Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes
Abstract
:1. Introduction
2. Plant-Based Extracts: Anti-Listeria Activity
Compounds Exerting Anti-Listeria Activity in Plant Extracts
3. Anti-Listeria Effect of the Extracts Obtained from Fermented Plant-Based Matrices
Compounds Exerting Anti-Listeria Activity Released during the Fermentation Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahman, S. (Ed.) Handbook of Food Preservation, 2nd ed.; Food Science and Technology; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-1-57444-606-7. [Google Scholar]
- Ferdes, M. Antimicrobial Compounds from Plants. In Fighting Antimicrobial Resistance; Budimir, A., Ed.; IAPC Publishing: Zagreb, Croatia, 2018; pp. 243–271. ISBN 978-953-56942-6-7. [Google Scholar]
- Mesías, F.J.; Martín, A.; Hernández, A. Consumers’ Growing Appetite for Natural Foods: Perceptions towards the Use of Natural Preservatives in Fresh Fruit. Food Res. Int. 2021, 150, 110749. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Ma, X.; Xie, J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. [Google Scholar] [CrossRef]
- Zamuz, S.; Munekata, P.E.S.; Dzuvor, C.K.O.; Zhang, W.; Sant’Ana, A.S.; Lorenzo, J.M. The Role of Phenolic Compounds against Listeria Monocytogenes in Food. A Review. Trends Food Sci. Technol. 2021, 110, 385–392. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Ricci, A.; Martelli, F.; Alinovi, M.; Garofalo, A.; Perna, G.; Neviani, E.; Mucchetti, G.; Bernini, V. Behaviour and Adhesion Capacity of Listeria Monocytogenes on Mozzarella Di Bufala Campana PDO Cheese and in Fluids Involved in the Production Process. Food Control 2022, 140, 109110. [Google Scholar] [CrossRef]
- Bucur, F.I.; Grigore-Gurgu, L.; Crauwels, P.; Riedel, C.U.; Nicolau, A.I. Resistance of Listeria Monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Front. Microbiol. 2018, 9, 2700. [Google Scholar] [CrossRef]
- Ricci, A.; Alinovi, M.; Martelli, F.; Bernini, V.; Garofalo, A.; Perna, G.; Neviani, E.; Mucchetti, G. Heat Resistance of Listeria Monocytogenes in Dairy Matrices Involved in Mozzarella Di Bufala Campana PDO Cheese. Front. Microbiol. 2021, 11, 581934. [Google Scholar] [CrossRef]
- Thongphichai, W.; Pongkittiphan, V.; Laorpaksa, A.; Wiwatcharakornkul, W.; Sukrong, S. Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging. Foods 2023, 12, 2409. [Google Scholar] [CrossRef]
- Lachguer, K.; El Merzougui, S.; Boudadi, I.; Laktib, A.; Ben El Caid, M.; Ramdan, B.; Boubaker, H.; Serghini, M.A. Major Phytochemical Compounds, In Vitro Antioxidant, Antibacterial, and Antifungal Activities of Six Aqueous and Organic Extracts of Crocus sativus L. Flower Waste. Waste Biomass Valor 2023, 14, 1571–1587. [Google Scholar] [CrossRef]
- Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; Adanero-Jorge, F.; García-Fernandez, C. Antimicrobial Activity of Spanish Propolis against Listeria Monocytogenes and Other Listeria Strains. Microorganisms 2023, 11, 1429. [Google Scholar] [CrossRef]
- Han, A.; Hwang, J.-H.; Lee, S.-Y. Antimicrobial Activities of Asian Plant Extracts against Pathogenic and Spoilage Bacteria. Food Sci. Biotechnol. 2023, 32, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, S.; Tenji, D.; Mitić-Ćulafić, D.; Vuletić, S.; Ganić, T.; Djekić, I.; Nikolić, B. Potential of Yellow Gentian Aqueous-Ethanolic Extracts to Prevent Listeria Monocytogenes Biofilm Formation on Selected Food Contact Surfaces. Food Biosci. 2023, 54, 102857. [Google Scholar] [CrossRef]
- Jalil Sarghaleh, S.; Alizadeh Behbahani, B.; Hojjati, M.; Vasiee, A.; Noshad, M. Evaluation of the Constituent Compounds, Antioxidant, Anticancer, and Antimicrobial Potential of Prangos Ferulacea Plant Extract and Its Effect on Listeria Monocytogenes Virulence Gene Expression. Front. Microbiol. 2023, 14, 1202228. [Google Scholar] [CrossRef] [PubMed]
- Simsek, O.; Canli, K.; Benek, A.; Turu, D.; Altuner, E.M. Biochemical, Antioxidant Properties and Antimicrobial Activity of Epiphytic Leafy Liverwort Frullania dilatata (L.) Dumort. Plants 2023, 12, 1877. [Google Scholar] [CrossRef]
- Tessema, F.B.; Gonfa, Y.H.; Asfaw, T.B.; Tadesse, M.G.; Tadesse, T.G.; Bachheti, A.; Alshaharni, M.O.; Kumar, P.; Kumar, V.; Širić, I.; et al. Targeted HPTLC Profile, Quantification of Flavonoids and Phenolic Acids, and Antimicrobial Activity of Dodonaea angustifolia (L.f.) Leaves and Flowers. Molecules 2023, 28, 2870. [Google Scholar] [CrossRef]
- Bagatini, L.; Zandoná, G.P.; Hoffmann, J.F.; de Souza Cardoso, J.; Teixeira, F.C.; Moroni, L.S.; Junges, A.; Kempka, A.P.; Stefanello, F.M.; Rombaldi, C.V. Evaluation of Eugenia uniflora L. Leaf Extracts Obtained by Pressurized Liquid Extraction: Identification of Chemical Composition, Antioxidant, Antibacterial, and Allelopathic Activity. Sustain. Chem. Pharm. 2023, 35, 101214. [Google Scholar] [CrossRef]
- Tsakni, A.; Chatzilazarou, A.; Tsakali, E.; Tsantes, A.G.; Van Impe, J.; Houhoula, D. Identification of Bioactive Compounds in Plant Extracts of Greek Flora and Their Antimicrobial and Antioxidant Activity. Separations 2023, 10, 373. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Sae-leaw, T.; Zhang, B.; Benjakul, S. Antioxidant and Antimicrobial Activities of Ethanolic Jik (Barringtonia acutangula) Leaf Extract and Its Application for Shelf-Life Extension of Pacific White Shrimp Meat during Refrigerated Storage to Be Submitted to Food Control. Food Control 2023, 155, 110037. [Google Scholar] [CrossRef]
- Dawra, M.; Nehme, N.; El Beyrouthy, M.; Abi Rizk, A.; Taillandier, P.; Bouajila, J.; El Rayess, Y. Comparative Study of Phytochemistry, Antioxidant and Biological Activities of Berberis Libanotica Fruit and Leaf Extracts. Plants 2023, 12, 2001. [Google Scholar] [CrossRef]
- Guimarães, T.L.F.; da Silva, L.M.R.; Muniz, C.R.; Vieira, Í.G.P.; de Oliveira, L.S.; Dias, F.G.B.; Lima, C.d.B.; Gonzaga, M.L.d.C.; Lima, J.d.S.S.; Sabino, L.B.d.S.; et al. Potential of Chambá (Justicia Pectoralis Jacq.) Leaves Extracts as a Source of Bioactive Compounds and Natural Antimicrobial Agent. Food Chem. Adv. 2023, 3, 100367. [Google Scholar] [CrossRef]
- Hemdan, B.A.; Mostafa, A.; Elbatanony, M.M.; El-Feky, A.M.; Paunova-Krasteva, T.; Stoitsova, S.; El-Liethy, M.A.; El-Taweel, G.E.; Abu Mraheil, M. Bioactive Azadirachta Indica and Melia Azedarach Leaves Extracts with Anti-SARS-CoV-2 and Antibacterial Activities. PLoS ONE 2023, 18, e0282729. [Google Scholar] [CrossRef] [PubMed]
