D.; Perdigão, J.; Viveiros, M.; Portugal, I.; Drobniewski, F.; Gagneux, S.; et al. PolyTB: A Genomic Variation Map for Mycobacterium Tuberculosis. Tuberculosis 2014, 94, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Boonaiam, S.; Chaiprasert, A.; Prammananan, T.; Leechawengwongs, M. Genotypic Analysis of Genes Associated with Isoniazid and Ethionamide Resistance in MDR-TB Isolates from Thailand. Clin. Microbiol. Infect. 2010, 16, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Cho, S.N.; Bang, H.E.; Lee, J.H.; Bai, G.H.; Kim, S.J.; Kim, J.D. Exclusive Mutations Related to Isoniazid and Ethionamide Resistance among Mycobacterium Tuberculosis Isolates from Korea. Int. J. Tuberc. Lung Dis. 2000, 4, 441–447. [Google Scholar]
- Malinga, L.; Brand, J.; Jansen van Rensburg, C.; Cassell, G.; van der Walt, M. Investigation of Isoniazid and Ethionamide Cross-Resistance by Whole Genome Sequencing and Association with Poor Treatment Outcomes of Multidrug-Resistant Tuberculosis Patients in South Africa. Int. J. Mycobacteriol. 2016, 5 (Suppl. S1), S36–S37. [Google Scholar] [CrossRef] [Green Version]
- Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. EthA, InhA, and KatG Loci of Ethionamide-Resistant Clinical Mycobacterium Tuberculosis Isolates. Antimicrob. Agents Chemother. 2003, 47, 3799–3805. [Google Scholar] [CrossRef] [Green Version]
- Rueda, J.; Realpe, T.; Mejia, G.I.; Zapata, E.; Rozo, J.C.; Ferro, B.E.; Robledo, J. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium Tuberculosis Clinical Isolates. Antimicrob. Agents Chemother. 2015, 59, 7805–7810. [Google Scholar] [CrossRef] [Green Version]
- Lefford, M.J.; Mitchison, D.A. Comparison of Methods for Testing the Sensitivity of Mycobacterium Tuberculosis to Ethionamide. Tubercle 1966, 47, 250–261. [Google Scholar] [CrossRef]
- Schön, T.; Juréen, P.; Chryssanthou, E.; Giske, C.G.; Sturegård, E.; Kahlmeter, G.; Hoffner, S.; Angeby, K.A. Wild-Type Distributions of Seven Oral Second-Line Drugs against Mycobacterium Tuberculosis. Int. J. Tuberc. Lung Dis. 2011, 15, 502–509. [Google Scholar] [CrossRef]
- Lakshmi, R.; Ramachandran, R.; Syam Sundar, A.; Rehman, F.; Radhika, G.; Kumar, V. Optimization of the Conventional Minimum Inhibitory Concentration Method for Drug Susceptibility Testing of Ethionamide. Int. J. Mycobacteriol. 2013, 2, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Kaniga, K.; Cirillo, D.M.; Hoffner, S.; Ismail, N.A.; Kaur, D.; Lounis, N.; Metchock, B.; Pfyffer, G.E.; Venter, A. A Multilaboratory, Multicountry Study To Determine MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing of Selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid. J. Clin. Microbiol. 2016, 54, 2963–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, S.S.; Wellington, S.; Kawate, T.; Desjardins, C.A.; Silvis, M.R.; Wivagg, C.; Thompson, M.; Gordon, K.; Kazyanskaya, E.; Nietupski, R.; et al. Baeyer-Villiger Monooxygenases EthA and MymA Are Required for Activation of Replicating and Non-Replicating Mycobacterium Tuberculosis Inhibitors. Cell Chem. Biol. 2016, 23, 666–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, N.D.; Carey, A.F.; Yang, J.; Zhao, Y.; Fortune, S.M. Bacterial Genome-Wide Association Identifies Novel Factors That Contribute to Ethionamide and Prothionamide Susceptibility in Mycobacterium Tuberculosis. MBio 2019, 10, e00616-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grau, T.; Selchow, P.; Tigges, M.; Burri, R.; Gitzinger, M.; Böttger, E.C.; Fussenegger, M.; Sander, P. Phenylethyl Butyrate Enhances the Potency of Second-Line Drugs against Clinical Isolates of Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2012, 56, 1142–1145. [Google Scholar] [CrossRef] [Green Version]
