The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Conditions
2.2. Hydrolysis of β-Casein
2.3. Determination of Hydrolytic Capacity
2.4. Identification and Analysis of Hydrolysates
2.5. Exploration of the Gene of Proteolytic Enzymes
2.6. Analysis of Gene Expression of Proteolytic Enzymes
2.7. Statistics
3. Results
3.1. Determination of Protease Hydrolysis Capacity
3.2. Identification and Analysis of Hydrolysates
3.3. Analysis of Related Enzyme Composition of Proteolytic System
3.4. Analysis of CEP Gene Expression
3.5. Analysis of Polypeptide Transporter Gene Expression
3.6. Analysis of Endopeptidase Gene Expression
3.6.1. Analysis of Aminopeptidase Expression
3.6.2. Endopeptidase
3.6.3. Dipeptidase and Tripeptidase
3.6.4. Proline Peptidase
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guédon, E.; Renault, P.; Ehrlich, S.D.; Delorme, C. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J. Bacteriol. 2001, 183, 3614–3622. [Google Scholar] [CrossRef] [PubMed]
- Wee, Y.; Kim, H.; Yun, J.; Ryu, H.W. Pilot-scale lactic acid production via batch culturing of Lactobacillus sp. RKY2 using corn steep liquor as a nitrogen source. Food Technol. Biotechnol. 2006, 44, 293–298. [Google Scholar]
- Christensen, J.E.; Dudley, E.G.; Pederson, J.A.; Steele, J.L. Peptidases and amino acid catabolism in lactic acid bacteria. Anton. Leeuw. Int. J. G 2004, 76, 217–246. [Google Scholar] [CrossRef]
- Bolotin, A.; Wincker, P.; Mauger, S.; Jaillon, O.; Malarme, K.; Weissenbach, J.; Ehrlich, S.D.; Sorokin, A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001, 11, 731–753. [Google Scholar] [CrossRef] [PubMed]
- Siezen, R.J. Multi-domain, cell-envelope proteinases of lactic acid bacteria. Anton. Leeuw. Int. J. G 2004, 76, 139–155. [Google Scholar] [CrossRef]
- Wu, C.; Huang, J.; Zhou, R. Genomics of lactic acid bacteria: Current status and potential applications. Crit. Rev. Microbiol. 2017, 43, 393–404. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Wen, R.; Chen, Q.; Kong, B. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: A review. Crit. Rev. Food Sci. 2020, 62, 2741–2755. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Shoukat, S.; Hongfei, Z.; Bolin, Z. Peptidomic analysis of ace inhibitory peptides extracted from fermented goat milk. Int. J. Pept. Res. Ther. 2019, 25, 1259–1270. [Google Scholar] [CrossRef]
- Zhechko, D.; Elena, C.; Irina, G.; Svetla, I. Selected adjunct cultures remarkably increase the content of bioactive peptides in Bulgarian white brined cheese. Biotechnol. Biotechnol. Equip. 2015, 29, 78–83. [Google Scholar]
- Daba, G.M.; Elkhateeb, W.A. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatal. Agric. Biotechnol. 2020, 28, 101750. [Google Scholar] [CrossRef]
- Yao, C.; Chou, J.; Wang, T.; Zhao, H.; Zhang, B. Pantothenic acid, vitamin C, and biotin play important roles in the growth of Lactobacillus helveticus. Front. Microbiol. 2018, 9, 1194. [Google Scholar] [CrossRef]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biot. 2006, 71, 394–406. [Google Scholar] [CrossRef]
- Li, B.; Habermann, D.; Kliche, T.; Klempt, M.; Wutkowski, A.; Clawin-Rädecker, I.; Koberg, S.; Brinks, E.; Koudelka, T.; Tholey, A.; et al. Soluble Lactobacillus delbrueckii subsp. bulgaricus 92059 PrtB proteinase derivatives for production of bioactive peptide hydrolysates from casein. Appl. Microbiol. Biot. 2018, 103, 2731–2743. [Google Scholar]
- Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; Van Beeumen, J.J.; Kalantzopoulos, G. Cell-wall-bound proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: Characterization and specificity for β-casein. Appl. Environ. Microbiol. 1999, 65, 2035–2040. [Google Scholar]
- Kliche, T.; Li, B.; Bockelmann, W.; Habermann, D.; Klempt, M.; Vrese, M.D.; Wutkowski, A.; Clawin-Rädecker, I.; Heller, K.J. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Appl. Microbiol. Biot. 2017, 101, 7621–7633. [Google Scholar] [CrossRef]