- Benmahieddine, A.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; Amari, N.O.; Zerey-Belaskri, A.E.; Gismondi, A.; Di Marco, G.; Canini, A.; Habi, S.; Atik Bekkara, F.; et al. Leaf-Buds of Pistacia Atlantica: A Novel Source of Bioactive Molecules with High Anti-Inflammatory, Antioxidant, Anti-Tyrosinase and Antimicrobial Properties. Physiol. Mol. Biol. Plants 2023, 29, 209–219. [Google Scholar] [CrossRef]
- Dhowlaghar, N.; Dhanani, T.; Pillai, S.S.; Patil, B.S. Accelerated Solvent Extraction of Red Onion Peel Extract and Its Antimicrobial, Antibiofilm, and Quorum-Sensing Inhibition Activities against Listeria Monocytogenes and Chromobacterium Violaceum. Food Biosci. 2023, 53, 102649. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Šimat, V.; Skroza, D.; Čagalj, M.; Smole-Možina, S.; Bassi, D.; Gardini, F.; Tabanelli, G. Effects of Rubus Fruticosus and Juniperus Oxycedrus Derivatives on Culturability and Viability of Listeria Monocytogenes. Sci. Rep. 2022, 12, 13158. [Google Scholar] [CrossRef]
- Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa Damascena from Morocco. Separations 2022, 9, 247. [Google Scholar] [CrossRef]
- Nefzi, K.; Ben Jemaa, M.; Baraket, M.; Dakhlaoui, S.; Msaada, K.; Nasr, Z. In Vitro Antioxidant, Antibacterial and Mechanisms of Action of Ethanolic Extracts of Five Tunisian Plants against Bacteria. Appl. Sci. 2022, 12, 5038. [Google Scholar] [CrossRef]
- Naim, N.; Bouymajane, A.; Oulad El Majdoub, Y.; Ezrari, S.; Lahlali, R.; Tahiri, A.; Ennahli, S.; Laganà Vinci, R.; Cacciola, F.; Mondello, L.; et al. Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts. Molecules 2022, 28, 186. [Google Scholar] [CrossRef]
- Chroho, M.; Aazza, M.; Bouymajane, A.; Majdoub, Y.O.E.; Cacciola, F.; Mondello, L.; Zair, T.; Bouissane, L. HPLC-PDA/ESI-MS Analysis of Phenolic Compounds and Bioactivities of the Ethanolic Extract from Flowers of Moroccan Anacyclus Clavatus. Plants 2022, 11, 3423. [Google Scholar] [CrossRef]
- Stupar, A.; Šarić, L.; Vidović, S.; Bajić, A.; Kolarov, V.; Šarić, B. Antibacterial Potential of Allium Ursinum Extract Prepared by the Green Extraction Method. Microorganisms 2022, 10, 1358. [Google Scholar] [CrossRef]
- Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules 2022, 27, 2762. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Valenzuela, M.R.; Ayala-Soto, R.E.; Ayala-Zavala, J.F.; Espinoza-Silva, B.A.; González-Aguilar, G.A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Nazzaro, F.; Fratianni, F.; Tapia-Rodríguez, M.R.; et al. Pomegranate (Punica granatum L.) Peel Extracts as Antimicrobial and Antioxidant Additives Used in Alfalfa Sprouts. Foods 2022, 11, 2588. [Google Scholar] [CrossRef] [PubMed]
- Mascoloti Spréa, R.; Caleja, C.; Pinela, J.; Finimundy, T.C.; Calhelha, R.C.; Kostić, M.; Sokovic, M.; Prieto, M.A.; Pereira, E.; Amaral, J.S.; et al. Comparative Study on the Phenolic Composition and in Vitro Bioactivity of Medicinal and Aromatic Plants from the Lamiaceae Family. Food Res. Int. 2022, 161, 111875. [Google Scholar] [CrossRef] [PubMed]
- Chroho, M.; Bouymajane, A.; Aazza, M.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Zair, T.; Bouissane, L. Determination of the Phenolic Profile, and Evaluation of Biological Activities of Hydroethanolic Extract from Aerial Parts of Origanum Compactum from Morocco. Molecules 2022, 27, 5189. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, A.; Purkiewicz, A.; Jakuć, P.; Wiśniewski, P.; Sawicki, T.; Chajęcka-Wierzchowska, W.; Tańska, M. Effectiveness of Various Solvent-Produced Thyme (Thymus vulgaris) Extracts in Inhibiting the Growth of Listeria Monocytogenes in Frozen Vegetables. NFS J. 2022, 29, 26–34. [Google Scholar] [CrossRef]
- Xedzro, C.; Tano-Debrah, K.; Nakano, H. Antibacterial Efficacies and Time-Kill Kinetics of Indigenous Ghanaian Spice Extracts against Listeria Monocytogenes and Some Other Food-Borne Pathogenic Bacteria. Microbiol. Res. 2022, 258, 126980. [Google Scholar] [CrossRef]
- Azarashkan, Z.; Farahani, S.; Abedinia, A.; Akbarmivehie, M.; Motamedzadegan, A.; Heidarbeigi, J.; Hayaloğlu, A.A. Co-Encapsulation of Broccoli Sprout Extract Nanoliposomes into Basil Seed Gum: Effects on in Vitro Antioxidant, Antibacterial and Anti-Listeria Activities in Ricotta Cheese. Int. J. Food Microbiol. 2022, 376, 109761. [Google Scholar] [CrossRef]
- Kim, G.; Xu, Y.; Zhang, J.; Sui, Z.; Corke, H. Antibacterial Activity and Multi-Targeting Mechanism of Dehydrocorydaline From Corydalis Turtschaninovii Bess. Against Listeria Monocytogenes. Front. Microbiol. 2022, 12, 799094. [Google Scholar] [CrossRef]
- Filip, S.; Đurović, S.; Blagojević, S.; Tomić, A.; Ranitović, A.; Gašić, U.; Tešić, Ž.; Zeković, Z. Chemical Composition and Antimicrobial Activity of Osage Orange (Maclura pomifera) Leaf Extracts. Arch. Pharm. 2021, 354, 2000195. [Google Scholar] [CrossRef]
- Tlili, H.; Marino, A.; Ginestra, G.; Cacciola, F.; Mondello, L.; Miceli, N.; Taviano, M.F.; Najjaa, H.; Nostro, A. Polyphenolic Profile, Antibacterial Activity and Brine Shrimp Toxicity of Leaf Extracts from Six Tunisian Spontaneous Species. Nat. Prod. Res. 2021, 35, 1057–1063. [Google Scholar] [CrossRef]
- Dawra, M.; El Rayess, Y.; El Beyrouthy, M.; Nehme, N.; El Hage, R.; Taillandier, P.; Bouajila, J. Biological Activities and Chemical Characterization of the Lebanese Endemic Plant Origanum ehrenbergii Boiss. Flavour Fragr. J. 2021, 36, 339–351. [Google Scholar] [CrossRef]
- Aćimović, M.; Šeregelj, V.; Šovljanski, O.; Tumbas Šaponjac, V.; Švarc Gajić, J.; Brezo-Borjan, T.; Pezo, L. In Vitro Antioxidant, Antihyperglycemic, Anti-Inflammatory, and Antimicrobial Activity of Satureja kitaibelii Wierzb. Ex Heuff. Subcritical Water Extract. Ind. Crops Prod. 2021, 169, 113672. [Google Scholar] [CrossRef]
- Zara, S.; Petretto, G.L.; Mannu, A.; Zara, G.; Budroni, M.; Mannazzu, I.; Multineddu, C.; Pintore, G.; Fancello, F. Antimicrobial Activity and Chemical Characterization of a Non-Polar Extract of Saffron Stamens in Food Matrix. Foods 2021, 10, 703. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; Mohamed, A.M.H.A.; Alharthi, S.S. Antioxidant and Antimicrobial Evaluation and Chemical Investigation of Rosa Gallica Var. Aegyptiaca Leaf Extracts. Molecules 2021, 26, 6498. [Google Scholar] [CrossRef]
