Reduction in Salt Stress Due to the Action of Halophilic Bacteria That Promote Plant Growth in Solanum lycopersicum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Microorganisms
2.2. Preparation of the Inocula
2.3. Promotion of Plant Growth with Germination of Solanum lycopersicum under Saline Stress
2.4. Greenhouse Bioassay
2.5. Variable Analysis
2.6. Determination of the Concentration of Osmoprotectors
2.7. Statistical Analysis
3. Results
3.1. Greenhouse Evaluation
3.1.1. Fruit Yield
3.1.2. Dry Weight of the Plant
3.1.3. Fruit Quality
3.2. Osmoprotectors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronga, D.; Zaccardelli, M.; Lovelli, S.; Perrone, D.; Francia, E.; Milc, J.; Ulrici, A.; Pecchioni, N. Biomass Production and Dry Matter Partitioning of Processing Tomato under Organic vs. Conventional Cropping Systems in a Mediterranean Environment. Sci. Hortic. 2017, 224, 163–170. [Google Scholar] [CrossRef]
- Goykovic Cortés, V.; Saavedra del Real, G. Algunos Efectos de La Salinidad En El Cultivo Del Tomate y Prácticas Agronómicas de Su Manejo. Idesia 2007, 25, 47–58. [Google Scholar] [CrossRef]
- Kashyap, S.P.; Kumari, N.; Mishra, P.; Moharana, D.P.; Aamir, M. Tapping the Potential of Solanum lycopersicum L. Pertaining to Salinity Tolerance: Perspectives and Challenges. Genet Resour. Crop Evol. 2021, 68, 2207–2233. [Google Scholar] [CrossRef]
- Manzano Banda, J.I.; Rivera Ortiz, P.; Briones Encinia, F.; Zamora Tovar, C. Rehabilitación de Suelos Salino-Sódicos: Estudio de Caso En El Distrito de Riego 086, Jiménez, Tamaulipas, México. Terra Latinoam. 2014, 32, 211–219. [Google Scholar]
- Martínez-Villavicencio, N. Efectos por salinidad en el desarrollo vegetativo. Tecnociencia Chihuah. 2011, 5, 156–161. [Google Scholar]
- Mesa, D. Obtención de plantas resistentes a la salinidad para los suelos salinos cubanos. Rev. Cuba. Cienc. Agrícola 2003, 37, 217–226. [Google Scholar]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant Growth-Promoting Bacteria Confer Resistance in Tomato Plants to Salt Stress. Plant Physiol. Biochem. 2004, 42, 565–572. [Google Scholar] [CrossRef]
- Bharti, N.; Barnawal, D. Chapter Five—Amelioration of Salinity Stress by PGPR: ACC Deaminase and ROS Scavenging Enzymes Activity. In PGPR Amelioration in Sustainable Agriculture; Singh, A.K., Kumar, A., Singh, P.K., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 85–106. [Google Scholar] [CrossRef]
- Hernández-Canseco, J.; Bautista-Cruz, A.; Sánchez-Mendoza, S.; Aquino-Bolaños, T.; Sánchez-Medina, P.S. Plant Growth-Promoting Halobacteria and Their Ability to Protect Crops from Abiotic Stress: An Eco-Friendly Alternative for Saline Soils. Agronomy 2022, 12, 804. [Google Scholar] [CrossRef]
- Schneegurt, M.A. Media and Conditions for the Growth of Halophilic and Halotolerant Bacteria and Archaea. In Advances in Understanding the Biology of Halophilic Microorganisms; Vreeland, R.H., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 35–58. [Google Scholar] [CrossRef]
- Kushner, H.; Kamekura, M. Physiology of Halophilic Eubacteria. In Halophilic Bacteria; Rodrfguez-Valera, F., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 109–140. [Google Scholar]
- Pérez-Inocencio, J.; Iturriaga, G.; Aguirre-Mancilla, C.L.; Ramírez-Pimentel, J.G.; Vásquez-Murrieta, M.S.; Álvarez-Bernal, D. Identification of Halophilic and Halotolerant Bacteria from the Root Soil of the Halophyte Sesuvium verrucosum Raf. Plants 2022, 11, 3355. [Google Scholar] [CrossRef]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. Klebsiella sp. Confers Enhanced Tolerance to Salinity and Plant Growth Promotion in Oat Seedlings (Avena sativa). Microbiol. Res. 2018, 206, 25–32. [Google Scholar] [CrossRef]
- Arora, S. Halotolerant Microbes for Amelioration of Salt-Affected Soils for Sustainable Agriculture. In Phyto-Microbiome in Stress Regulation: Environmental and Microbial Biotechnology; Kumar, M., Kumar, V., Prasad, R., Eds.; Springer: Singapore, 2020; pp. 323–343. [Google Scholar] [CrossRef]
- Leontidou, K.; Genitsaris, S.; Papadopoulou, A.; Kamou, N.; Bosmali, I.; Matsi, T.; Madesis, P.; Vokou, D.; Karamanoli, K.; Mellidou, I. Plant Growth Promoting Rhizobacteria Isolated from Halophytes and Drought-Tolerant Plants: Genomic Characterisation and Exploration of Phyto-Beneficial Traits. Sci. Rep. 2020, 10, 14857. [Google Scholar] [CrossRef]
- Mukhtar, S.; Mehnaz, S.; Mirza, M.S.; Malik, K.A. Isolation and Characterization of Bacteria Associated with the Rhizosphere of Halophytes (Salsola stocksii and Atriplex amnicola) for Production of Hydrolytic Enzymes. Braz. J. Microbiol. 2019, 50, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Hamayun, M.; Asaf, S.; Khan, M.; Yun, B.-W.; Kang, S.-M.; Lee, I.-J. Rhizospheric Bacillus sp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. Front. Plant Sci. 2021, 12, 665590. [Google Scholar] [CrossRef]
- Kushwaha, P.; Kashyap, P.L.; Bhardwaj, A.K.; Kuppusamy, P.; Srivastava, A.K.; Tiwari, R.K. Bacterial Endophyte Mediated Plant Tolerance to Salinity: Growth Responses and Mechanisms of Action. World J. Microbiol. Biotechnol. 2020, 36, 26. [Google Scholar] [CrossRef]
- Szymańska, S.; Płociniczak, T.; Piotrowska-Seget, Z.; Złoch, M.; Ruppel, S.; Hrynkiewicz, K. Metabolic Potential and Community Structure of Endophytic and Rhizosphere Bacteria Associated with the Roots of the Halophyte Aster tripolium L. Microbiol. Res. 2016, 182, 68–79. [Google Scholar] [CrossRef]
- Trivedi, R. Ecology of Saline Soil Microorganisms. In Bioremediation of Salt Affected Soils: An Indian Perspective; Springer: Berlin/Heidelberg, Germany, 2017; pp. 157–171. [Google Scholar]
- Sharma, S.; Kulkarni, J.; Jha, B. Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The Multifarious PGPR Serratia Marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155026. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, P.K.; Pramanik, K.; Mitra, S.; Soren, T.; Pandey, S.; Mondal, M.H.; Maiti, T.K. A Halotolerant Enterobacter sp. displaying ACC Deaminase Activity Promotes Rice Seedling Growth under Salt Stress. Res. Microbiol. 2018, 169, 20–32. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.; Bellingrath-Kimura, S.D.; Mishra, J.; Arora, N.K. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019, 10, 2791. [Google Scholar] [CrossRef]
- Sanchez Lopez, D.B.; Pérez Pazos, J.V.; David Hinestroza, H.A. Efecto de las PGPB sobre el crecimiento Pennisetum clandestinum bajo condiciones de estrés salino. Rev. Colomb. Biotecnol. 2016, 18, 65–72. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Tavasolee, A.; Ghassemi-Golezani, K.; Torabian, S.; Monirifar, H.; Rahmani, H.A. Growth-Promoting Bacteria and Natural Regulators Mitigate Salt Toxicity and Improve Rapeseed Plant Performance. Protoplasma 2020, 257, 1035–1047. [Google Scholar] [CrossRef]
- Sultana, S.; Paul, S.C.; Parveen, S.; Alam, S.; Rahman, N.; Jannat, B.; Hoque, S.; Rahman, M.T.; Karim, M.M. Isolation and Identification of Salt-Tolerant Plant-Growth-Promoting Rhizobacteria and Their Application for Rice Cultivation under Salt Stress. Can. J. Microbiol. 2020, 66, 144–160. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, A.K.; Singh, P.P.; Kumar, A. Interaction of Plant Growth Promoting Bacteria with Tomato under Abiotic Stress: A Review. Agric. Ecosyst. Environ. 2018, 267, 129–140. [Google Scholar] [CrossRef]
- Ribaudo, C.M.; Krumpholz, E.M.; Cassán, F.D.; Bottini, R.; Cantore, M.L.; Curá, J.A. Azospirillum sp. Promotes Root Hair Development in Tomato Plants through a Mechanism That Involves Ethylene. J. Plant Growth Regul. 2006, 25, 175–185. [Google Scholar] [CrossRef]
- Shen, M.; Kang, Y.J.; Wang, H.L.; Zhang, X.S.; Zhao, Q.X. Effect of Plant Growth-Promoting Rhizobacteria (PGPRs) on Plant Growth, Yield, and Quality of Tomato (Lycopersicon esculentum Mill.) under Simulated Seawater Irrigation. J. Gen. Appl. Microbiol. 2012, 58, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102. [Google Scholar]
- Almaghrabi, O.A.; Massoud, S.I.; Abdelmoneim, T.S. Influence of Inoculation with Plant Growth Promoting Rhizobacteria (PGPR) on Tomato Plant Growth and Nematode Reproduction under Greenhouse Conditions. Saudi J. Biol. Sci. 2013, 20, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Koh, R.-H.; Song, H.-G. Enhancement of Growth and Yield of Tomato by Rhodopseudomonas sp. under Greenhouse Conditions. J. Microbiol. 2008, 46, 641. [Google Scholar] [CrossRef]
- Castro, L.; Flores, A.; Rodríguez, A.; Aguilar, M.; Aguilar, C.; Rodríguez, R. Aislamiento y Caracterización de Microorganismos Halófilos de Suelos Salinos de Cuatro Ciénegas Coahuila, México. Rev. Científica Univ. Autónoma Coahuila 2011, 3, 33–43. [Google Scholar]
- McFarland, J. The Nephelometer: An Instrument for Estimating the Number of Bacteria in Suspensions Used for Calculating the Opsonic Index and for Vaccines. J. Am. Med. Assoc. 1907, 49, 1176–1178. [Google Scholar] [CrossRef]
- Costa-Gutierrez, S.B.; Caram-Di Santo, M.C.d.V.; Zenoff, A.M.; Espinosa-Urgel, M.; de Cristóbal, R.E.; Vincent, P.A. Isolation of Pseudomonas Strains with Potential for Protection of Soybean Plants Against Saline Stress. Agronomy 2021, 11, 2236. [Google Scholar] [CrossRef]
- Steiner, A.A. A Universal Method for Preparing Nutrient Solutions of a Certain Desired Composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef]
- Benito Bautista, P.; Arellanes-Juárez, N.; Pérez-Flores, M.E. Color y Estado de Madurez Del Fruto de Tomate de Cáscara. Agron. Mesoam. 2015, 27, 115–130. [Google Scholar] [CrossRef]
- Irigoyen, J.; Einerich, D.; Sánchez-Díaz, M. Water Stress Induced Changes in Concentrations of Proline and Total Soluble Sugars in Nodulated Alfalfa (Medicago sativa) Plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Grieve, C.; Grattan, S. Rapid Assay for Determination of Water Soluble Quaternary Ammonium Compounds. Plant Soil 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Schulze, U.; Larsen, M.E.; Villadsen, J. Determination of Intracellular Trehalose and Glycogen in Saccharomyces cerevisiae. Anal. Biochem. 1995, 228, 143–149. [Google Scholar] [CrossRef]
- Aoun, B. Evaluation of Fruit Quality Traits of Traditional Varieties of Tomato (Solanum lycopersicum) Grown in Tunisia. Afr. J. Food Sci. 2013, 7, 350–354. [Google Scholar] [CrossRef]
- Xiong, Y.-W.; Gong, Y.; Li, X.-W.; Chen, P.; Ju, X.-Y.; Zhang, C.-M.; Yuan, B.; Lv, Z.-P.; Xing, K.; Qin, S. Enhancement of Growth and Salt Tolerance of Tomato Seedlings by a Natural Halotolerant Actinobacterium Glutamicibacter halophytocola KLBMP 5180 Isolated from a Coastal Halophyte. Plant Soil 2019, 445, 307–322. [Google Scholar] [CrossRef]
- Masmoudi, F.; Abdelmalek, N.; Tounsi, S.; Dunlap, C.A.; Trigui, M. Abiotic Stress Resistance, Plant Growth Promotion and Antifungal Potential of Halotolerant Bacteria from a Tunisian Solar Saltern. Microbiol. Res. 2019, 229, 126331. [Google Scholar] [CrossRef]
- Kapadia, C.; Sayyed, R.Z.; El Enshasy, H.A.; Vaidya, H.; Sharma, D.; Patel, N.; Malek, R.A.; Syed, A.; Elgorban, A.M.; Ahmad, K.; et al. Halotolerant Microbial Consortia for Sustainable Mitigation of Salinity Stress, Growth Promotion, and Mineral Uptake in Tomato Plants and Soil Nutrient Enrichment. Sustainability 2021, 13, 8369. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Weon, H.-Y.; Song, J.; Sang, M.K. Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in Tomato Plants. Environ. Microbiol. Biotechnol. 2019, 29, 1124–1136. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Chen, D.; He, Y.; Zhou, Q.; Tian, Y.; Gao, L. Alleviating Salt Stress in Tomato Seedlings Using Arthrobacter and Bacillus megaterium Isolated from the Rhizosphere of Wild Plants Grown on Saline–Alkaline Lands. Int. J. Phytoremediat. 2016, 18, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Román-Ponce, B.; Reza-Vázquez, D.M.; Gutiérrez-Paredes, S.; De Haro-Cruz, M.d.J.; Maldonado-Hernández, J.; Bahena-Osorio, Y.; Estrada-De Los Santos, P.; Wang, E.T.; Vásquez-Murrieta, M.S. Plant Growth-Promoting Traits in Rhizobacteria of Heavy Metal-Resistant Plants and Their Effects on Brassica nigra Seed Germination. Pedosphere 2017, 27, 511–526. [Google Scholar] [CrossRef]
- Zhou, N.; