“Don’t Look Up” Your Science—Herd Immunity or Herd Mentality?
Abstract
:1. How Much of a Threat Is/Was SARS-CoV-2?
2. How Not to Vaccinate Ourselves out of a Pandemic
3. All That Glitters Is Not Gold
4. SARS-CoV-2 Vaccines and Herd Immunity—A Fictional Romance
5. Alternative Measures to Vaccines to Fight the Pandemic
6. Discredited Science
7. Layman’s Summary
Funding
Acknowledgments
Conflicts of Interest
Statement
References
- O’Driscoll, M.; Ribeiro Dos Santos, G.; Wang, L.; Cummings, D.A.T.; Azman, A.S.; Paireau, J.; Fontanet, A.; Cauchemez, S.; Salje, H. Age-Specific Mortality and Immunity Patterns of SARS-CoV-2. Nature 2021, 590, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A. Infection Fatality Rate of COVID-19 Inferred from Seroprevalence Data. Bull. World Health Organ. 2021, 99, 19. [Google Scholar] [CrossRef] [PubMed]
- COVID Infection Fatality Rates by Sex and Age|American Council on Science and Health. Available online: https://www.acsh.org/news/2020/11/18/covid-infection-fatality-rates-sex-and-age-15163 (accessed on 22 February 2022).
- RSV in Older Adults and Adults with Chronic Medical Conditions|CDC. Available online: https://www.cdc.gov/rsv/high-risk/older-adults.html (accessed on 22 February 2022).
- Pastor-Barriuso, R.; Pérez-Gómez, B.; Hernán, M.A.; Pérez-Olmeda, M.; Yotti, R.; Oteo-Iglesias, J.; Sanmartín, J.L.; León-Gómez, I.; Fernández-García, A.; Fernández-Navarro, P.; et al. Infection Fatality Risk for SARS-CoV-2 in Community Dwelling Population of Spain: Nationwide Seroepidemiological Study. BMJ 2020, 371, m4509. [Google Scholar] [CrossRef] [PubMed]
- Piroth, L.; Cottenet, J.; Mariet, A.S.; Bonniaud, P.; Blot, M.; Tubert-Bitter, P.; Quantin, C. Comparison of the Characteristics, Morbidity, and Mortality of COVID-19 and Seasonal Influenza: A Nationwide, Population-Based Retrospective Cohort Study. Lancet Respir. Med. 2021, 9, 251–259. [Google Scholar] [CrossRef]
- Suzuki, R.; Yamasoba, D.; Kimura, I.; Wang, L.; Kishimoto, M.; Ito, J.; Morioka, Y.; Nao, N.; Nasser, H.; Uriu, K.; et al. Attenuated Fusogenicity and Pathogenicity of SARS-CoV-2 Omicron Variant. Nature 2022, 603, 700–705. [Google Scholar] [CrossRef]
- COVID-19 Omicron: South African GP Who Raised Alarm about Omicron Says She Was Pressured Not to Call It “mild”—NZ Herald. Available online: https://www.nzherald.co.nz/world/covid-19-omicron-south-african-gp-who-raised-alarm-about-omicron-says-she-was-pressured-not-to-call-it-mild/XJ5H7I6E2LKVM5S655ET5HLIWI/ (accessed on 22 February 2022).
- Hospitals Overwhelmed by Flu Patients Are Treating Them in Tents—Time. Available online: https://time.com/5107984/hospitals-handling-burden-flu-patients/ (accessed on 22 February 2022).
- California Hospitals Face a “war Zone” of Flu Patients—And Are Setting up Tents to Treat Them—Los Angeles Times. Available online: https://www.latimes.com/local/lanow/la-me-ln-flu-demand-20180116-htmlstory.html (accessed on 22 February 2022).
- Hospitals Overwhelmed by Surge of Flu Cases—The Globe and Mail. Available online: https://www.theglobeandmail.com/life/health-and-fitness/hospitals-overwhelmed-by-surge-of-flu-cases/article562037/ (accessed on 22 February 2022).