- Dias, E.D.; Cantanhede Filho, A.J.; Carneiro, F.J.C.; da Rocha, C.Q.; da Silva, L.C.N.; Santos, J.C.B.; Barros, T.F.; Santos, D.M. Antimicrobial Activity of Extracts from the Humiria balsamifera (Aubl). Plants 2021, 10, 1479. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Djordjević, V.B.; Petrović, P.M.; Pljevljakušić, D.S.; Zdunić, G.M.; Šavikin, K.P.; Bugarski, B.M. The Influence of Different Extraction Conditions on Polyphenol Content, Antioxidant and Antimicrobial Activities of Wild Thyme. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100328. [Google Scholar] [CrossRef]
- Lee, J.; Sung, J.-M.; Cho, H.J.; Woo, S.-H.; Kang, M.-C.; Yong, H.I.; Kim, T.-K.; Lee, H.; Choi, Y.-S. Natural Extracts as Inhibitors of Microorganisms and Lipid Oxidation in Emulsion Sausage during Storage. Food Sci. Anim. Resour. 2021, 41, 1060–1077. [Google Scholar] [CrossRef]
- de Niederhäusern, S.; Bondi, M.; Camellini, S.; Sabia, C.; Messi, P.; Iseppi, R. Plant Extracts for the Control of Listeria Monocytogenes in Meat Products. Appl. Sci. 2021, 11, 10820. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Nguyen, T.T.; Ma, P.C.; Ta, Q.T.H.; Duong, T.-H.; Vo, V.G. Potential Antimicrobial and Anticancer Activities of an Ethanol Extract from Bouea Macrophylla. Molecules 2020, 25, 1996. [Google Scholar] [CrossRef]
- Moreira, S.A.; Silva, S.; Costa, E.; Pinto, S.; Sarmento, B.; Saraiva, J.A.; Pintado, M. Effect of High Hydrostatic Pressure Extraction on Biological Activities and Phenolics Composition of Winter Savory Leaf Extracts. Antioxidants 2020, 9, 841. [Google Scholar] [CrossRef]
- Phuong, N.N.M.; Le, T.T.; Van Camp, J.; Raes, K. Evaluation of Antimicrobial Activity of Rambutan (Nephelium lappaceum L.) Peel Extracts. Int. J. Food Microbiol. 2020, 321, 108539. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Ceylan, O.; Kucukaydin, S.; Duru, M.E. HPLC-DAD Phenolic Profiles, Antibiofilm, Anti-Quorum Sensing and Enzyme Inhibitory Potentials of Camellia sinensis (L.) O. Kuntze and Curcuma longa L. LWT 2020, 133, 110150. [Google Scholar] [CrossRef]
- Ambrosio, R.L.; Gratino, L.; Mirino, S.; Cocca, E.; Pollio, A.; Anastasio, A.; Palmieri, G.; Balestrieri, M.; Genovese, A.; Gogliettino, M. The Bactericidal Activity of Protein Extracts from Loranthus Europaeus Berries: A Natural Resource of Bioactive Compounds. Antibiotics 2020, 9, 47. [Google Scholar] [CrossRef]
- Santos, C.A.; Almeida, F.A.; Quecán, B.X.V.; Pereira, P.A.P.; Gandra, K.M.B.; Cunha, L.R.; Pinto, U.M. Bioactive Properties of Syzygium cumini (L.) Skeels Pulp and Seed Phenolic Extracts. Front. Microbiol. 2020, 11, 990. [Google Scholar] [CrossRef]
- Yahia, Y.; Benabderrahim, M.A.; Tlili, N.; Bagues, M.; Nagaz, K. Bioactive Compounds, Antioxidant and Antimicrobial Activities of Extracts from Different Plant Parts of Two Ziziphus Mill. Species. PLoS ONE 2020, 15, e0232599. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Mayol, I.; Casas-Forero, N.; Pastene-Navarrete, E.; Lima Silva, F.; Alarcón-Enos, J. Fractionation and Hydrolyzation of Avocado Peel Extract: Improvement of Antibacterial Activity. Antibiotics 2020, 10, 23. [Google Scholar] [CrossRef]
- Sousa, J.M.S.; de Abreu, F.A.P.; Ruiz, A.L.T.G.; da Silva, G.G.; Machado, S.L.; Garcia, C.P.G.; Filho, F.O.; Wurlitzer, N.J.; de Figueiredo, E.A.T.; Magalhães, F.E.A.; et al. Cashew Apple (Anacardium occidentale L.) Extract from a by-Product of Juice Processing: Assessment of Its Toxicity, Antiproliferative and Antimicrobial Activities. J. Food Sci. Technol. 2021, 58, 764–776. [Google Scholar] [CrossRef]
- Márquez-Rodríguez, A.S.; Nevárez-Baca, S.; Lerma-Hernández, J.C.; Hernández-Ochoa, L.R.; Nevárez-Moorillon, G.V.; Gutiérrez-Méndez, N.; Muñoz-Castellanos, L.N.; Salas, E. In Vitro Antibacterial Activity of Hibiscus sabdariffa L. Phenolic Extract and Its In Situ Application on Shelf-Life of Beef Meat. Foods 2020, 9, 1080. [Google Scholar] [CrossRef]
- Ceruso, M.; Clement, J.A.; Todd, M.J.; Zhang, F.; Huang, Z.; Anastasio, A.; Pepe, T.; Liu, Y. The Inhibitory Effect of Plant Extracts on Growth of the Foodborne Pathogen, Listeria Monocytogenes. Antibiotics 2020, 9, 319. [Google Scholar] [CrossRef]
- Woo, H.; Kang, J.; Lee, C.; Song, K.B. Application of Cudrania tricuspidata Leaf Extract as a Washing Agent to Inactivate Listeria monocytogenes on Fresh-cut Romaine Lettuce and Kale. Int. J. Food Sci. Technol. 2020, 55, 276–282. [Google Scholar] [CrossRef]
- Diarra, M.S.; Hassan, Y.I.; Block, G.S.; Drover, J.C.G.; Delaquis, P.; Oomah, B.D. Antibacterial Activities of a Polyphenolic-Rich Extract Prepared from American Cranberry (Vaccinium macrocarpon) Fruit Pomace against Listeria Spp. LWT 2020, 123, 109056. [Google Scholar] [CrossRef]
- Kang, J.-H.; Song, K.B. Antibacterial Activity of the Noni Fruit Extract against Listeria Monocytogenes and Its Applicability as a Natural Sanitizer for the Washing of Fresh-Cut Produce. Food Microbiol. 2019, 84, 103260. [Google Scholar] [CrossRef] [PubMed]
- Seleshe, S.; Kang, S.N. In Vitro Antimicrobial Activity of Different Solvent Extracts from Moringa Stenopetala Leaves. Prev. Nutr. Food Sci. 2019, 24, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial Activity of Pomegranate Peel Extracts Performed by High Pressure and Enzymatic Assisted Extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef]
- Zambrano, C.; Kerekes, E.B.; Kotogán, A.; Papp, T.; Vágvölgyi, C.; Krisch, J.; Takó, M. Antimicrobial Activity of Grape, Apple and Pitahaya Residue Extracts after Carbohydrase Treatment against Food-Related Bacteria. LWT 2019, 100, 416–425. [Google Scholar] [CrossRef]
- Nwabor, O.F.; Vongkamjan, K.; Voravuthikunchai, S.P. Antioxidant Properties and Antibacterial Effects of Eucalyptus camaldulensis Ethanolic Leaf Extract on Biofilm Formation, Motility, Hemolysin Production, and Cell Membrane of the Foodborne Pathogen Listeria monocytogenes. Foodborne Pathog. Dis. 2019, 16, 581–589. [Google Scholar] [CrossRef]
- Tamkutė, L.; Gil, B.M.; Carballido, J.R.; Pukalskienė, M.; Venskutonis, P.R. Effect of Cranberry Pomace Extracts Isolated by Pressurized Ethanol and Water on the Inhibition of Food Pathogenic/Spoilage Bacteria and the Quality of Pork Products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef]
- Li, H.-N.; Wang, C.-Y.; Wang, C.-L.; Chou, C.-H.; Leu, Y.-L.; Chen, B.-Y. Antimicrobial Effects and Mechanisms of Ethanol Extracts of Psoralea corylifolia Seeds Against Listeria monocytogenes and Methicillin-Resistant Staphylococcus aureus. Foodborne Pathog. Dis. 2019, 16, 573–580. [Google Scholar] [CrossRef]
