Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options
Abstract
:1. Introduction
2. Pathogenicity and Virulence Factors
2.1. Virulence Factors of Vegetative Cells
2.2. Clostridioides Spores
2.3. Toxin Production
Clostridioides Species | Classification | Toxin Produced |
---|---|---|
C. difficile [63] | Clade I, II, III, V, VI, VII, VIII | A, B, CDT * |
Clade IV | B, CDT | |
C. perfringens [25] | A | CPA, BEC [35] |
B | CPA, CPB, ETX [43] | |
C | CPA, CPB, CPE | |
D | CPA, ETX, CPE | |
E | CPA, ITX, CPE | |
F | CPA, CPE | |
G | CPA, NeTb | |
C. botulinum [31] | I | Botulism toxin A, B, F |
II | Botulism toxin B, E, F | |
III | Botulism toxin C, D |
3. Foodborne Transmission of Human Pathogenic Clostridioides
Antibiotic Treament of Clostridioides Species
4. Biocontrol Agents in the Mitigation of Clostridioides
4.1. Antimicrobial Peptides against Foodborne Clostridioides
4.2. Bacteriophages against Foodborne Clostridioides
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Figueiredo, G.G.O.; Lopes, V.R.; Romano, T.; Camara, M.C. Clostridium. Benef. Microbes Agro-Ecol. 2020, 1, 477–491. [Google Scholar] [CrossRef]
- Spigaglia, P.; Barbanti, F.; Marocchi, F.; Mastroleo, M.; Baretta, M.; Ferrante, P.; Scortichini, M. Clostridium bifermentans and C. subterminale are associated with kiwifruit vine decline, known as “moria”, in Italy. Plant Pathol. 2020, 69, 765–774. [Google Scholar] [CrossRef]
- Maikova, A.; Kreis, V.; Boutserin, A.; Severinov, K.; Soutourina, O. Using an Endogenous CRISPR-Cas System for Genome Editing in the Human Pathogen Clostridium difficile. Appl. Environ. Microbiol. 2019, 85, e01416-19. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Di Bella, S.; McFarland, L.V. 2019 update of the WSES guidelines for management of Clostridioides (Clostridium) difficile infection in surgical patients. World J. Emerg. Surg. 2020, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- ECDC. 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/clostridiodes-difficile-infections-annual-epidemiological-report-2016-2017 (accessed on 27 July 2023).
- Finn, E.; Andersson, F.L.; Madin-Warburton, M. Burden of Clostridioides difficile infection (CDI)—A systematic review of the epidemiology of primary and recurrent CDI. BMC Infect. Dis. 2021, 21, 456. [Google Scholar] [CrossRef]
- Mada, P.K.; Alam, M.U. Clostridioides Difficile Infection. [Updated 23 January 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK431054/ (accessed on 15 July 2023).
- Lessa, F.C.; Winston, L.G.; McDonald, L.C. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 2369–2370. [Google Scholar] [CrossRef]
- Unlu, G. The Prevalence, Transmission, and Control of C. difficile in Food. Food Saf. Quality. Food Technol. Mag. 2020, 74, 2. [Google Scholar]
- Suzaki, A.; Hayakawa, S. Clinical and Microbiological Features of Fulminant Haemolysis Caused by Clostridium perfringens Bacteraemia: Unknown Pathogenesis. Microorganisms 2023, 11, 824. [Google Scholar] [CrossRef]
- CDC website. Available online: https://www.cdc.gov/foodsafety/diseases/clostridium-perfringens.html#:~:text=Clostridium%20perfringens%20bacteria%20are%20one,the%20United%20States%20every%20year (accessed on 27 July 2023).