- Gomez, M.J.; Garde, S.; Gaya, P.; Medina, M.; Nuñez, M. Relationship between level of hydrophobic peptides and bitterness in cheese made from pasteurized and raw milk. J. Dairy Res. 1997, 64, 289–297. [Google Scholar] [CrossRef]
- Pederson, J.A.; Mileski, G.J.; Weimer, B.C.; Steele, J.L. Genetic characterization of a cell envelope-associated proteinase from Lactobacillus helveticus CNRZ32. J. Bacteriol. 1999, 181, 4592–4597. [Google Scholar] [CrossRef]
- Smeianov, V.V.; Wechter, P.; Broadbent, J.R.; Hughes, J.E.; Ro-driguez, B.; Christensen, T.K.; Ardö, Y.; Steele, J.L. Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl. Environ. Microbiol. 2007, 73, 2661–2672. [Google Scholar] [CrossRef]
- Garde, S.; Ávila, M.; Gaya, P.; Medina, M.; Nuñez, M. Proteolysis of hispanico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639. J. Dairy Sci. 2006, 89, 840–849. [Google Scholar]
- Picon, A.; de Torres, B.; Gaya, P.; Nuñez, M. Cheesemaking with a Lactococcus lactis strain expressing a mutant oligopeptide binding protein as starter results in a different peptide profile. Int. J. Food Microbiol. 2005, 104, 299–307. [Google Scholar] [CrossRef]
- Sadat-Mekmene, L.; Jardin, J.; Corre, C.; Molleȳ, D.; Richoux, R.; Delage, M.M.; Lortal, S.; Gagnaire, V. Simultaneous presence of PrtH and PrtH2 proteinases in Lactobacillus helveticus strains improves breakdown of the pure αs1-casein. Appl. Environ. Microbiol. 2010, 77, 179–186. [Google Scholar] [CrossRef]
- Jensen, M.P.; Ardö, Y.; Vogensen, F.K. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains. Lett. Appl. Microbiol. 2009, 49, 396–402. [Google Scholar] [CrossRef]
- Juillard, V.; Laan, H.; Kunji, E.R.; Jeronimus-Stratingh, C.M.; Bruins, A.P.; Konings, W.N. The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides. J. Bacteriol. 1995, 177, 3472–3478. [Google Scholar] [CrossRef]
- Ali, E.; Nielsen, S.D.; Abd-El Aal, S.; El-Leboudy, A.A.; Saleh, E.A.; LaPointe, G. Use of mass spectrometry to profile peptides in whey protein isolate medium fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Front. Nutr. 2019, 6, 152. [Google Scholar] [CrossRef] [PubMed]
- Callanan, M.J.; Kaleta, P.; O’callaghan, J.; O’Sullivan, Ó.; Jordan, K.; McAuliffe, O.; Sangrador-Vegas, A.; Slattery, L.; Fitzgerald, G.F.; Beresford, T.P.; et al. Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J. Bacteriol. 2008, 190, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Chen, Y.; Sun, Z.; Wang, J.; Zhou, Z.; Sun, T.; Wang, L.; Chen, W.; Zhang, H. Complete genome sequence of Lactobacillus helveticus H10. J. Bacteriol. 2011, 193, 2666–2667. [Google Scholar] [CrossRef] [PubMed]
- Savijoki, K.; Palva, A. Purification and molecular characterization of a tripeptidase (PepT) from Lactobacillus helveticus. Appl. Environ. Microbiol. 2000, 66, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Tanokur, M. Purification and characterization of an aminopeptidase from Lactobacillus helveticus JCM 1004. Food Chem. 2004, 88, 511–516. [Google Scholar] [CrossRef]
- Yamamoto, N.; Ono, H.; Maeno, M.; Ueda, Y.; Takano, T.; Momose, H. Classification of Lactobacillus helveticus strains by immunological differences in extracellular proteinases. Biosci. Biotechnol. Biochem. 1998, 62, 1228–1230. [Google Scholar] [CrossRef] [PubMed]
- Baele, M.; Vaneechoutte, M.; Verhelst, R.; Vancanneyt, M.; Devriese, L.A.; Haesebrouck, F. Identification of Lactobacillus species using tDNA-PCR. J. Microbiol. Meth. 2002, 50, 263–271. [Google Scholar] [CrossRef]
- Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S. PrtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl. Environ. Microbiol. 2009, 75, 3238–3249. [Google Scholar] [CrossRef]
- Sadat-Mekmene, L.; Genay, M.; Atlan, D.; Lortal, S.; Gagnaire, V. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int. J. Food Microbiol. 2011, 146, 1–13. [Google Scholar] [CrossRef]
- Kunji, E.R.; Hagting, A.; de Vries, C.J.; Juillard, V.; Haandrikman, A.J.; Poolman, B.; Konings, W. Transport of β-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 1995, 270, 1569–1574. [Google Scholar] [CrossRef]
- Mierau, I.; Kunji, E.R.; Venema, G.; Kok, J. Casein and peptide degradation in lactic acid bacteria. Biotechnol. Genet. Eng. 1997, 14, 279–301. [Google Scholar] [CrossRef]
- Mars, I.H.; Monnet, V. An aminopeptidase P from Lactococcus lactis with original specificity. BBA-Gen. Subjects 1995, 1243, 209–215. [Google Scholar] [CrossRef]
- Chen, Y.; Christensen, J.E.; Broadbent, J.R.; Steele, J.L. Identification and characterization of Lactobacillus helveticus PepO2, an endopeptidase with post-proline specificity. Appl. Environ. Microbiol. 2003, 69, 1276–1282. [Google Scholar] [CrossRef]
- Sridhar, V.R.; Hughes, J.E.; Welker, D.L.; Broadbent, J.R.; Steele, J.L. Identification of endopeptidase genes from the genomic sequence of Lactobacillus helveticus CNRZ32 and the role of these genes in hydrolysis of model bitter peptides. Appl. Environ. Microbiol. 2005, 71, 3025–3032. [Google Scholar] [CrossRef]
- Luoma, S.; Peltoniemi, K.; Joutsjoki, V.V.; Rantanen, T.; Tamminen, M.; Heikkinen, I.; Palva, A.M. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis. Appl. Environ. Microbiol. 2001, 67, 1232–1238. [Google Scholar] [CrossRef]
- Qi, Y.; Jiang, Y.; Zhang, X.; Lee, Y.; Liu, X.; Zhao, J.; Zhang, H.; Chen, W. Diversity in genetic and peptidase activity of Lactobacillus helveticus strains biodiversity of Lactobacillus helveticus. Food Biosci. 2021, 40, 100915. [Google Scholar] [CrossRef]
Incubation Time | 1 h | 3 h | 5 h |
---|---|---|---|
Number of hydrolyzate peptides/piece | 103 | 424 | 428 |
Number of hydrolyzed peptides modified by oxidation/piece | 8 | 84 | 85 |
The range of hydrolysate peptide molecular weight /Da | 787.40–4928.75 | 652.40–4928.74 | 652.4–3432.74 |
Sequence | MH + (Da) | 1 h IonScore | 3 h IonScore | 5 h IonScore |
---|---|---|---|---|
YQEPVLGPVRGPFPIIV | 1881.06 | 26.61 | 36.76 | 39.80 |
LYQEPVLGPVRGPFPIIV | 1994.15 | 16.62 | 31.51 | 31.81 |
LLYQEPVLGPVRGPFPIIV | 2107.23 | 29.21 | 37.12 | 42.84 |
KVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPIIV | 4610.58 | 1.32 | - | - |
SKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPIIV | 4697.59 | 15.78 | ||
QSKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPIIV | 4825.68 | 19.14 | ||
SQSKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGPVRGPFPIIV | 4912.73 | 1.79 | 14.35 | |
SQSKVLPVPQKAVPYPQRDM*PIQAFLLYQEPVLGPVRGPFPIIV | 4928.75 | 9.62 | 12.47 |
Number | Amplification Results | Similarity |
---|---|---|
1 | Lb. helveticus DPC 4571 PrtM | 99% |
3 | Lb. helveticus H9 PrtP | 99% |
5 | Lb. helveticus CNRZ32 OppB1 | 99% |
6 | Lb. helveticus CNRZ32 OppF1 | 99% |
7 | Lb. helveticus CNRZ32 OppD1 | 99% |
9 | Lb. helveticus DPC4571 Pep F | 99% |
10 | Lb. helveticus H9 PepO2 | 99% |
11 | Lb. helveticus DPC 4571 PepE | 99% |
12 | Lb. helveticus DPC 4571 PepC | 99% |
16 | Lb. helveticus DPC 4571 PepN | 99% |
17 | Lb. helveticus D75 PepV | 99% |
18 | Lb. helveticus D75 PepA | 99% |
19 | Lb. helveticus D75 PepT | 99% |
20 | Lb. helveticus D75 PepQ | 99% |
21 | Lb. helveticus DPC457 carboxypeptidase | 99% |
22 | Lb. helveticus CNRZ32 PepR | 99% |
23 | Lb. helveticus CNRZ32 PrtH | 99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xu, M.; Hu, S.; Zhao, H.; Zhang, B. The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171. Microorganisms 2022, 10, 1724. https://doi.org/10.3390/microorganisms10091724
Zhang H, Xu M, Hu S, Zhao H, Zhang B. The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171. Microorganisms. 2022; 10(9):1724. https://doi.org/10.3390/microorganisms10091724
Chicago/Turabian StyleZhang, Huixin, Mengfan Xu, Shanhu Hu, Hongfei Zhao, and Bolin Zhang. 2022. "The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171" Microorganisms 10, no. 9: 1724. https://doi.org/10.3390/microorganisms10091724
APA StyleZhang, H., Xu, M., Hu, S., Zhao, H., & Zhang, B. (2022). The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171. Microorganisms, 10(9), 1724. https://doi.org/10.3390/microorganisms10091724