- Kefi, S.; Essid, R.; Mkadmini, K.; Kefi, A.; Mahjoub Haddada, F.; Tabbene, O.; Limam, F. Phytochemical Investigation and Biological Activities of Echium arenarium (Guss) Extracts. Microb. Pathog. 2018, 118, 202–210. [Google Scholar] [CrossRef]
- Medjeldi, S.; Bouslama, L.; Benabdallah, A.; Essid, R.; Haou, S.; Elkahoui, S. Biological Activities, and Phytocompounds of Northwest Algeria Ajuga iva (L) Extracts: Partial Identification of the Antibacterial Fraction. Microb. Pathog. 2018, 121, 173–178. [Google Scholar] [CrossRef]
- Tang, X.; Xu, C.; Yagiz, Y.; Simonne, A.; Marshall, M.R. Phytochemical Profiles, and Antimicrobial and Antioxidant Activities of Greater Galangal [Alpinia galanga (Linn.) Swartz.] Flowers. Food Chem. 2018, 255, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; McKeever, L.C.; Malik, N.S.A. Assessment of the Antimicrobial Activity of Olive Leaf Extract against Foodborne Bacterial Pathogens. Front. Microbiol. 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- López de Dicastillo, C.; Bustos, F.; Valenzuela, X.; López-Carballo, G.; Vilariño, J.M.; Galotto, M.J. Chilean Berry Ugni Molinae Turcz. Fruit and Leaves Extracts with Interesting Antioxidant, Antimicrobial and Tyrosinase Inhibitory Properties. Food Res. Int. 2017, 102, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Mhalla, D.; Bouaziz, A.; Ennouri, K.; Chawech, R.; Smaoui, S.; Jarraya, R.; Tounsi, S.; Trigui, M. Antimicrobial Activity and Bioguided Fractionation of Rumex Tingitanus Extracts for Meat Preservation. Meat Sci. 2017, 125, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Armenta, F.J.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; González-Aguilar, G.A.; Nazzaro, F.; Fratianni, F.; Ayala-Zavala, J.F. Antibacterial and Antioxidant Properties of Grape Stem Extract Applied as Disinfectant in Fresh Leafy Vegetables. J. Food Sci. Technol. 2017, 54, 3192–3200. [Google Scholar] [CrossRef]
- Yuan, W.; Lee, H.W.; Yuk, H.-G. Antimicrobial Efficacy of Cinnamomum Javanicum Plant Extract against Listeria Monocytogenes and Its Application Potential with Smoked Salmon. Int. J. Food Microbiol. 2017, 260, 42–50. [Google Scholar] [CrossRef]
- Shukla, S.; Ahirwal, L.; Bajpai, V.K.; Huh, Y.S.; Han, Y.-K. Growth Inhibitory Effects of Adhatoda Vasica and Its Potential at Reducing Listeria Monocytogenes in Chicken Meat. Front. Microbiol. 2017, 8, 1260. [Google Scholar] [CrossRef]
- Felhi, S.; Baccouch, N.; Ben Salah, H.; Smaoui, S.; Allouche, N.; Gharsallah, N.; Kadri, A. Nutritional Constituents, Phytochemical Profiles, in vitro Antioxidant and Antimicrobial Properties, and Gas Chromatography–Mass Spectrometry Analysis of Various Solvent Extracts from Grape Seeds (Vitis vinifera L.). Food Sci. Biotechnol. 2016, 25, 1537–1544. [Google Scholar] [CrossRef]
- Odedina, G.; Vongkamjan, K.; Voravuthikunchai, S. Potential Bio-Control Agent from Rhodomyrtus Tomentosa against Listeria Monocytogenes. Nutrients 2015, 7, 7451–7468. [Google Scholar] [CrossRef]
- Monente, C.; Bravo, J.; Vitas, A.I.; Arbillaga, L.; De Peña, M.P.; Cid, C. Coffee and Spent Coffee Extracts Protect against Cell Mutagens and Inhibit Growth of Food-Borne Pathogen Microorganisms. J. Funct. Foods 2015, 12, 365–374. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, P.; Verma, A.K. Preliminary Nutritional and Biological Potential of Artocarpus heterophyllus L. Shell Powder. J. Food Sci. Technol. 2015, 52, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Carraturo, A. Antibacterial Activity of Phenolic Compounds Derived from Ginkgo Biloba Sarcotestas against Food-Borne Pathogens. Br. Microbiol. Res. J. 2014, 4, 18–27. [Google Scholar] [CrossRef]
- Stojković, D.S.; Živković, J.; Soković, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Janković, T.; Maksimović, Z. Antibacterial Activity of Veronica montana L. Extract and of Protocatechuic Acid Incorporated in a Food System. Food Chem. Toxicol. 2013, 55, 209–213. [Google Scholar] [CrossRef] [PubMed]
- George, A.S.; Brandl, M.T. Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops. Microorganisms 2021, 9, 2485. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef] [PubMed]
- Bouarab Chibane, L.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant Antimicrobial Polyphenols as Potential Natural Food Preservatives: Plant Polyphenols for Food Preservation. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Zhang, R.; Wang, Y.; Tang, S.; Yang, H.; Du, L.; Lin, B.; Shao, L.; Zhang, F.; Xue, P. Less Polar Ginsenosides Have Better Protective Effects on Mice Infected by Listeria Monocytogenes. Ecotoxicol. Environ. Saf. 2021, 213, 112065. [Google Scholar] [CrossRef]
- de Almeida Roger, J.; Magro, M.; Spagnolo, S.; Bonaiuto, E.; Baratella, D.; Fasolato, L.; Vianello, F. Antimicrobial and Magnetically Removable Tannic Acid Nanocarrier: A Processing Aid for Listeria Monocytogenes Treatment for Food Industry Applications. Food Chem. 2018, 267, 430–436. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Zhang, B.; Wu, Q.; Wang, X.; Xia, X. Tannin-Rich Pomegranate Rind Extracts Reduce Adhesion to and Invasion of Caco-2 Cells by Listeria Monocytogenes and Decrease Its Expression of Virulence Genes. J. Food Prot. 2015, 78, 128–133. [Google Scholar] [CrossRef]
- Farha, A.K.; Yang, Q.-Q.; Kim, G.; Li, H.-B.; Zhu, F.; Liu, H.-Y.; Gan, R.-Y.; Corke, H. Tannins as an Alternative to Antibiotics. Food Biosci. 2020, 38, 100751. [Google Scholar] [CrossRef]
- Nguyen, C.N.M.; Nirmal, N.P.; Sultanbawa, Y.; Ziora, Z.M. Antioxidant and Antibacterial Activity of Four Tannins Isolated from Different Sources and Their Effect on the Shelf-Life Extension of Vacuum-Packed Minced Meat. Foods 2023, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Cano, R.D.; Salcedo-Hernández, R.; Casados-Vázquez, L.E.; Wrobel, K.; Bideshi, D.K.; Barboza-Corona, J.E. Class I Defensins (BraDef) from Broccoli (Brassica oleracea var. italica) Seeds and Their Antimicrobial Activity. World J. Microbiol. Biotechnol 2020, 36, 30. [Google Scholar] [CrossRef]
- Nawrot, R.; Józefiak, D.; Sip, A.; Kuźma, D.; Musidlak, O.; Goździcka-Józefiak, A. Isolation and Characterization of a Non-Specific Lipid Transfer Protein from Chelidonium majus L. Latex. Int. J. Biol. Macromol. 2017, 104, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus Lemon Essential Oil: Chemical Composition, Antioxidant and Antimicrobial Activities with Its Preservative Effect against Listeria Monocytogenes Inoculated in Minced Beef Meat. Lipids Health Dis 2017, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.R.; Yamano, M.; Rumi, F.; Kikukawa, T.; Demura, M.; Aizawa, T. Enhanced Expression of Cysteine-Rich Antimicrobial Peptide Snakin-1 in Escherichia coli Using an Aggregation-Prone Protein Coexpression System. Biotechnol. Prog. 2017, 33, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.R.; Rumi, F.; Tsutsumi, M.; Takahashi, R.; Yamano, M.; Kamiya, M.; Kikukawa, T.; Demura, M.; Aizawa, T. Expression, Purification and Characterization of the Recombinant Cysteine-Rich Antimicrobial Peptide Snakin-1 in Pichia Pastoris. Protein Expr. Purif. 2016, 122, 15–22. [Google Scholar] [CrossRef]
- Bártová, V.; Bárta, J.; Jarošová, M. Antifungal and Antimicrobial Proteins and Peptides of Potato (Solanum tuberosum L.) Tubers and Their Applications. Appl. Microbiol. Biotechnol. 2019, 103, 5533–5547. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Leon, M.J.; Millan-Linares, M.C.; Montserrat-de la Paz, S. Antimicrobial Plant-Derived Peptides Obtained by Enzymatic Hydrolysis and Fermentation as Components to Improve Current Food Systems. Trends Food Sci. Technol. 2023, 135, 32–42. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lim, J.-M.; Lee, S.-W.; Jang, T.-H.; Park, J.-H.; Seo, Y.-S.; Lee, J.-H.; Seralathan, K.-K.; Oh, B.-T. Effect of Fermentation on Antioxidant, Antimicrobial, Anti-Inflammatory, and Anti-Helicobacter Pylori Adhesion Activity of Ulmus davidiana var. japonica root Bark. Food Sci. Biotechnol. 2023, 32, 1257–1268. [Google Scholar] [CrossRef]
- Anantachoke, N.; Duangrat, R.; Sutthiphatkul, T.; Ochaikul, D.; Mangmool, S. Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods 2023, 12, 1818. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-A.; Lee, W.-D.; Kim, J.; Kim, S.; Choi, M.-G.; On, J.-Y.; Jeon, S.-W.; Han, S.-G.; Kim, S.-K. In Vitro Fermentation Characteristics of Pine Needles (Pinus densiflora) as Feed Additive. Fermentation 2023, 9, 415. [Google Scholar] [CrossRef]
- Al-Mohammadi, A.-R.; Ismaiel, A.A.; Ibrahim, R.A.; Moustafa, A.H.; Abou Zeid, A.; Enan, G. Chemical Constitution and Antimicrobial Activity of Kombucha Fermented Beverage. Molecules 2021, 26, 5026. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Bertani, G.; Maoloni, A.; Bernini, V.; Levante, A.; Neviani, E.; Lazzi, C. Antimicrobial Activity of Fermented Vegetable Byproduct Extracts for Food Applications. Foods 2021, 10, 1092. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Neto, R.O.; dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; de Barros, F.A.R. Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Abdul Rani, N.F.; Meor Hussin, A.S. Identification of Antioxidant and Antibacterial Activities for the Bioactive Peptides Generated from Bitter Beans (Parkia speciosa) via Boiling and Fermentation Processes. LWT 2020, 131, 109776. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Kadum, H.; Fathallah, S.; Meor Hussin, A.S. Metabolomics Profiling and Antibacterial Activity of Fermented Ginger Paste Extends the Shelf Life of Chicken Meat. LWT 2020, 132, 109897. [Google Scholar] [CrossRef]
- Szutowska, J.; Rybicka, I.; Pawlak-Lemańska, K.; Gwiazdowska, D. Spontaneously Fermented Curly Kale Juice: Microbiological Quality, Nutritional Composition, Antioxidant, and Antimicrobial Properties. J. Food Sci. 2020, 85, 1248–1255. [Google Scholar] [CrossRef]
- Moon, K.; Cha, J. Enhancement of Antioxidant and Antibacterial Activities of Salvia Miltiorrhiza Roots Fermented with Aspergillus Oryzae. Foods 2020, 9, 34. [Google Scholar] [CrossRef]
- Ricci, A.; Bernini, V.; Maoloni, A.; Cirlini, M.; Galaverna, G.; Neviani, E.; Lazzi, C. Vegetable By-Product Lacto-Fermentation as a New Source of Antimicrobial Compounds. Microorganisms 2019, 7, 607. [Google Scholar] [CrossRef]
- Rochín-Medina, J.J.; Ramírez, K.; Rangel-Peraza, J.G.; Bustos-Terrones, Y.A. Increase of Content and Bioactivity of Total Phenolic Compounds from Spent Coffee Grounds through Solid State Fermentation by Bacillus clausii. J. Food Sci. Technol. 2018, 55, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Park, K.J.; An, H.J.; Choi, Y.H. Phytochemical, Antioxidant, and Antibacterial Activities of Fermented Citrus unshiu Byproduct. Food Sci. Biotechnol. 2017, 26, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Ngan, N.; Giang, M.; Tu, N. Biological Activities of Black Garlic Fermented with Lactobacillus Plantarum PN05 and Some Kinds of Black Garlic Presenting Inside Vietnam. Indian J. Pharm. Educ. Res. 2017, 51, 672–678. [Google Scholar] [CrossRef]
- Hong, H.; Niu, K.-M.; Lee, J.-H.; Cho, S.; Han, S.-G.; Kim, S.-K. Characteristics of Chinese Chives (Allium tuberosum) Fermented by Leuconostoc Mesenteroides. Appl. Biol. Chem. 2016, 59, 349–357. [Google Scholar] [CrossRef]
- Jiang, M.; Deng, K.; Jiang, C.; Fu, M.; Guo, C.; Wang, X.; Wang, X.; Meng, F.; Yang, S.; Deng, K.; et al. Evaluation of the Antioxidative, Antibacterial, and Anti-Inflammatory Effects of the Aloe Fermentation Supernatant Containing Lactobacillus plantarum HM218749.1. Mediat. Inflamm. 2016, 2016, 2945650. [Google Scholar] [CrossRef]
- Choi, H.; Gwak, G.; Choi, D.; Park, J.; Cheong, H. Antimicrobial Efficacy of Fermented Dark Vinegar from Unpolished Rice. Microbiol. Biotechnol. Lett. 2015, 43, 97–104. [Google Scholar] [CrossRef]
- Velićanski, A.S.; Cvetković, D.D.; Tumbas Šaponjac, V.T.; Vulić, J.J. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa officinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technol. Biotechnol. 2014, 52, 420–429. [Google Scholar] [CrossRef]
- Khubber, S.; Marti-Quijal, F.J.; Tomasevic, I.; Remize, F.; Barba, F.J. Lactic Acid Fermentation as a Useful Strategy to Recover Antimicrobial and Antioxidant Compounds from Food and By-Products. Curr. Opin. Food Sci. 2022, 43, 189–198. [Google Scholar] [CrossRef]
- Rathod, N.B.; Phadke, G.G.; Tabanelli, G.; Mane, A.; Ranveer, R.C.; Pagarkar, A.; Ozogul, F. Recent Advances in Bio-Preservatives Impacts of Lactic Acid Bacteria and Their Metabolites on Aquatic Food Products. Food Biosci. 2021, 44, 101440. [Google Scholar] [CrossRef]
- Wu, M.; Dong, Q.; Ma, Y.; Yang, S.; Zohaib Aslam, M.; Liu, Y.; Li, Z. Potential Antimicrobial Activities of Probiotics and Their Derivatives against Listeria Monocytogenes in Food Field: A Review. Food Res. Int. 2022, 160, 111733. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Delgado, J.; Córdoba, J.J. Strategies for Biocontrol of Listeria Monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods 2022, 11, 542. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.M.; Kuniyoshi, T.M.; Oliveira, R.P.; Hill, C.; Ross, R.P.; Cotter, P.D. Antimicrobials for Food and Feed; a Bacteriocin Perspective. Curr. Opin. Biotechnol. 2020, 61, 160–167. [Google Scholar] [CrossRef]