- CDC. Summary of the 2014–2015 Influenza Season|CDC. Available online: https://www.cdc.gov/flu/pastseasons/1415season.htm?web=1&wdLOR=c7EA93F1F-3B80-8440-9352-0704A9572F9B (accessed on 22 February 2022).
- Disease Burden of Flu|CDC. Available online: https://www.cdc.gov/flu/about/burden/index.html (accessed on 22 February 2022).
- World Health Organization. International Guidelines for Certification and Classification (Coding) of COVID-19 as Cause of Death; WHO: Geneva, Switzerland, 2020; p. 14. Available online: https://www.who.int/docs/default-source/classification/icd/covid-19/guidelines-cause-of-death-covid-19-20200420-en.pdf?sfvrsn=35fdd864_2 (accessed on 22 February 2022).
- Rethinking COVID-19 Mortality Statistics|American Council on Science and Health. Available online: https://www.acsh.org/news/2020/05/27/rethinking-covid-19-mortality-statistics-14811 (accessed on 22 February 2022).
- Centers for Disease Control and Prevention. COVID-19 Provisional Counts—Weekly Updates by Select Demographic and Geographic Characteristics; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Is a Patient Hospitalized ‘with’ COVID or ‘for’ COVID? It Can Be Hard to Tell—The Washington Post. Available online: https://www.washingtonpost.com/outlook/2022/01/07/hospitalization-covid-statistics-incidental/ (accessed on 22 May 2022).
- Reduced Severity of Omicron Illness Shifts Focus from Case Numbers to Hospitalizations. Available online: https://www.msnbc.com/rachel-maddow/watch/reduced-severity-of-omicron-illness-shifts-focus-from-case-numbers-to-hospitalizations-129807429857 (accessed on 22 May 2022).
- Velavan, T.P.; Pallerla, S.R.; Kremsner, P.G. How to (Ab)Use a COVID-19 Antigen Rapid Test with Soft Drinks? Int. J. Infect. Dis. 2021, 111, 28–30. [Google Scholar] [CrossRef]
- Liu, G.; Rusling, J.F. COVID-19 Antibody Tests and Their Limitations. ACS Sens. 2021, 6, 593–612. [Google Scholar] [CrossRef]
- Your Coronavirus Test Is Positive. Maybe It Shouldn’t Be—New York Times. Available online: https://www.nytimes.com/2020/08/29/health/coronavirus-testing.html (accessed on 22 February 2022).
- Fact-Check: Do Hospitals Get Paid More to List Patients as Having Coronavirus? Available online: https://www.statesman.com/story/news/politics/elections/2020/04/22/fact-check-do-hospitals-get-paid-more-to-list-patients-as-having-coronavirus/984130007/ (accessed on 22 February 2022).
- Scopelliti, M.; Pacilli, M.G.; Aquino, A. TV News and COVID-19: Media Influence on Healthy Behavior in Public Spaces. Int. J. Environ. Res. Public Health 2021, 18, 1879. [Google Scholar] [CrossRef]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Prim. 2018, 4, 3. [Google Scholar] [CrossRef]
- Soema, P.C.; Kompier, R.; Amorij, J.P.; Kersten, G.F.A. Current and next Generation Influenza Vaccines: Formulation and Production Strategies. Eur. J. Pharm. Biopharm. 2015, 94, 251–263. [Google Scholar] [CrossRef]
- Houser, K.; Subbarao, K. Influenza Vaccines: Challenges and Solutions. Cell Host Microbe 2015, 17, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. The Coronavirus Is Mutating—Does It Matter? Nature 2020, 585, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 428–440. [Google Scholar]
- Fehervari, Z.; Minton, K.; Duarte, J.H. Nature Milestones in Vaccines; Springer Nature: London, UK, 2020; pp. S3–S25. [Google Scholar]
- Wang, Y.; Yang, C.; Song, Y.; Coleman, J.R.; Stawowczyk, M.; Tafrova, J.; Tasker, S.; Boltz, D.; Baker, R.; Garcia, L.; et al. Scalable Live-Attenuated SARS-CoV-2 Vaccine Candidate Demonstrates Preclinical Safety and Efficacy. Proc. Natl. Acad. Sci. USA 2021, 118, e2102775118. [Google Scholar] [CrossRef] [PubMed]
- Nasal Vaccination May Protect Against Respiratory Viruses Better Than Injected Vaccines < Yale School of Medicine. Available online: https://medicine.yale.edu/news-article/nasal-vaccines-may-protect-against-respiratory-viruses-better-than-injected-vaccines/ (accessed on 22 February 2022).