- Yang, C.C.; Hsu, P.C.; Chang, H.J.; Cheng, C.W.; Lee, M.H. Clinical significance and outcomes of Clostridium perfringens bacteremia—A 10-year experience at a tertiary care hospital. Int. J. Infect. Dis. 2013, 17, e955–e960. [Google Scholar] [CrossRef]
- Liu, F.; Xue, S.; Zhang, Y. Clostridium perfringens sepsis in three patients with acute leukemia and review of the literature. Int. J. Hematol. 2021, 113, 508–517. [Google Scholar] [CrossRef]
- Yutani, M.; Matsumura, T.; Fujinaga, Y. Effects of antibiotics on the viability of and toxin production by Clostridium botulinum. Microbiol. Immunol. 2021, 65, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E.J.; Tiruvoipati, R. Management of Clostridioides difficile infection in adults and challenges in clinical practice: Review and comparison of current IDSA/SHEA, ESCMID and ASID guidelines. J. Antimicrob. Chemother. 2023, 78, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Noren, T.; Allerberger, F.; Coia, J.E.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. The Guideline Committee of the European Study Group on Clostridioides difficile. Clin. Microbiol. Infect. 2021, 27, S1–S21. [Google Scholar] [CrossRef] [PubMed]
- Viprey, V.F.; Granata, G.; Vendrik, K.E.W.; Davis, G.L.; Petrosillo, N.; Kuijper, E.J.; Vilken, T.; Lammens, C.; Schotsman, J.J.; Benson, A.D.; et al. European survey on the current surveillance practices, management guidelines, treatment pathways and heterogeneity of testing of Clostridioides difficile, 2018–2019, results from The Combatting Bacterial Resistance in Europe CDI (COMBACTE-CDI). J. Hosp. Infect. 2023, 131, 213–220. [Google Scholar] [CrossRef]
- Granata, G.; Schiavone, F.; Pipitone, G. Bezlotoxumab in Patients with a Primary Clostridioides difficile Infection: A Literature Review. Antibiotics 2022, 11, 1495. [Google Scholar] [CrossRef] [PubMed]
- Gawey, B.J.; Khanna, S. Clostridioides difficile Infection: Landscape and Microbiome Therapeutics. Gastroenterol. Hepatol. 2023, 19, 319–328. [Google Scholar]
- Schäffler, H.; Breitrück, A. Clostridium difficile—From Colonization to Infection. Front. Microbiol. 2018, 9, 646. [Google Scholar] [CrossRef]
- Meade, E.; Garvey, M. The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. Int. J. Mol. Sci. 2022, 23, 8574. [Google Scholar] [CrossRef]
- Garvey, M. The Association between Dysbiosis and Neurological Conditions Often Manifesting with Chronic Pain. Biomedicines 2023, 11, 748. [Google Scholar] [CrossRef]
- Grenda, T.; Jarosz, A.; Sapała, M.; Grenda, A.; Patyra, E.; Kwiatek, K. Clostridium perfringens—Opportunistic Foodborne Pathogen, Its Diversity and Epidemiological Significance. Pathogens 2023, 12, 768. [Google Scholar] [CrossRef]
- Yao, P.Y.; Annamaraju, P. Clostridium perfringens Infection. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559049/ (accessed on 15 July 2023).
- Merialdi, G.; Ramini, M.; Parolari, G.; Barbuti, S.; Frustoli, M.A.; Taddei, R.; Pongolini, S.; Ardigò, P.; Cozzolino, P. Study on Potential Clostridium Botulinum Growth and Toxin Production in Parma Ham. Ital. J. Food Saf. 2016, 5, 5564. [Google Scholar] [CrossRef]
- Drewes, J.L.; Chen, J.; Markham, N.O.; Knippel, R.J.; Domingue, J.C.; Tam, A.J.; Chan, J.L.; Kim, L.; McMann, M.; Stevens, C.; et al. Human Colon Cancer–Derived Clostridioides difficile Strains Drive Colonic Tumorigenesis in Mice. Cancer Discov. 2022, 12, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, I.; Jakob, J.; Scheibel, J.; Hofmann, J.D.; Klawonn, F.; Neumann-Schaal, M.; Gerhard, R.; Bruder, D.; Jänsch, L. Clostridioides difficile Toxin CDT Induces Cytotoxic Responses in Human MucosalAssociated Invariant T (MAIT) Cells. Front. Microbiol. 2021, 12, 752549. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D.; Marcos, P. The Environment, Farm Animals and Foods as Sources of Clostridioides difficile Infection in Humans. Foods 2023, 12, 1094. [Google Scholar] [CrossRef] [PubMed]
- Marcos, P.; Whyte, P.; Rogers, T.; McElroy, M.; Fanning, S.; Frias, J.; Bolton, D. The prevalence of Clostridioides difficile on farms, in abattoirs and in retail foods in Ireland. Food Microbiol. 2021, 98, 103781. [Google Scholar] [CrossRef]
- Munir, M.T.; Mtimet, N.; Guillier, L.; Meurens, F.; Fravalo, P.; Federighi, M.; Kooh, P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023, 12, 1580. [Google Scholar] [CrossRef]
- Bendary, M.M.; Abd El-Hamid, M.I.; El-Tarabili, R.M.; Hefny, A.A.; Algendy, R.M.; Elzohairy, N.A.; Ghoneim, M.M.; Al-Sanea, M.M.; Nahari, M.H.; Moustafa, W.H. Clostridium perfringens Associated with Foodborne Infections of Animal Origins: Insights into Prevalence, Antimicrobial Resistance, Toxin Genes Profiles, and Toxinotypes. Biology 2022, 11, 551. [Google Scholar] [CrossRef]
- Li, J.; Paredes-Sabja, D.; Sarker, M.R.; McClane, B.A. Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production. Microbiol. Spectr. 2016, 4, 311–347. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Biocidal Resistance in Clinically Relevant Microbial Species: A Major Public Health Risk. Pathogens 2021, 10, 598. [Google Scholar] [CrossRef]
- Mehdizadeh Gohari, I.; Navarro, M.A.; Li, J.; Shrestha, A.; Uzal, F.; McClane, B.A. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021, 12, 723–753. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Nagalli, S. Clostridium botulinum Infection. [Updated 8 August 2022]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553081/ (accessed on 16th July 2023).
- Bhattacharya, A.; Shantikumar, S.; Beaufoy, D.; Allman, A.; Fenelon, D.; Reynolds, K.; Normington, A.; Afza, M.; Todkill, D. Outbreak of Clostridium perfringens food poisoning linked to leeks in cheese sauce: An unusual source. Epidemiol. Infect. 2020, 148, e43. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://www.who.int/news-room/factsheets/detail/botulism#:~:text=There%20are%207%20distinct%20forms,other%20mammals%2C%20birds%20and%20fish (accessed on 28 July 2023).
- Kulecka, M.; Waker, E.; Ambrozkiewicz, F. Higher genome variability within metabolism genes associates with recurrent Clostridium difficile infection. BMC Microbiol. 2021, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- Boekhoud, I.M.; Hornung, B.V.H.; Sevilla, E. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat. Commun. 2020, 11, 598. [Google Scholar] [CrossRef]
- Tijerina-Rodríguez, L.; Villarreal-Treviño, L.; Morfín-Otero, R.; Camacho-Ortíz, A.; Garza-González, E. Virulence Factors of Clostridioides (Clostridium) difficile Linked to Recurrent Infections. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 7127850. [Google Scholar] [CrossRef]
- Vaishnavi, C. Virulence Factors Associated with Clostridiodes difficile: An Overview. J. Gastrointest. Infect. 2021, 11, 24–29. [Google Scholar] [CrossRef]
- Kiu, R.; Brown, J.; Bedwell, H.; Leclaire, C.; Caim, S.; Pickard, D. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Anim. Microbiome 2019, 1, 12. [Google Scholar] [CrossRef]
- Llanco, L.A.; Nakano, V.; Moraes, C.T.P.; de Piazza, R.M.F.; Avila-Campos, M.J. Adhesion and invasion of Clostridium perfringens type A into epithelial cells. Braz. J. Microbiol. 2017, 48, 764–768. [Google Scholar] [CrossRef]
- Soncini, S.R.; Hartman, A.H.; Gallagher, T.M.; Camper, G.J.; Jensen, R.V.; Melville, S.B. Changes in the expression of genes encoding type IV pili-associated proteins are seen when Clostridium perfringens is grown in liquid or on surfaces. BMC Genom. 2020, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Mallozzi, M.J.G.; Roxas, B.P.; Bertolo, L.; Monteiro, M.A.; Agellon, A. A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence. PLoS Pathog. 2016, 12, e1005946. [Google Scholar] [CrossRef]
- Smith, T.J.; Tian, R.; Imanian, B.; Williamson, C.H.D.; Johnson, S.L.; Daligault, H.E.; Schill, K.M. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins 2021, 13, 473. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J. Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon 2015, 107, 2–8. [Google Scholar] [CrossRef]
- Freedman, J.; Shrestha, A.; McClane, B. Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications. Toxins 2016, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Mahamat Abdelrahim, A.; Radomski, N.; Delannoy, S.; Djellal, S.; Le Négrate, M.; Hadjab, K.; Firmesse, O. Large-Scale Genomic Analyses and Toxinotyping of Clostridium perfringens Implicated in Foodborne Outbreaks in France. Front. Microbiol. 2019, 10, 777. [Google Scholar] [CrossRef]
- Deng, K.; Plaza-Garrido, A.; Torres, J.A.; Paredes-Sabja, D. Survival of Clostridium difficile spores at low temperatures. Food Microbiol. 2015, 46, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Shen, A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu. Rev. Microbiol. 2020, 74, 545–566. [Google Scholar] [CrossRef]
- Connor, M.C.; McGrath, J.W.; McMullan, G.; Marks, N.; Guelbenzu, M.; Fairley, D.J. Emergence of a non-sporulating secondary phenotype in Clostridium (Clostridioides) difficile ribotype 078 isolated from humans and animals. Sci. Rep. 2019, 9, 13722. [Google Scholar] [CrossRef]
- Paredes-Sabja, D.; Shen, A.; Sorg, J.A. Clostridium difficile spore biology: Sporulation, germination, and spore structural proteins. Trends Microbiol. 2014, 22, 406–416. [Google Scholar] [CrossRef]
- Pizarro-Guajardo, M.; Calderón-Romero, P.; Castro-Córdova, P.; Mora-Uribe, P.; Paredes-Sabja, D. Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Appl. Environ. Microbiol. 2016, 82, 2202–2209. [Google Scholar] [CrossRef]
- Vitucci, J.C.; Pulse, M.; Tabor-Simecka, L. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models. BMC Microbiol. 2020, 20, 27. [Google Scholar] [CrossRef]
- Janganan, T.K.; Mullin, N.; Dafis-Sagarmendi, A.; Brunt, J.; Tzokov, S.B.; Stringer, S.; Bullough, P.A. Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces Illustrate a General Protective Strategy across Spore Formers. mSphere 2020, 5. [Google Scholar] [CrossRef]
- Cota, J.B.; Pinto-Vieira, M.; Oliveira, M. Biocide Use for the Control of Non-Typhoidal Salmonella in the Food Animal Scenario: A Primary Food Production to Fork Perspective; InTechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Revitt-Mills, S.A.; Vidor, C.J.; Watts, T.D.; Lyras, D.; Rood, J.I.; Adams, V. Virulence plasmids of the pathogenic clostridia. Microbiol. Spectr. 2019, 7, GPP3-0034-2018. [Google Scholar] [CrossRef] [PubMed]
- AlJindan, R.; AlEraky, D.M.; Farhat, M.; Almandil, N.B.; AbdulAzeez, S.; Borgio, J.F. Genomic Insights into Virulence Factors and Multi-Drug Resistance in Clostridium perfringens IRMC2505A. Toxins 2023, 15, 359. [Google Scholar] [CrossRef]
- Neumann, T.; Krüger, M.; Weisemann, J.; Mahrhold, S.; Stern, D.; Dorner, M.B.; Feraudet-Tarisse, C.; Pöhlmann, C.; Schulz, K.; Messelhäußer, U.; et al. Innovative and Highly Sensitive Detection of Clostridium perfringens Enterotoxin Based on Receptor Interaction and Monoclonal Antibodies. Toxins 2021, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Kay, C.; Xue, Y.; Pandey, A.; Lee, J.; Jing, W.; Enosi Tuipulotu, D.; Lo Pilato, J.; Feng, S.; Ngo, C.; et al. Clostridium perfringens virulence factors are nonredundant activators of the NLRP3 inflammasome. EMBO Rep. 2023, 24, e54600. [Google Scholar] [CrossRef]
- Knight, D.R.; Imwattana, K.; Kullin, B.; Guerrero-Araya, E.; Paredes-Sabja, D.; Didelot, X.; Dingle, K.E.; Eyre, D.W.; Rodrigues, C.; Riley, T.V. The Clostridioides difficile species problem: Global phylogenomic 2 analysis uncovers three ancient, toxigenic, genomospecies. bioRxiv 2020. [Google Scholar] [CrossRef]
- Shaw, H.A.; Preston, M.D.; Vendrik, K.E.W.; Cairns, M.D.; Browne, H.P.; Stabler, R.A.; Crobach, M.J.T.; Corver, J.; Pituch, H.; Ingebretsen, A.; et al. The recent emergence of a highly related virulent Clostridium difficile clade with unique characteristics. Clin. Microbiol. Infect. 2020, 26, 492–498. [Google Scholar] [CrossRef]
- Rohana, H.; Azrad, M.; Nitzan, O.; Adler, A.; Binyamin, D.; Koren, O.; Peretz, A. Characterization of Clostridioides difficile Strains, the Disease Severity, and the Microbial Changes They Induce. J. Clin. Med. 2020, 9, 4099. [Google Scholar] [CrossRef]
- Rasooly, R.; Do, P.M. Clostridium botulinum Neurotoxin Type B Is Heat-Stable in Milk and Not Inactivated by Pasteurization. J. Agric. Food Chem. 2010, 58, 12557–12561. [Google Scholar] [CrossRef]
- Solomon, H.M.; Lilly, T. BAM Chapter 17, Clostridium botulinum. In Bacteriological Analytical Manual (BAM) Main Page; USFDA: Silver Spring, MD, USA, 2001. [Google Scholar]
- Barbosa, J.; Campos, A.; Teixeira, P. Methods currently applied to study the prevalence of Clostridioides difficile in foods. AIMS Agric. Food 2020, 5, 102–128. [Google Scholar] [CrossRef]