- Kothari, D.; Lee, W.-D.; Jung, E.S.; Niu, K.-M.; Lee, C.H.; Kim, S.-K. Controlled Fermentation Using Autochthonous Lactobacillus Plantarum Improves Antimicrobial Potential of Chinese Chives against Poultry Pathogens. Antibiotics 2020, 9, 386. [Google Scholar] [CrossRef]
- Huynh, N.; Van Camp, J.; Smagghe, G.; Raes, K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef] [PubMed]
- Gaur, G.; Gänzle, M.G. Conversion of (Poly)Phenolic Compounds in Food Fermentations by Lactic Acid Bacteria: Novel Insights into Metabolic Pathways and Functional Metabolites. Curr. Res. Food Sci. 2023, 6, 100448. [Google Scholar] [CrossRef] [PubMed]
Matrix | Part of Plant | Solvent Employed | Anti-Listeria Activity | Reference |
---|---|---|---|---|
Published in 2023 | ||||
Nelumbo nucifera | Leaves | Ethanol | 10.6 mm inhibition (10 mg/disk) | [11] |
Cocos nucifera | Leaves | Ethanol | 7.8 mm inhibition (10 mg/disk) | [11] |
Nypa fruticans | Leaves | Ethanol | 8.9 mm inhibition (10 mg/disk) | [11] |
Nepenthes mirabilis | Leaves | Ethanol | 10.9 mm inhibition (10 mg/disk) | [11] |
Crocus sativus L. | Flower by-product | Diethyl ether | MIC 25 mg/mL MBC 50 mg/mL | [12] |
Crocus sativus L. | Flower by-product | Ethyl acetate | MIC 50 mg/mL MBC > 100 mg/mL | [12] |
Propolis | Ethanol | 11–30 mm inhibition zone (20 μL) | [13] | |
Alchornea trewioides | Leaves and branch | Ethanol/Distilled water | MIC 6.2 mg/mL | [14] |
Erodium stephanianum | Leaves and branch | Ethanol/Distilled water | MIC 25 mg/mL | [14] |
Gentiana lutea | Leaves | Water/Ethanol | MIC 10 mg/mL | [15] |
Gentiana lutea | Root | Water/Ethanol | MIC 10 mg/mL | [15] |
Prangos ferulacea | Plant | Distilled water | MIC 16 mg/mL MBC 128 mg/mL | [16] |
Liverwort F. dilatata | Plant | Ethanol | MIC 0.26 mg/mL | [17] |
Liverwort F. dilatata | Plant | Water | MIC 21.44 mg/mL | [17] |
Dodonaea angustifolia (L.f.) | Leaves | Methanol | 9.7 mm inhibition (100 μL at 200 mg/mL) | [18] |
Dodonaea angustifolia (L.f.) | Flowers | Methanol | 9.3 mm inhibition (100 μL at 200 mg/mL) | [18] |
Eugenia uniflora L. (Pitangueira) | Leaves | Water/Ethanol | MIC 12.5 mg/mL | [19] |
Origanum vulgare L. | Leaves | Water | MIC 135 μg/mL | [20] |
Origanum dictamnus L. | Leaves | Water | MIC 80 μg/mL | [20] |
Hypericum perforatum L. | Leaves | Water | MIC 30 μg/mL | [20] |
Origanum majorana L. | Leaves | Water | MIC 5 μg/mL | [20] |
Mentha spicata L. | Leaves | Water | MIC 5 μg/mL | [20] |
Annona muricata (soursop) | Leaves | Ethanol | MIC 50–100 mg/mL MBC 100–200 mg/mL | [21] |
Morinda citrifolia (Noni) | Leaves | Ethanol | MIC 25–50 mg/mL MBC 50–100 mg/mL | [21] |
Barringtonia acutangula (Jik) | Leaves | Ethanol | MIC 25–50 mg/mL MBC 50–100 mg/mL | [21] |
Berberis libanotica Ehrenb. | Leaves | Dichloromethane | MIC 39 μg/mL | [22] |
Berberis libanotica Ehrenb. | Fruit | Methanol | MIC 625 μg/mL | [22] |
Berberis libanotica Ehrenb. | Fruit | Cyclohexane | MIC 4.8 μg/mL | [22] |
Berberis libanotica Ehrenb. | Fruit | Ethylacetate | MIC 78–312 μg/mL | [22] |
Justicia Pectoralis Jacq. Chambá | Leaves | Water | MIC 13 mg/mL MBC 18 mg/mL | [23] |
Justicia Pectoralis Jacq. Chambá | Leaves | Water/Ethanol | MIC 25–35 mg/mL MBC 35–100 mg/mL | [23] |
Azadirachta indica L. (Neem) | Leaves | Methanol | 11–12 mm inhibition zone (50 μL at 50 μg/mL) | [24] |
Melia azedarach L. (China tree) | Leaves | Methanol | 9–11 mm inhibition zone (50 μL at 50 μg/mL) | [24] |
P. atlantica | Leaf buds | Methanol/Water | MIC 39 μg/mL MBC 1250 μg/mL | [25] |
Red onion | Peel | Water/Ethanol | 12.9 < MIC < 25.8 mg QdGE/g | [26] |
Published in 2022 | ||||
Rubus fruticosus | Leaves | Water/Ethanol | MIC 2 mg/mL | [27] |
Juniperus oxycedrus | Needles | Water/Ethanol | MIC 2 mg/mL | [27] |
Rosa damascena | Flowers | Water/Ethanol | MIC 20.8 mg/mL MBC 41.7 mg/mL | [28] |
Pistacia lentiscus | Leaves | Ethanol | MIC 0.04 mg/mL MBC 3.84 mg/mL | [29] |
Rosmarinus officinalis | Leaves | Ethanol | MIC 3.84 mg/mL MBC 3.84 mg/mL | [29] |
Erica multiflora | Leaves | Ethanol | MIC 3.84 mg/mL MBC 3.84 mg/mL | [29] |
Calicotome villosa | Leaves | Ethanol | MIC 3.84 mg/mL MBC 12 mg/mL | [29] |
Phillyrea latifolia | Leaves | Ethanol | MIC 3.84 mg/mL MBC 12 mg/mL | [29] |
Crocus sativus L. | Petals | Ethanol/Water | MIC 4.33 mg/mL MBC 17.35 mg/mL | [30] |
Anacylus clavatus | Flowers | Ethanol | MIC 41.66 mg/mL MBC 166.66 mg/mL | [31] |
Allium ursinum | Leaf | Water | MIC 28 mg/mL MBC 29 mg/mL | [32] |
Juglans regia L. | Flower | Methanol | MIC 0.63 mg/mL MBC 2.5 mg/mL | [33] |
Punica granatum L. (Pomegranate) | Peel | Water | MIC 19 mg/mL | [34] |
Punica granatum L. (Pomegranate) | Peel | Ethanol | MIC 24 mg/mL | [34] |
M. officinalis | Dry plant | Ethanol/Water | MIC 1 mg/mL MBC 2 mg/mL | [35] |
O. vulgare | Dry plant | Ethanol/Water | MIC 1 mg/mL MBC 2 mg/mL | [35] |
M. chamomilla | Dry plant | Ethanol/Water | MIC 0.5 mg/mL MBC 1 mg/mL | [35] |
T. vulgare | Dry plant | Ethanol/Water | MIC 0.5 mg/mL MBC 1 mg/mL | [35] |
O. basilicum | Dry plant | Ethanol/Water | MIC 1 mg/mL MBC 2 mg/mL | [35] |
S. officinalis | Dry plant | Ethanol/Water | MIC 0.5 mg/mL MBC 1 mg/mL | [35] |
Origanum compactum | Aerial Parts | Water/Ethanol | MIC 41 mg/mL MBC 83 mg/mL | [36] |
Thymus vulgaris L. | Whole plant | Ethanol | MIC 3.1–50.0% | [37] |
Thymus vulgaris L. | Whole plant | Cold water | MIC > 50% | [37] |
Thymus vulgaris L. | Whole plant | Hot water | MIC > 50% | [37] |
Thymus vulgaris L. | Whole plant | Acetone | MIC 6.3–50% | [37] |
Thymus vulgaris L. | Seeds | Ethanol | MIC 3.1–25% | [37] |
Thymus vulgaris L. | Seeds | Cold water | MIC > 50% | [37] |
Thymus vulgaris L. | Seeds | Hot water | MIC > 50% | [37] |
Thymus vulgaris L. | Seeds | Acetone | MIC 12.5–50% | [37] |
Thymus vulgaris L. | Leaves | Ethanol | MIC 3.1–25% | [37] |
Thymus vulgaris L. | Leaves | Cold water | MIC > 50% | [37] |
Thymus vulgaris L. | Leaves | Hot water | MIC > 50% | [37] |
Thymus vulgaris L. | Leaves | Acetone | MIC 3.1–50% | [37] |
Thymus vulgaris L. | Stems | Ethanol | MIC 6.3–50% | [37] |
Thymus vulgaris L. | Stems | Cold water | MIC > 50% | [37] |
Thymus vulgaris L. | Stems | Hot water | MIC > 50% | [37] |