- Afkhami, S.; D’Agostino, M.R.; Zhang, A.; Stacey, H.D.; Marzok, A.; Kang, A.; Singh, R.; Bavananthasivam, J.; Ye, G.; Luo, X.; et al. Respiratory Mucosal Delivery of Next-Generation COVID-19 Vaccine Provides Robust Protection against Both Ancestral and Variant Strains of SARS-CoV-2. Cell 2022, 185. [Google Scholar] [CrossRef]
- Lund, F.E.; Randall, T.D. Scent of a Vaccine. Science 2021, 373, 397–399. [Google Scholar] [CrossRef]
- Sterlin, D.; Mathian, A.; Miyara, M.; Mohr, A.; Anna, F.; Claër, L.; Quentric, P.; Fadlallah, J.; Devilliers, H.; Ghillani, P.; et al. IgA Dominates the Early Neutralizing Antibody Response to SARS-CoV-2. Sci. Transl. Med. 2021, 13, 2223. [Google Scholar] [CrossRef]
- Ghattas, M.; Dwivedi, G.; Lavertu, M.; Alameh, M.G. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines 2021, 9, 1490. [Google Scholar] [CrossRef]
- Johnson, R.M.; Doshi, P.; Healy, D. COVID-19: Should Doctors Recommend Treatments and Vaccines When Full Data Are Not Publicly Available? BMJ 2020, 370. [Google Scholar] [CrossRef]
- Tanveer, S.; Rowhani-Farid, A.; Hong, K.; Jefferson, T.; Doshi, P. Transparency of COVID-19 Vaccine Trials: Decisions without Data. BMJ Evid. Based Med. 2021. [Google Scholar] [CrossRef]
- Operation Warp Speed—Wikipedia. Available online: https://en.wikipedia.org/wiki/Operation_Warp_Speed (accessed on 22 February 2022).
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Doshi, P. Will COVID-19 Vaccines Save Lives? Current Trials Aren’t Designed to Tell Us. BMJ 2020, 371, m4307. [Google Scholar] [CrossRef] [PubMed]
- Understanding Relative Risk Reduction (RRR) and Absolute Risk Reduction (ARR) in Vaccine Trials—PANDA. Available online: https://www.pandata.org/understanding-relative-risk-reduction-and-absolute-risk-reduction-in-vaccine-trials/ (accessed on 22 February 2022).
- Olliaro, P.; Torreele, E.; Vaillant, M. COVID-19 Vaccine Efficacy and Effectiveness—the Elephant (Not) in the Room. Lancet Microbe 2021, 2, e279–e280. [Google Scholar] [CrossRef]
- Doshi, P. COVID-19 Vaccines: In the Rush for Regulatory Approval, Do We Need More Data? BMJ 2021, 373, n1244. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.B. Outcome Reporting Bias in COVID-19 Mrna Vaccine Clinical Trials. Medicina 2021, 57, 199. [Google Scholar] [CrossRef]
- CHMP. Committee for Medicinal Products for Human Use (CHMP) Assessment Report Comirnaty Common Name: COVID-19 MRNA Vaccine (Nucleoside-Modified). CHMP. 2021. Available online: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf (accessed on 22 February 2022).
- Ndeupen, S.; Qin, Z.; Jacobsen, S.; Bouteau, A.; Estanbouli, H.; Igyártó, B.Z. The MRNA-LNP Platform’s Lipid Nanoparticle Component Used in Preclinical Vaccine Studies Is Highly Inflammatory. iScience 2021, 24. [Google Scholar] [CrossRef]
- Igyártó, B.Z.; Jacobsen, S.; Ndeupen, S. Future Considerations for the MRNA-Lipid Nanoparticle Vaccine Platform. Curr. Opin. Virol. 2021, 48, 65–72. [Google Scholar] [CrossRef]
- Ndeupen, S.; Bouteau, A.; Herbst, C.; Qin, Z.; Jacobsen, S.; Powers, N.E.; Hutchins, Z.; Kurup, D.; Diba, L.Z.; Watson, M.; et al. Langerhans Cells and CDC1s Play Redundant Roles in MRNA-LNP Induced Protective Anti-Influenza and Anti-SARS-CoV-2 Immune Responses. PLoS Pathog. 2022, 18, e1010255. [Google Scholar] [CrossRef]
- Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; et al. Lipid Nanoparticles Enhance the Efficacy of MRNA and Protein Subunit Vaccines by Inducing Robust T Follicular Helper Cell and Humoral Responses. Immunity 2021, 54, 2877–2892.e7. [Google Scholar] [CrossRef]
- Föhse, F.K.; Geckin, B.; Overheul, G.J.; van de Maat, J.; Kilic, G.; Bulut, O.; Dijkstra, H.; Lemmers, H.; Sarlea, S.A.; Reijnders, M.; et al. The BNT162b2 MRNA Vaccine Against SARS-CoV-2 Reprograms Both Adaptive and Innate Immune Responses. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Qin, Z.; Igyártó, B.Z. Pre-Exposure to MRNA-LNPs Reprograms Adaptive and Innate Immune Responses in an Inheritable Fashion. bioRxiv 2022. [Google Scholar] [CrossRef]
- Centers for Disease Control. The Vaccine Adverse Event Reporting System (VAERS) Request. Available online: https://wonder.cdc.gov/vaers.html (accessed on 23 February 2022).
- Singleton, J.A.; Lloyd, J.C.; Mootrey, G.T.; Salive, M.E.; Chen, R.T. An Overview of the Vaccine Adverse Event Reporting System (VAERS) as a Surveillance System. Vaccine 1999, 17, 2908–2917. [Google Scholar] [CrossRef]
- Seneff, S.; Nigh, G.; Kyriakopoulos, A.M.; McCullough, P.A. Innate Immune Suppression by SARS-CoV-2 MRNA Vaccinations: The Role of G-Quadruplexes, Exosomes, and MicroRNAs. Food Chem. Toxicol. 2022, 164, 113008. [Google Scholar] [CrossRef] [PubMed]
- Vaccine Safety Publications|Research|Vaccine Safety|CDC. Available online: https://www.cdc.gov/vaccinesafety/research/publications/index.html (accessed on 22 May 2022).
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 MRNA Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Oldfield, P.R.; Hibberd, J.; Bridle, B.W. How Does Severe Acute Respiratory Syndrome-Coronavirus-2 Affect the Brain and Its Implications for the Vaccines Currently in Use. Vaccines 2022, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, M.; Nawaz, M.; Papadimitriou, A.; Angerfors, A.; Camponeschi, A.; Na, M.; Hölttä, M.; Skantze, P.; Johansson, S.; Sundqvist, M.; et al. Linkage between Endosomal Escape of LNP-MRNA and Loading into EVs for Transport to Other Cells. Nat. Commun. 2019, 10, 4333. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Tuyishime, S.; Muramatsu, H.; Karikó, K.; Mui, B.L.; Tam, Y.K.; Madden, T.D.; Hope, M.J.; Weissman, D. Expression Kinetics of Nucleoside-Modified MRNA Delivered in Lipid Nanoparticles to Mice by Various Routes. J. Control. Release 2015, 217, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Perincheri, S.; Fleming, T.; Poulson, C.; Tiffany, B.; Bremner, R.M.; Mohanakumar, T. Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer–BioNTech) Vaccination Prior to Development of Antibodies: A Novel Mechanism for Immune Activation by MRNA Vaccines. J. Immunol. 2021, 207, 2405–2410. [Google Scholar] [CrossRef]
- Moderna Assessment Report COVID-19 Vaccine Moderna Common; EMA/15689/2021 Corr.1*1. 2021, Volume 31, pp. 1–169. Available online: https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf (accessed on 22 February 2022).
- Aldén, M.; Olofsson Falla, F.; Yang, D.; Barghouth, M.; Luan, C.; Rasmussen, M.; De Marinis, Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 MRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 2022, 44, 1115–1126. [Google Scholar] [CrossRef]
- Merchant, H.A. Comment on ‘Aldén et al. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 MRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 2022, 44, 1115–1126’. Curr. Issues Mol. Biol. 2022, 44, 1661–1663. [Google Scholar] [CrossRef]
- Le Moel, M.-M. AstraZeneca Promises Virus Vaccine at Cost Price Worldwide. Available online: https://medicalxpress.com/news/2020-11-astrazeneca-virus-vaccine-price-worldwide.html (accessed on 22 May 2022).
- Brown, C.M.; Vostok, J.; Johnson, H.; Burns, M.; Gharpure, R.; Sami, S.; Sabo, R.T.; Hall, N.; Foreman, A.; Schubert, P.L.; et al. Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings—Barnstable County, Massachusetts, July 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1059–1062. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Report SARS-CoV-2 B.1.1.529 (Omicron) Variant-United States. Available online: https://www.cdc.gov/mmwr/volumes/70/wr/mm7050e1.htm (accessed on 22 May 2022).
- Yahi, N.; Chahinian, H.; Fantini, J. Infection-Enhancing Anti-SARS-CoV-2 Antibodies Recognize Both the Original Wuhan/D614G Strain and Delta Variants. A Potential Risk for Mass Vaccination? J. Infect. 2021, 83, 607–635. [Google Scholar] [CrossRef] [PubMed]
- Maemura, T.; Kuroda, M.; Armbrust, T.; Yamayoshi, S.; Halfmann, P.J.; Kawaoka, Y. Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors FcgRIIA and FcgRIIIA but Does Not Contribute to Aberrant Cytokine Production by Macrophages. mBio 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 Vaccination Induces Immunological T Cell Memory Able to Cross-Recognize Variants from Alpha to Omicron. Cell 2022, 185, 847–859.e11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Galvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and Cellular Immune Memory to Four COVID-19 Vaccines. bioRxiv 2022. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Boosters Administered. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/booster-shot.html (accessed on 22 May 2022).
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after Breakthrough SARS-CoV-2 Infection. Nat. Med. 2022. [Google Scholar] [CrossRef]
- Marek’s Disease—Wikipedia. Available online: https://en.wikipedia.org/wiki/Marek%27s_disease (accessed on 23 February 2022).
- Read, A.F.; Baigent, S.J.; Powers, C.; Kgosana, L.B.; Blackwell, L.; Smith, L.P.; Kennedy, D.A.; Walkden-Brown, S.W.; Nair, V.K. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLoS Biol. 2015, 13. [Google Scholar] [CrossRef]
- CDC. Flu Symptoms & Complications. CDC. 2020. Available online: https://www.cdc.gov/flu/symptoms/symptoms.htm (accessed on 22 February 2022).
- Ferris Jabr How Does the Flu Actually Kill People?—Scientific American. Available online: https://www.scientificamerican.com/article/how-does-the-flu-actually-kill-people/ (accessed on 23 February 2022).
- Here’s How the Flu Virus Kills Some People so Quickly. Available online: https://www.nbcnews.com/health/health-news/here-s-how-flu-virus-kills-some-people-so-quickly-n839936 (accessed on 23 February 2022).
- COVID-19 vs. the Flu|Johns Hopkins Medicine. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/coronavirus-disease-2019-vs-the-flu (accessed on 23 February 2022).
- Bohmwald, K.; Andrade, C.A.; Gálvez, N.M.S.; Mora, V.P.; Muñoz, J.T.; Kalergis, A.M. The Causes and Long-Term Consequences of Viral Encephalitis. Front. Cell. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Proal, A.; Marshall, T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering with Host Metabolism, Gene Expression, and Immunity. Front. Pediatr. 2018, 6, 373. [Google Scholar] [CrossRef]
- Sellers, S.A.; Hagan, R.S.; Hayden, F.G.; Fischer, W.A. The Hidden Burden of Influenza: A Review of the Extra-Pulmonary Complications of Influenza Infection. Influenza Other Respi. Viruses 2017, 11, 372–393. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Kountouras, J.; Gialamprinou, D.; Kotronis, G.; Papaefthymiou, A.; Economidou, E.; Soteriades, E.S.; Vardaka, E.; Chatzopoulos, D.; Tzitiridou-Chatzopoulou, M.; et al. Medicina Ofeleein i Mi Vlaptin-Volume II: Immunity Following Infection or MRNA Vaccination, Drug Therapies and Non-Pharmacological Management at Post-Two Years SARS-CoV-2 Pandemic. Medicina 2022, 58, 309. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: Results of an Open-Label Non-Randomized Clinical Trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- ISAC Statement on IJAA Paper|International Society of Antimicrobial Chemotherapy. Available online: https://www.isac.world/news-and-publications/official-isac-statement (accessed on 23 February 2022).
- Borba, M.G.S.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Brito, M.; Mourão, M.P.G.; Brito-Sousa, J.D.; Baía-da-Silva, D.; Guerra, M.V.F.; et al. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e208857. [Google Scholar] [CrossRef] [PubMed]
- Magagnoli, J.; Narendran, S.; Pereira, F.; Cummings, T.H.; Hardin, J.W.; Sutton, S.S.; Ambati, J. Outcomes of Hydroxychloroquine Usage in United States Veterans Hospitalized with COVID-19. Med 2020, 1, 114–127.e3. [Google Scholar] [CrossRef] [PubMed]
- Marks, S. Djibouti Is Treating All COVID Patients with Chloroquine, But Scientists Urge Caution. Available online: https://www.voanews.com/a/covid-19-pandemic_djibouti-treating-all-covid-patients-chloroquine-scientists-urge-caution/6189680.html (accessed on 23 February 2022).
- Belayneh, A. Off-Label Use of Chloroquine and Hydroxychloroquine for COVID-19 Treatment in Africa Against WHO Recommendation. Res. Rep. Trop. Med. 2020, 11, 61–72. [Google Scholar] [CrossRef]
- WHO. WHO Regional Office for Africa COVID-19 Rapid Policy Brief Series Series 10: COVID-19 and Tuberculosis; World Health Organization: Geneva, Switzerland, 2021.
- Musa, H.H.; Musa, T.H.; Musa, I.H.; Musa, I.H.; Ranciaro, A.; Campbell, M.C. Addressing Africa’s Pandemic Puzzle: Perspectives on COVID-19 Transmission and Mortality in Sub-Saharan Africa. Int. J. Infect. Dis. 2021, 102, 483–488. [Google Scholar] [CrossRef]
- O’Neill, L.A.J.; Netea, M.G. BCG-Induced Trained Immunity: Can It Offer Protection against COVID-19? Nat. Rev. Immunol. 2020, 20, 335–337. [Google Scholar] [CrossRef]
- Chaudhari, V.; Godbole, C.; Gandhe, P.; Gogtay, N.; Thatte, U. Association of Bacillus Calmette Guerin Vaccine Strains with COVID-19 Morbidity and Mortality—Evaluation of Global Data. Indian J. Community Med. 2021, 46, 727–730. [Google Scholar] [CrossRef]
- Ghosh, D.; Jonathan, A.; Mersha, T.B. COVID-19 Pandemic: The African Paradox. J. Glob. Health 2020, 10, 20348. [Google Scholar] [CrossRef]
- Cohen, J.; Kupferschmidt, K. A Very, Very Bad Look’ for Remdesivir. Science 2020, 370, 642–643. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in Adults with Severe COVID-19: A Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef]
- Norrie, J.D. Remdesivir for COVID-19: Challenges of Underpowered Studies. Lancet 2020, 395, 1525–1527. [Google Scholar] [CrossRef]
- Pan, H.; Peto, R.; Henao-Restrepo, A.; Preziosi, M.; Sathi-yamoorthy, V.; Abdool Karim, Q.; Ale-jandria, M.; Hernández García, C.; Kie-ny, M.; Malekzadeh, R.; et al. Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Researchers Changed Criteria for Assessing Gilead’s Drug Remdesivir in Coronavirus Treatment Trials—The Washington Post. Available online: https://www.washingtonpost.com/business/2020/05/01/government-researchers-changed-metric-measure-coronavirus-drug-remdesivir-during-clinical-trial/ (accessed on 23 February 2022).
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Remdesivir Shows Modest Benefits in Coronavirus Trial—The New York Times. Available online: https://www.nytimes.com/2020/04/29/health/gilead-remdesivir-coronavirus.html (accessed on 23 February 2022).
- Gérard, A.O.; Laurain, A.; Fresse, A.; Parassol, N.; Muzzone, M.; Rocher, F.; Esnault, V.L.M.; Drici, M.D. Remdesivir and Acute Renal Failure: A Potential Safety Signal From Disproportionality Analysis of the WHO Safety Database. Clin. Pharmacol. Ther. 2021, 109, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.P.; Forleo-Neto, E.; Musser, B.J.; Isa, F.; Chan, K.-C.; Sarkar, N.; Bar, K.J.; Barnabas, R.V.; Barouch, D.H.; Cohen, M.S.; et al. Subcutaneous REGEN-COV Antibody Combination to Prevent COVID-19. N. Engl. J. Med. 2021, 385, 1184–1195. [Google Scholar] [CrossRef]
- Kenneth Weir, E.; Thenappan, T.; Bhargava, M.; Chen, Y. Does Vitamin D Deficiency Increase the Severity of COVID-19? Clin. Med. J. R. Coll. Physicians Lond. 2020, 20, E107–E108. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence That Vitamin d Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef]
- Bae, J.H.; Choe, H.J.; Holick, M.F.; Lim, S. Association of Vitamin D Status with COVID-19 and Its Severity: Vitamin D and COVID-19: A Narrative Review. Rev. Endocr. Metab. Disord. 2022, 1, 3. [Google Scholar] [CrossRef]
- Mitchell, F. Vitamin-D and COVID-19: Do Deficient Risk a Poorer Outcome? Lancet Diabetes Endocrinol. 2020, 8, 570. [Google Scholar] [CrossRef]
- Vaughan, M.; Trott, M.; Sapkota, R.; Premi, G.; Roberts, J.; Ubhi, J.; Smith, L.; Pardhan, S. Changes in 25-Hydroxyvitamin D Levels Post-Vitamin D Supplementation in People of Black and Asian Ethnicities and Its Implications during COVID-19 Pandemic: A Systematic Review. J. Hum. Nutr. Diet. 2021. [Google Scholar] [CrossRef]
- Getachew, B.; Tizabi, Y. Vitamin D and COVID-19: Role of ACE2, Age, Gender, and Ethnicity. J. Med. Virol. 2021, 93, 5285–5294. [Google Scholar] [CrossRef]
- Kulldorff, M.; Gupta, S.; Bhattacharya, J. Great Barrington Declaration. Available online: https://gbdeclaration.org/ (accessed on 23 February 2022).
- NIH Director Francis Collins Wanted a “Take-Down” to Stifle COVID-19 Debate. Available online: https://www.statnews.com/2021/12/23/at-a-time-when-the-u-s-needed-covid-19-dialogue-between-scientists-francis-collins-moved-to-shut-it-down/ (accessed on 23 February 2022).
- Thacker, P.D. COVID-19: Researcher Blows the Whistle on Data Integrity Issues in Pfizer’s Vaccine Trial. BMJ 2021, 375, n2635. [Google Scholar] [CrossRef] [PubMed]
- How Can Peter Daszak Be Part of WHO’s Team Investigating the Original Source of the Outbreak?|Daily Mail Online. Available online: https://www.dailymail.co.uk/news/article-9129749/How-Peter-Daszak-WHOs-team-investigating-original-source-outbreak.html (accessed on 23 February 2022).
- Wait What? FDA Wants 55 Years to Process FOIA Request over Vaccine Data|Reuters. Available online: https://www.reuters.com/legal/government/wait-what-fda-wants-55-years-process-foia-request-over-vaccine-data-2021-11-18/ (accessed on 23 February 2022).
- Forget 55 Years, FDA Now Says Will Take 75 Years to Release Pfizer COVID Vaccine Data—Election Central. Available online: https://www.uspresidentialelectionnews.com/2021/12/forget-55-years-fda-now-says-will-take-75-years-to-release-pfizer-covid-vaccine-data/ (accessed on 23 February 2022).
- CDC Interim Guidelines for Biosafety and COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/lab-biosafety-guidelines.html (accessed on 23 February 2022).
- Index—Belföld—A Nobel-Díj Szégyene Lenne, Ha Jövőre Nem Kapná Meg Karikó Katalin. Available online: https://index.hu/belfold/2021/12/18/ha-jovore-nem-kapja-meg-kariko-a-dijat-az-a-nobel-szegyene-lesz/ (accessed on 23 February 2022).
- Remarks by President Biden Laying Out the Next Steps in Our Effort to Get More Americans Vaccinated and Combat the Spread of the Delta Variant|The White House. Available online: https://www.whitehouse.gov/briefing-room/speeches-remarks/2021/07/29/remarks-by-president-biden-laying-out-the-next-steps-in-our-effort-to-get-more-americans-vaccinated-and-combat-the-spread-of-the-delta-variant/ (accessed on 23 February 2022).
- Banholzer, N.; Lison, A.; Vach, W. Comment on “A Literature Review and Meta-Analysis of the Effects of Lockdowns on COVID-19 Mortality”. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Herby, J.; Jonung, L.; Hanke, S.H. A Literature Review and Meta-Analysis of the Effects of Lockdowns on COVID-19 Mortality. Available online: https://sites.krieger.jhu.edu/iae/files/2022/01/A-Literature-Review-and-Meta-Analysis-of-the-Effects-of-Lockdowns-on-covid-19-Mortality.pdf (accessed on 22 May 2022).
- Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et al. Estimating the Effects of Non-Pharmaceutical Interventions on COVID-19 in Europe. Nature 2020, 584, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Expert Reaction to a Preprint Looking at the Impact of Lockdowns, as Posted on the Johns Hopkins Krieger School of Arts and Sciences Website|Science Media Centre. Available online: https://www.sciencemediacentre.org/expert-reaction-to-a-preprint-looking-at-the-impact-of-lockdowns-as-posted-on-the-john-hopkins-krieger-school-of-arts-and-sciences-website/ (accessed on 22 May 2022).
- Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T.; et al. Estimating Excess Mortality Due to the COVID-19 Pandemic: A Systematic Analysis of COVID-19-Related Mortality, 2020–21. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igyártó, B.Z. “Don’t Look Up” Your Science—Herd Immunity or Herd Mentality? Microorganisms 2022, 10, 1463. https://doi.org/10.3390/microorganisms10071463
Igyártó BZ. “Don’t Look Up” Your Science—Herd Immunity or Herd Mentality? Microorganisms. 2022; 10(7):1463. https://doi.org/10.3390/microorganisms10071463
Chicago/Turabian StyleIgyártó, Botond Z. 2022. "“Don’t Look Up” Your Science—Herd Immunity or Herd Mentality?" Microorganisms 10, no. 7: 1463. https://doi.org/10.3390/microorganisms10071463
APA StyleIgyártó, B. Z. (2022). “Don’t Look Up” Your Science—Herd Immunity or Herd Mentality? Microorganisms, 10(7), 1463. https://doi.org/10.3390/microorganisms10071463