- Tkalec, V.; Jaamnikar-Ciglenecki, U.; Rupnik, M.; Vadnjal, S.; Zelenik, K.; Biasizzo, M. Clostridioides difficile in national food surveillance, Slovenia, 2015 to 2017. Euro Surveill. 2020, 25, 1900479. [Google Scholar] [CrossRef] [PubMed]
- Moloney, G.; Eyre, D.W.; Mac Aogáin, M.; McElroy, M.C.; Vaughan, A.; Peto, T. Human and Porcine Transmission of Clostridioides difficile Ribotype 078, Europe. Emerg. Infect. Dis. 2021, 27, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Bacheno, H.; Ahmadi, M.; Fazeli, F.; Ariaii, P. Clostridioides difficile in Foods with Animal Origins; Prevalence, Toxigenic Genes, Ribotyping Profile, and Antimicrobial Resistance. J. Food Qual. 2022, 2022, 4868409. [Google Scholar] [CrossRef]
- Ali, M.Z.; Islam, M.M. Characterization of β-lactamase and quinolone resistant Clostridium perfringens recovered from broiler chickens with necrotic enteritis in Bangladesh. Iran. J. Vet. Res. 2021, 22, 48–54. [Google Scholar] [CrossRef]
- Doyle, M.E.; Glass, K. Spores of Clostridium botulinum in Dried Dairy Products. In Fri Sponsors Science News Alert; Semantic Scholar: Seattle, WA, USA, 2013. [Google Scholar]
- Koluman, A.; Melikoğlu Gölcü, B.; Derin, O.; Ozkök, S.; Anniballi, F. Clostridium botulinum in honey: Prevalence and antibiotic susceptibility of isolated strains. Turk. J. Vet. Anim. Sci. 2013, 37, 706–711. [Google Scholar] [CrossRef]
- Borji, S.; Kadivarian, S.; Dashtbin, S.; Kooti, S.; Abiri, R.; Motamedi, H.; Moradi, J.; Rostamian, M.; Alvandi, A. Global prevalence of Clostridioides difficile in 17,148 food samples from 2009 to 2019, a systematic review and meta-analysis. J. Health Popul. Nutr. 2023, 42, 36. [Google Scholar] [CrossRef]
- Suther, C.; Moore, M.D. Quantification and discovery of PCR inhibitors found in food matrices commonly associated with foodborne viruses. Food Sci. Hum. Wellness 2019, 8, 351–355. [Google Scholar] [CrossRef]
- Garvey, M. Antimicrobial Use in Animal Food Production. In Biodiversity, Functional Ecosystems and Sustainable Food Production; Springer International Publishing: Cham, Switzerland, 2022; pp. 183–215. [Google Scholar]
- Venhorst, J.; van der Vossen, J.M.B.M.; Agamennone, V. Battling Enteropathogenic Clostridia: Phage Therapy for Clostridioides difficile and Clostridium perfringens. Front. Microbiol. 2022, 13, 891790. [Google Scholar] [CrossRef]
- Garvey, M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics 2022, 11, 1324. [Google Scholar] [CrossRef]
- Garvey, M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics 2020, 9, 414. [Google Scholar] [CrossRef]
- Garvey, M. Antimicrobial Peptides Demonstrate Activity against Resistant Bacterial Pathogens. Infect. Dis. Rep. 2023, 15, 454–469. [Google Scholar] [CrossRef]
- Hing, T.C.; Ho, S.; Shih, D.Q.; Ichikawa, R.; Cheng, M.; Chen, J.; Koon, H.W. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice. Gut 2012, 62, 1295–1305. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, X.F.; Wang, Q.W.; Zhu, J.L.; Peng, Q.; Hou, C.L.; Qiao, S.Y. The antimicrobial peptide sublancin ameliorates necrotic enteritis induced by Clostridium perfringens in broilers12. J. Anim. Sci. 2015, 93, 4750–4760. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics 2020, 9, 32. [Google Scholar] [CrossRef]
- Anumudu, C.; Hart, A.; Miri, T.; Onyeaka, H. Recent Advances in the Application of the Antimicrobial Peptide Nisin in the Inactivation of Spore-Forming Bacteria in Foods. Molecules 2021, 26, 5552. [Google Scholar] [CrossRef] [PubMed]
- Arthithanyaroj, S.; Chankhamhaengdecha, S.; Chaisri, U.; Aunpad, R.; Aroonnual, A. Effective inhibition of Clostridioides difficile by the novel peptide CM-A. PLoS ONE 2021, 16, e0257431. [Google Scholar] [CrossRef] [PubMed]
- Xin, B.; Zheng, J.; Liu, H.; Li, J.; Ruan, L.; Peng, D.; Sajid, M.; Sun, M. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens. Front. Microbiol. 2016, 7, 1115. [Google Scholar] [CrossRef] [PubMed]
- Oludiran, A.; Courson, D.S.; Stuart, M.D.; Radwan, A.R.; Poutsma, J.C.; Cotton, M.L.; Purcell, E.B. How Oxygen Availability Affects the Antimicrobial Efficacy of Host Defense Peptides: Lessons Learned from Studying the Copper-Binding Peptides Piscidins 1 and 3. Int. J. Mol. Sci. 2019, 20, 5289. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016, 17, 603. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, X.; Teng, D.; Mao, R.; Hao, Y.; Yang, N.; Zong, L.; Wang, J. Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A. PLoS ONE. 2017, 12, e0185215. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, A.; Kermanshahi, H.; Sekhavati, M.H.; Javadmanesh, A.; Ahmadian, M.; Alizadeh, M.; Aldawoodi, A. Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteritis. Sci. Rep. 2020, 10, 17704. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, N.; Uribe-Diaz, S.; Rodriguez-Lecompte, J.C.; Ahmed, M. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. Br. Poult. Sci. 2021, 62, 672–685. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Hashempour-Baltork, F.; Alizadeh-Sani, M.; Malek, M.; Azizi-Lalabadi, M.; Khosravi-Darani, K. Inhibition of Clostridium Botulinum and Its Toxins by Probiotic Bacteria and Their Metabolites: An Update Review. Qual. Assur. Saf. Crops Food 2020, 12, 59–68. [Google Scholar] [CrossRef]
- Raeisi, H.; Noori, M.; Azimirad, M.; Mohebbi, S.R.; Aghdaei, H.A.; Yadegar, A.; Zali, M.R. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: Challenges and perspectives. Gut Pathog. 2023, 15, 21. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Bolton, D.; McAuliffe, O.; Coffey, A. Bacteriophages in food applications: From foe to friend. Annu. Rev. Food Sci. Technol. 2019, 10, 151–172. [Google Scholar] [CrossRef]
- Heuler, J.; Fortier, L.C.; Sun, X. Clostridioides difficile phage biology and application. FEMS Microbiol. Rev. 2021, 45, fuab012. [Google Scholar] [CrossRef]
- Fujimoto, K.; Uematsu, S. Phage Therapy for Clostridioides difficile infection. Front. Immunol. 2022, 13, 1057892. [Google Scholar] [CrossRef]
- Farooq, F.; Ali, U.; Shoukat, S.; Paray, A.R.; Rather, M.A.; Parry, U.R. Bacteriophages as biocontrol agents for foodborne diseases. J. Entomol. Zool. Stud. 2019, 7, 67–71. [Google Scholar]
- Tian, Y.; Wu, L.; Lu, R.; Bao, H.; Zhou, Y.; Pang, M.; Brown, J.; Wang, J.; Wang, R.; Zhang, H. Virulent phage vB_CpeP_HN02 inhibits Clostridium perfringens on the surface of the chicken meat. Int. J. Food Microbiol. 2022, 363, 109514. [Google Scholar] [CrossRef]
- Mohammadi, T.N.; Shen, C.; Li, Y.; Zayda, M.G.; Sato, J.; Masuda, Y.; Honjoh, K.; Miyamoto, K. Characterization of Clostridium perfringens bacteriophages and their application in chicken meat and milk. Int. J. Food Microbiol. 2022, 361, 109446. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.; Lee, J.W.; Chae, J.P.; Kim, J.W.; Eun, J.S.; Lee, K.W.; Seo, K.H. Characterization of a novel bacteriophage φCJ22 and its prophylactic and inhibitory effects on necrotic enteritis and Clostridium perfringens in broilers. Poult. Sci. 2021, 100, 302–313. [Google Scholar] [CrossRef]
- Heo, S.; Kim, M.G.; Kwon, M.; Lee, H.S.; Kim, G.B. Inhibition of Clostridium perfringens using bacteriophages and bacteriocin producing strains. Korean J. Food Sci. Anim. Resour. 2018, 38, 88–98. [Google Scholar] [CrossRef]
- Xu, Y. Phage and phage lysins: New era of bio-preservatives and food safety agents. J. Food Sci. 2021, 86, 3349–3373. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.I.; Akter, A.; Draper, L.A.; Ross, R.P.; Hill, C. Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth. Int. J. Mol. Sci. 2021, 22, 5690. [Google Scholar] [CrossRef]
- Lu, R.; Liu, B.; Wu, L.; Bao, H.; García, P.; Wang, Y.; Zhou, Y.; Zhang, H. A Broad-Spectrum Phage Endolysin (LysCP28) Able to Remove Biofilms and Inactivate Clostridium perfringens Strains. Foods 2023, 12, 411. [Google Scholar] [CrossRef] [PubMed]
Classification | Description | Recommended Treatment | Additional Recommendations | Antibiotic Stewardship |
---|---|---|---|---|
Non-severe | White cell count of ≤15,000 cells/mL, serum creatinine level ≤ 50% above baseline, core body temperature/fever ≤ 38.5 °C. No imaging features of severity [16] | Fidaxomicin or vancomycin 125 mg, 6 hourly for 10 days or metronidazole, 500 mg 8 hourly for 10 days [17] | Identification of CDI by isolation, contact precautions for suspected CDI cases [5] Hand hygiene with soap and water, surface disinfection and environmental cleaning is essential to prevent transmission [5], use of personal protective equipment (PPE) Not using single-use assays for diagnosis [18] ESCMID-recommended diagnostic algorithm [18] Mab bezlotoxumab and antibiotics for treatment of a second or further recurrence of CDI [19] Asymptomatic carriers of C. difficile may disseminate spores in the hospital leading to outbreaks [5] | Treatment of CDI relies on nonabsorbable antimicrobial agents administered orally [16] Cure rates of >90% with vancomycin at dosage of >125 mg orally 3–4 times daily for >10 days Oral metronidazole should be limited to the treatment of an initial episode of mild-moderate CDI [5] Metronidazole associated with a substantial number of treatment failures (25%), 25% relapsed within 1–2 months [19] No use of metronidazole for treatment of severe or recurrent CDIs Fidaxomicin is a poorly absorbed macrolide highly active against C. difficile with limited activity against other enteric organisms |
Severe | Fever, marked leucocytosis (>15 × 109/L), rise in serum creatinine, Additionally, distension of the large intestine, pericolonic fat stranding or colonic wall thickening. Imaging showing features [17] | Fidaxomicin or vancomycin 125 mg, 6 hourly for 10 days [16] | ||
Severe complicated/fulminant | hypotension, septic shock, elevated serum lactate, ileus, toxic megacolon, bowel perforation or any fulminant course of disease (deterioration of the patient) [20] | Fidaxomicin or vancomycin 125 mg, 6 hourly for 10 days and consider intravenous tigecycline 100 mg, followed by 50 mg 12 hourly [17] | ||
Fulminant refractory | CDI not responding to recommended CDI antibiotic treatment, i.e., no response after 3–5 days of therapy [17] | Fidaxomicin, Vancomycin, Tigecycline considered, surgery recommended [17] |
Virulence Factor | Example | Clinical Relevance |
---|---|---|
Toxins | Alpha toxin (CPA), e.g., phospholipase C, lecithinase [14] | C. perfringens type A, haemolysis, epatobiliary infections, sepsis and gas gangrene [14], foodborne diarrhoea [11], necrotic enteritis in fowls and piglets [24] |
CPA and enterotoxins [11] | C. perfringens type F, food poisoning [11], Food and feed poisoning animals [24] | |
Perfringolysin O (PFO) is a pore-forming toxin having synergistic effects with CPA [25] | C. perfringens gas gangrene | |
Toxin A, toxin B, binary toxin (CDT) | C. difficile, colonocyte death and colitis, CDI extra-intestinal effects [5], C. botulinum [26] | |
Toxins A (enterotoxin) and B (potent cytotoxin) act as glucosyltransferases | Toxigenic C. difficile influences colonic tumorigenesis [27] | |
CDT affects ADP-ribosyltransferase [5,28], inhibits the protein actin, damaging the cytoskeleton of GIT cells [29] | Induces necrosis in epithelial cells [28] | |
Spores | Antibiotic resistance, germination in GIT environment [30] Biocidal resistance—survival in food production environments | Germination of C. difficile leads to intestinal inflammation, perforation, toxic megacolon and pseudomembranous colitis [29] C. botulinum spores are one of the most heat-resistant pathogenic spores [31], exosporium confers biocide resistance, sporulation and germination of C. botulinum produces exotoxins e.g., neurotoxins C. perfringens sporulation above 75 °C [32] outgrowth in less than 20 min [33] |
Biofilm | Bacterial communities attached to biotic and abiotic surfaces promoting [34], HGT and emergence of species subtypes | Host immune evasion, AMR [34] HGT of plasmids |
Capsule | Host adhesion and immune evasion, AMR | Cell wall glycopolymers, including capsular polysaccharides and teichoic acids |
Proteins | Degradative enzymes, degradation of host proteins | C. perfringens proteases (e.g., clostripain), sialidases (neuraminidases), hyaluronidase (mu toxin), collagenase, and endoglycosidases [35]. |
Adhesins, attachment to host cell surface | C. perfringens collagen adhesion protein (CNA) and fibrinogen-binding proteins FbpA and FbpB [35] | |
Oxygen | Strict anaerobe | C. difficile [27], C. botulinum |
Aerobic tolerance | C. perfringens | |
Temperature | Mesophilic growth at 25–45 °C with optimal growth at 35–37 °C, Psychrotrophic, with an optimum growth temperature of 26–30°C [26] | Proteolytic strains of C. botulinum producing type A, B, or F toxins are mesophilic. C. difficile optimal growth at 30–37 °C Non proteolytic strains of C. botulinum producing type B, E, or F, toxins, can reproduce and form BoNTs at temperatures of 3 °C [26] causing flaccid paralysis and fatality [36] C. perfringens growth occurs at temperatures of 12–54 °C [37] |
pH | Optimal pH for growth and toxin production is 6.5 to 7.5 [24] | C. botulinum will not grow in acidic conditions (pH < 4.6), toxins are stable at low pH [38] Sporulation of C. perfringens at pH 6–8 in GIT, viable after 3 months at pH 3 and 10 |
Plasmid | Carrying additional genetic traits in conjunction with chromosomally located elements. | Carrying toxin genes, e.g., CPE gene in type F C. perfringens [35] C. perfringens plasmids pCW3-like, pCP13-like, and pIP404-like plasmids [35] Plasmids pCD6, pCD630, pO157 in C. difficile [39] Carrying AMR genes, e.g., aminoglycoside/linezolid resistance gene cfrC in C. difficile [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garvey, M. Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options. Microorganisms 2023, 11, 2483. https://doi.org/10.3390/microorganisms11102483
Garvey M. Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options. Microorganisms. 2023; 11(10):2483. https://doi.org/10.3390/microorganisms11102483
Chicago/Turabian StyleGarvey, Mary. 2023. "Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options" Microorganisms 11, no. 10: 2483. https://doi.org/10.3390/microorganisms11102483
APA StyleGarvey, M. (2023). Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options. Microorganisms, 11(10), 2483. https://doi.org/10.3390/microorganisms11102483