Thymus vulgaris L. | Stems | Acetone | MIC 12.5–50% | [37] |
Negro pepper | Ethanol | 0.1% < MIC < 0.2% MBC 0.2%–MBC > 0.4% | [38] | |
Negro pepper | DMSO | 0.05% < MIC < 0.2% 0.1% < MBC < 0.4% | [38] | |
Negro pepper | Methanol | 0.1% < MIC < 0.4% 0.2% < MBC < 0.4% | [38] | |
Negro pepper | Water | MIC > 0.4% MBC > 0.4% | [38] | |
Clove | Ethanol | 0.2% < MIC < 0.4% MBC ≥ 0.4% | [38] | |
Clove | DMSO | 0.2% < MIC < 0.4% MBC 0.4% | [38] | |
Clove | Methanol | MIC 0.2% 0.2% < MBC < 0.4% | [38] | |
Clove | Water | MIC > 0.4% MBC > 0.4% | [38] | |
Broccoli | Seeds | Methanol/Water | MIC 0.8 mg/mL | [39] |
Corydalis turschaninovii | Rhizome | Ethanol/Water | MIC 3.12 mg/mL MBC 6.25 mg/mL | [40] |
Published in 2021 | ||||
Maclura pomifera (Osage orange) | Leaves | Ethanol | MIC 10–30 mg/mL | [41] |
Rhus tripartita | Leaves | Aceton | MIC 500 μg/mL MBC 500 μg/mL | [42] |
Ziziphus lotus | Leaves | Aceton | MIC 500 μg/mL MBC 2000 μg/mL | [42] |
Origanum ehrenbergii Boiss | Aerial part | Cyclohexane | MIC 313 μg/mL | [43] |
Origanum ehrenbergii Boiss | Aerial part | Dichloromethane | 4 < MIC < 19 μg/mL | [43] |
Satureja kitaibelii Wierzb. | Aboveground flowering parts | Water | MIC 2.08 mg/mL | [44] |
Crocus sativum Linn | Flower stamens | Diethyl ether | MIC 9 mg/mL MBC 9 mg/mL | [45] |
Rosa gallica var. aegyptiaca | Leaves | Methanol | 16 mm inhibition zone (40 µL at 10 mg/40 µL) | [46] |
Rosa gallica var. aegyptiaca | Leaves | Water/Methanol | 17 mm inhibition zone (40 µL at 10 mg/40 µL) | [46] |
Rosa gallica var. aegyptiaca | Leaves | Water | 12 mm inhibition zone (40 µL at 10 mg/40 µL) | [46] |
Humiria balsamifera (Aubl.) | Leaf | Ethyl acetate | MIC 3.12 mg/mL | [47] |
Humiria balsamifera (Aubl.) | Leaf | Methanol | MIC 3.12 mg/mL | [47] |
Wild thyme | Plant | Water/Ethanol | MIC 0.63 mg/mL MBC 2.5 mg/mL | [48] |
Punica granatum L. | Pulp | Ethanol | 10.0 mm inhibition zone (10 μL at 50 mg/mL) | [49] |
Punica granatum L. | Peel | Ethanol | 14.0 mm inhibition zone (10 μL at 50 mg/mL) | [49] |
Garlic | Bulb | Water | MIC 8–32 μg/mL | [50] |
Onion | Bulb | Water | MIC 4–32 μg/mL | [50] |
Published in 2020 | ||||
Bouea macrophylla | Leaves | Ethanol | 17.83–16.16–14.83–13.5–11.50 mm inhibition zone (100 µL at 500, 100, 10, 1, 0.1 mg/mL) | [51] |
Winter savoury | Leaves | Water/Ethanol | MIC 20 mg/mL MBC 20 mg/mL | [52] |
Nephelium lappaceum L. (Rambutan) | Fruit peel | Methanol | Growth inhibition at 1000, 100, and 10 μg GAE/mL | [53] |
Camellia sinensis (L.) O. Kuntze | Non-fermented leaves and buds | Distilled water | MIC 1.25 mg/mL | [54] |
Curcuma longa L. | Rhizomes | Distilled water | MIC 1.25 mg/mL | [54] |
Loranthus europaeus | Berry | Sodium Acetate/DTT/PMSF | MIC 0.28 mg/mL MBC 0.38 mg/mL | [55] |
Syzygium cumini (L.) Skeel | Pulp | Ethanol/Methanol/Acetone | MIC > 0.78 mg GAE/g pulp | [56] |
Syzygium cumini (L.) Skeel | Seed | Ethanol/Methanol/Acetone | MIC 5.65 mg GAE/g pulp | [56] |
Ziziphus lotus | Leaf | Methanol | 10.0–12.0 mm inhibition (20 μL at 10 mg/mL) | [57] |
Ziziphus mauritiana | Leaf | Methanol | 12.0 mm (20 μL at 10 mg/mL) | [57] |
Persea americana Mill (Avocado) | Peel | Ethanol/Water | MIC ≥ 0.75 mg/mL | [58] |
Anacardium occidentale L. (Cashew apple) | Residual fibres | Water | 13.0 and 11.0 mm inhibition zone (50 μL at 100, 50 mg/mL) | [59] |
Hibiscus sabdariffa L. | Flower and beefsteak | Acidified water/Methanol/Acetone | MIC 200 mg/L of GAE MBC 400 mg/L of GAE | [60] |
Trichilia emetica | Leaves | Methanol | MIC 10 mg/mL | [61] |
Passiflora foetida | Whole plant | Methanol | MIC 5 mg/mL | [61] |
Salvia nemorosa | Whole plant | Methanol | MIC 5 mg/mL | [61] |
Sambucus ebulus | Whole plant | Methanol | MIC 10 mg/mL | [61] |
Baphia racemosa | Root | Methanol | MIC 2.5 mg/mL | [61] |
Sansevieria hyacinthoides | Root | Methanol | MIC 2.5 mg/mL | [61] |
Desmodium adscendens | Whole plant | Methanol | MIC 5 mg/mL | [61] |
Eriosema preptum | Whole plant | Methanol | MIC 10 mg/mL | [61] |
Darlingtonia californica | Leaves | Methanol | MIC 10 mg/mL | [61] |
Proboscidea louisianica | Seed pod | Methanol | MIC 10 mg/mL | [61] |
Alnus barbata | Leaves and twigs | Methanol | MIC 5 mg/mL | [61] |
Botrychium multifidum | Root | Methanol | MIC 5 mg/mL | [61] |
Cudrania tricuspidata | Leaves | Ethanol/Water | 16, 19, 24 and 24 mm inhibition zone (80 μL at 1%, 2.5%, 5.0% and 10%) | [62] |
Cranberry | Pomace | Ethanol | MIC 2–4 mg/mL | [63] |
Published in 2019 | ||||
Noni | Fruit | Ethanol/Water | 15.61–18.75–20.26–22.43 mm inhibition zone (24, 40, 56, and 80 mg/disc) | [64] |
Moringa stenopetala | Leaves | Ethanol | MIC 500 μg/mL | [65] |
Moringa stenopetala | Leaves | Methanol | MIC 250 μg/mL | [65] |
Moringa stenopetala | Leaves | Chloroform | MIC 125 μg/mL | [65] |
Moringa stenopetala | Leaves | Water | MIC 250 μg/mL | [65] |
Punica granatum (pomegranate) | Peels | Water | 7.82 < MIC < 31.25 mg/mL | [66] |
Vitis vinifera x (Vitis labrusca x Vitis riparia) (Black grape) | Residues | Carbohydrase treatment—Ethanol/Water | 50 < MIC < 100 mg/mL | [67] |
Malus domestica cv. Jonagold (Apple) | Residues | Carbohydrase treatment—Ethanol/Water | MIC 50 mg/mL or MIC> 100 mg/mL | [67] |
Hylocereus megalanthus (Yellow pitahaya) | Residues | Carbohydrase treatment—Ethanol/Water | MIC ≥ 100 mg/mL | [67] |
Eucalyptus camaldulensis | Leaves | Ethanol | MIC 64–128 μg/mL MBC 265–512 μg/mL | [68] |
Cranberry | Pomace | Ethanol | 100% growth inhibition (at 6.6 and 3.3%) | [69] |
Cranberry | Pomace | Water | 100% growth inhibition (at 6.6 and 3.3%) | [69] |
Psoralea corylifolia | Seeds | Ethanol | MIC 50 μg/mL MBC 100 μg/mL | [70] |
Published in 2018 | ||||
Echium arenarium (Guss.) | Aerial parts | Ethanol–Ethyl acetate | 18.0 mm inhibition (1 mg) MIC > 1 mg/mL | [71] |
Ajuga iva (L.) | Aerial part | Methanol | 3 mm inhibition zone (25 μL at 50 mg/mL) | [72] |
Ajuga iva (L.) | Aerial part | Water | 6.6 < MIQ <1.3 mg/disk | [72] |
Alpinia galanga (Linn.) Swartz. (Greater galangal) | Flowers | Methanol/Water | 1.15 < MIC < 12.3 mg/mL | [73] |
Alpinia galanga (Linn.) Swartz. (Greater galangal) | Flowers | Methanol | 0.02 < MIC < 0.03 mg/mL | [73] |
Published in 2017 | ||||
Olive | Leaf | Ethanol/Water | MIC 62.6 mg/mL | [74] |
Ugni molinae Turcz. | Fruit | Ethanol | MIC 0.6 mg/mL MBC 0.9 mg/mL | [75] |
Ugni molinae Turcz. | Fruit | Ethanol/water | MIC 0.2 mg/mL MBC 0.5 mg/mL | [75] |
Ugni molinae Turcz. | Fruit | Water | MIC 1.8 mg/mL MBC 2.2 mg/mL | [75] |
Ugni molinae Turcz. | Leaf | Ethanol | MIC 0.2 mg/mL MBC 0.5 mg/mL | [75] |
Ugni molinae Turcz. | Leaf | Ethanol/Water | MIC 0.07 mg/mL MBC 0.09 mg/mL | [75] |
Ugni molinae Turcz. | Leaf | Water | MIC 0.7 mg/mL MBC 0.9 mg/mL | [75] |
R. tingitanus | Leaves | Ethanol/Water | MICs 5–0.625 mg/mL | [76] |
Grapes (V. vinifera L.) var. Red Globe | Stem | Ethanol/Water | MIC 18 mg/mL MBC > 24 mg/mL | [77] |
Cinnamon javanicum | Plant | Acetone/Methanol/Water | 0.13 < MIC < 8 mg/mL | [78] |
Adhatoda vasica | Leaves | Ethanol | MIC 100 mg/mL | [79] |
Published before 2017 | ||||
Vitis vinifera L. | Seeds | Hexane | MIC 3.12 mg/mL MBC 6.25 mg/mL | [80] |
Vitis vinifera L. | Seeds | Dichloromethane | MIC 3.12 mg/mL MBC 12.5 mg/mL | [80] |
Vitis vinifera L. | Seeds | Ethyl acetate | MIC 3.12 mg/mL MBC 6.25 mg/mL | [80] |
Vitis vinifera L. | Seeds | Acetone | MIC 6.25 mg/mL MBC 12.5 mg/mL | [80] |
Vitis vinifera L. | Seeds | Ethanol | MIC 1.56 mg/mL MBC 12.5 mg/mL | [80] |
Vitis vinifera L. | Seeds | Water | MIC 12.5 mg/mL MBC 25 mg/mL | [80] |
Rhodomyrtus tomentosa | Leaves | Ethanol/Water | MIC 16–32 μg/mL MBC 128–512 μg/mL | [81] |
Coffea arabica (Roasted coffee) | Spent coffee | Water | MIC 20 mg/mL | [82] |
Coffea arabica (Roasted coffee) | Coffee brew | Water | MIC 30 mg/mL | [82] |
Coffea canephora var. robusta (Roasted coffee) | Spent coffee | Water | MIC 20 mg/mL | [82] |
Coffea canephora var. robusta (Roasted coffee) | Coffee brew | Water | MIC 16.3 mg/mL | [82] |
Artocarpus heterophyllus L. | Shell | Acetone/Water | MIC 4.2 mg/mL | [83] |
Artocarpus heterophyllus L. | Shell | Methanol/Water | MIC 4.2 mg/mL | [83] |
Artocarpus heterophyllus L. | Shell | Ethanol/Hexane/Water | MIC 4.2 mg/mL | [83] |
G.biloba | Seed coat | Chloroform | MIC 8.3–16.6 μg/mL MBC 16.6–33.3 μg/mL | [84] |
Veronica montana L. | Aerial parts | Water | MIC 7.5 mg/mL MBC 15.0 mg/mL | [85] |
Matrix | Part of Plant | Microorganism Employed in Fermentation | Type of Fermented Product | Anti-Listeria Activity | Reference |
---|---|---|---|---|---|
Published in 2023 | |||||
Ulmus davidiana var. japonica (Ulmaceae) | Root bark | Bacillus licheniformis | Extract | Fermented: MIC 75 mg/mL MBC 125 mg/mL Unfermented: MIC 100 mg/mL MBC 150 mg/mL | [102] |
Thyme (Thymus vulgaris), lemon verbena (Lippia citriodora), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and peppermint (Mentha piperita) | Leaves | Symbiotic culture between yeast and acetic acid bacteria | Entire product | Inhibition of L. monocytogenes, activity (acidity is important for antibacterial activity) | [103] |
P. densiflora | Pine needles | Lpb. plantarum, Saccaromices cerevisiae and co-culture | Entire product | Lpb. plantarum: 10–13 mm inhibition zone (100 μL) S. cerevisiae: 9 mm inhibition zone (100 μL) Co-culture: 10–12 mm inhibition zone (100 μL) | [104] |
Published in 2021 | |||||
Black tea | Leaves | Symbiotic culture between yeast and acetic acid bacteria | Entire product | 15 mm inhibition zone (100 μL) | [105] |
Tomato | Peels and seeds | Lacticaseibacillus rhamnosus | Extract | MBC 12.5–100 mg/mL | [106] |
Melon | Fruits | L. rhamnosus | Extract | MBC 12.5–25 mg/mL | [106] |
Carrot | Tuber | L. rhamnosus | Extract | MBC 6.25–MBC > 50 mg/mL | [106] |
Published in 2020 | |||||
Green Tea | Leaves | SCOBY for Kombucha | Entire product | MIC 250 μL/mL | [107] |
Black Tea | Leaves | SCOBY for Kombucha | Entire product | MIC 250 μL/mL | [107] |
Parkia speciosa (bitter beans) | Seeds | Limosilactobacillus fermentum | Extract | 57% growth inhibition | [108] |
Zingiber officinale (ginger) | Rhizome | Spontaneous fermentation | Diluted ginger paste | 97.6% growth inhibition | [109] |
Curly kale | Juice | Spontaneous fermentation | Juice | Ca. 50% growth inhibition | [110] |
Salvia miltiorrhiza (red sage) | Roots | Aspergillus oryzae | Extract | MIC 1 mg/mL (against 2 mg/mL of unfermented sample) | [111] |
Published in 2019 | |||||
Tomato | Peels and seeds | Lpb. plantarum, Lacticaseibacillus casei, Lacticaseibacillus paracasei and L. rhamnosus | Extract | Ca. 14–16 mm inhibition zone (40%) | [112] |
Melon | Fruits | Lpb. plantarum, L. casei, L. paracasei and L. rhamnosus | Extract | Ca. 12–16 mm inhibition zone (60%) | [112] |
Carrot | Tuber | Lpb. plantarum, L. casei, L. paracasei and L. rhamnosus | Extract | Ca. 2–12 mm inhibition zone (60%) | [112] |
Published in 2018 | |||||
Coffee | Spent ground | Bacillus clausii | Extract | MIC 10 mg/mL (against 30 mg/mL unfermented sample) | [113] |
Published in 2017 | |||||
Citrus unshiu | Flesh byproducts | Nuruk (Aspergillus sp., Rhizopus sp., Saccharomyces cerevisiae, Bacillus subtilis, and lactic acid bacteria) | Extract | 9 mm inhibition zone (20 μL at 100 mg/mL) | [114] |
Citrus unshiu | Peel byproducts | Nuruk (Aspergillus sp., Rhizopus sp., Saccharomyces cerevisiae, Bacillus subtilis, and lactic acid bacteria) | Extract | 9 mm inhibition zone (20 μL at 100 mg/mL) | [114] |
Allium sativum L | Bulb | Lpb. plantarum | Extract | Ca. 5–9 mm inhibition zone (100 μL at 300 mg/mL) | [115] |
Published before 2017 | |||||
Allium tuberosum | Plant | Leuconostoc mesenteroides | Entire product | Ca. 13 mm inhibition zone (100 μL) | [116] |
Aloe vera | Leaves | Lpb. plantarum | Fermented supernatant | 20 mm inhibition zone (200 μL) | [117] |
Polished rice | Spontaneous fermentation | Entire product | 12–13 mm inhibition zone (50 μL) | [118] | |
Melissa officinalis L. | Arial parts | SCOBY (Consortium of Saccharomycodes ludwigii, S. cerevisiae, Saccharomyces bisporus, Torulopsis sp. and Zygosaccharomyces sp.) and two bacterial strains of the Acetobacter genus) | Entire product | 11–17 mm inhibition zone (100 μL) | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, A.; Lazzi, C.; Bernini, V. Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes. Microorganisms 2023, 11, 2568. https://doi.org/10.3390/microorganisms11102568
Ricci A, Lazzi C, Bernini V. Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes. Microorganisms. 2023; 11(10):2568. https://doi.org/10.3390/microorganisms11102568
Chicago/Turabian StyleRicci, Annalisa, Camilla Lazzi, and Valentina Bernini. 2023. "Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes" Microorganisms 11, no. 10: 2568. https://doi.org/10.3390/microorganisms11102568
APA StyleRicci, A., Lazzi, C., & Bernini, V. (2023). Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes. Microorganisms, 11(10), 2568. https://doi.org/10.3390/microorganisms11102568