N° of Isolates | Sequencing Results a | ||||
---|---|---|---|---|---|
ethA | inhA Promoter | inhA | ethR | ethA-ethR Intergenic Region | |
1 | M1R | wt | np | wt | wt |
2 | G11S | wt | np | wt | wt |
2 | S15P | c-15t | np | wt | wt |
1 | A19V | g-17t | np | wt | wt |
1 | H22P | wt | np | wt | wt |
1 | H22P | c-15t | np | wt | wt |
3 | H22P | c-15t | np | F110L | wt |
1 | C27W | wt | np | wt | wt |
1 | C27W | g-17t | np | wt | wt |
1 | G36D | wt | np | wt | wt |
1 | G42V, P334A | wt | np | wt | wt |
1 | F48S | wt | np | wt | wt |
1 | Y50C | wt | np | wt | wt |
1 | S55C | wt | np | wt | wt |
1 | F66L, G299D | wt | np | wt | wt |
1 | G78D | c-15t | np | wt | wt |
1 | A89E, S266R | wt | np | wt | wt |
1 | A89E, R99Q, S266R | wt | np | wt | a-9g |
1 | D95N | wt | np | wt | wt |
1 | D95N | c-15t | S94A | wt | wt |
1 | D95N | c-15t | np | wt | wt |
1 | W109 ! | wt | np | wt | wt |
1 | G124D | wt | np | wt | wt |
2 | L136R | t-8a | np | wt | wt |
2 | C137R | wt | np | wt | wt |
1 | G139D | wt | np | wt | wt |
2 | Y140 ! | wt | np | wt | wt |
1 | Y141C, 1367_ins_7nt | wt | np | M142I, Q143K | wt |
1 | Y147 ! | wt | np | wt | wt |
6 | Q165P | wt | np | wt | wt |
2 | W167G | wt | np | wt | wt |
1 | S183R | c-15t | np | wt | wt |
1 | P192S | c-15t | np | wt | wt |
1 | P192T | wt | np | wt | wt |
1 | V202G | wt | np | wt | wt |
1 | Q206 ! | wt | np | wt | wt |
2 | S208 ! | wt | np | wt | wt |
1 | Y211S | c-15t | np | wt | wt |
1 | E223K | c-15t | np | wt | wt |
1 | N226D | wt | np | wt | wt |
3 | V238G | wt | np | wt | wt |
1 | R239L | wt | np | wt | wt |
1 | Q254P | c-15t | np | wt | wt |
1 | W256 ! | wt | np | wt | wt |
4 | P257S | c-15t | np | wt | wt |
3 | S266R | wt | np | wt | wt |
1 | S266R | wt | np | D23G | wt |
9 | Q269 ! | c-15t | np | wt | wt |
1 | Q269 ! | c-15t | np | wt | a-9g |
1 | L272P | wt | np | wt | wt |
4 | H281P | c-15t | np | wt | wt |
1 | C294Y | c-15t | np | wt | wt |
1 | I305N | wt | np | wt | wt |
2 | T314I | wt | np | wt | wt |
2 | T314I | c-15t | np | wt | wt |
1 | T314I | t-8c | np | wt | wt |
1 | I337V | WT | V78A | wt | wt |
3 | I338S | c-15t | np | wt | wt |
1 | T342K | wt | np | wt | wt |
1 | M372R | wt | np | wt | wt |
2 | N379D | wt | np | wt | wt |
1 | G385D | wt | np | wt | wt |
2 | C403R | wt | np | wt | wt |
2 | P422L | wt | np | wt | wt |
2 | L440P | wt | np | wt | wt |
1 | Q449R | wt | np | wt | wt |
1 | D464G | wt | np | wt | wt |
1 | R471P | c-15t | np | wt | wt |
1 | R483T | wt | np | wt | wt |
1 | 32_del_g | wt | np | wt | wt |
1 | 57_ins_4nt | t-8c | np | wt | wt |
1 | 109_del_a | t-8c | np | wt | wt |
19 | 110_del_a | wt | np | wt | wt |
1 | 110_del_a | t-8c | np | wt | wt |
1 | 137_del_a | t-8c | np | wt | wt |
1 | 328_ins_t | wt | np | wt | wt |
1 | 373_ins_a | c-15t | np | wt | wt |
1 | 390_del_c | wt | np | wt | wt |
1 | 437_ins_g | wt | np | wt | wt |
1 | 477_del_g | wt | np | wt | wt |
1 | 509_del_a | wt | np | M102T | wt |
1 | 522_del_c | wt | np | wt | wt |
1 | 537–790_del | wt | np | wt | wt |
1 | 626_del_cc | wt | np | wt | wt |
3 | 639_del_gt | wt | np | wt | wt |
5 | 703_del_t | wt | np | wt | wt |
1 | 751_del_a | wt | np | wt | wt |
1 | 752_ins_g | wt | np | wt | wt |
9 | 768_del_g | wt | np | wt | wt |
1 | 778_del_a | c-15t | np | wt | wt |
2 | 831–837_del | c-15t | np | wt | wt |
4 | 884_del_t | wt | np | wt | wt |
1 | 935_ins_t | wt | np | wt | wt |
1 | 1010_del_t | wt | np | wt | wt |
1 | 1034_del_a | wt | np | wt | wt |
1 | 1054_del_g | t-8c | np | wt | wt |
1 | 1061_ins_c | c-15t | np | wt | wt |
1 | 1222_del_t | wt | np | wt | wt |
6 | 1242_del_t | wt | np | wt | wt |
1 | 1281_ins_a | wt | np | wt | wt |
1 | 1292_del_t | wt | np | wt | wt |
1 | 1292_del_t | wt | np | wt | a-9g |
1 | 1343_del_a | c-15t | np | wt | wt |
1 | 1391_ins_a | c-15t | np | wt | wt |
1 | 1431_ins_t | WT | np | wt | wt |
1 | 1466_del_tt | c-15t | np | wt | wt |
5 | 1470_del_g | wt | np | wt | wt |
1 | 933–1737_del | wt | np | wt | a-40g |
3 | large deletion | wt | np | large deletion | large deletion |
1 | large deletion | wt | np | wt | wt |
1 | wt | wt | S94A | wt | wt |
1 | wt | wt | S94A | wt | wt |
1 | wt | wt | S94A | wt | wt |
8 | wt | wt | wt | wt | a-68g |
1 | wt | wt | wt | T149A | wt |
1 | wt | wt | wt | S131R | wt |
1 | wt | wt | wt | M142I, Q143K | wt |
1 | wt | wt | wt | P195L | wt |
82 | wt | c-15t | np | wt | wt |
93 | wt | wt | WT | wt | wt |
N° of Isolates | Sequencing Results a | ||||
---|---|---|---|---|---|
ethA | inhA Promoter | inhA | ethR | ethA-ethR Intergenic Region | |
2 | I9T | wt | np | wt | wt |
1 | G11D | wt | np | wt | wt |
2 | D95N, 768_del_g | wt | np | wt | wt |
1 | C131Y | wt | np | wt | wt |
2 | W167S, S266R | wt | np | S131R | wt |
1 | I178S | wt | np | wt | wt |
3 | S266R | wt | np | wt | wt |
1 | C294Y | wt | np | wt | wt |
1 | T314I | wt | np | wt | wt |
1 | P334A | wt | np | wt | wt |
1 | N379D | wt | np | wt | wt |
1 | 110_del_a | wt | np | wt | wt |
1 | 382_ins_g | wt | np | wt | wt |
1 | 626_del_cc | wt | np | wt | wt |
3 | 703_del_t | wt | np | wt | wt |
2 | 768_del_g | wt | np | wt | wt |
1 | 851_ins_c | wt | np | wt | wt |
1 | 935_ins_t | wt | np | wt | wt |
1 | 1034_del_a | wt | np | wt | wt |
1 | 1242_del_t | wt | np | wt | wt |
1 | wt | wt | np | 65_ins_cg | wt |
2 | wt | c-15t | np | wt | wt |
79 | wt | wt | np | wt | wt |
Criteria Used to Interpret the Mutations | Sensitivity | Specificity | PPV a | NPV b |
---|---|---|---|---|
none c | 78.6 | 71.8 | 90.7 | 48.8 |
none, ethR mutations excluded | 74.9 | 72.7 | 90.6 | 45.2 |
none, polymorphisms excluded | 77.8 | 76.4 | 92 | 49.4 |
none, polymorphisms and ethR mutations excluded | 75.2 | 76.4 | 91.8 | 46.7 |
WHO catalogue only | 36.7 | 98.2 | 98.6 | 30.6 |
WHO catalogue + databases | 53.2 | 98.2 | 99.0 | 37.4 |
WHO catalogue + databases (ethR mutation excluded) | 52.9 | 98.2 | 99.0 | 37.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maitre, T.; Morel, F.; Brossier, F.; Sougakoff, W.; Jaffre, J.; Cheng, S.; Veziris, N.; Aubry, A.; on behalf of the NRC-MyRMA. How a PCR Sequencing Strategy Can Bring New Data to Improve the Diagnosis of Ethionamide Resistance. Microorganisms 2022, 10, 1436. https://doi.org/10.3390/microorganisms10071436
Maitre T, Morel F, Brossier F, Sougakoff W, Jaffre J, Cheng S, Veziris N, Aubry A, on behalf of the NRC-MyRMA. How a PCR Sequencing Strategy Can Bring New Data to Improve the Diagnosis of Ethionamide Resistance. Microorganisms. 2022; 10(7):1436. https://doi.org/10.3390/microorganisms10071436
Chicago/Turabian StyleMaitre, Thomas, Florence Morel, Florence Brossier, Wladimir Sougakoff, Jéremy Jaffre, Sokleaph Cheng, Nicolas Veziris, Alexandra Aubry, and on behalf of the NRC-MyRMA. 2022. "How a PCR Sequencing Strategy Can Bring New Data to Improve the Diagnosis of Ethionamide Resistance" Microorganisms 10, no. 7: 1436. https://doi.org/10.3390/microorganisms10071436
APA StyleMaitre, T., Morel, F., Brossier, F., Sougakoff, W., Jaffre, J., Cheng, S., Veziris, N., Aubry, A., & on behalf of the NRC-MyRMA. (2022). How a PCR Sequencing Strategy Can Bring New Data to Improve the Diagnosis of Ethionamide Resistance. Microorganisms, 10(7), 1436. https://doi.org/10.3390/microorganisms10071436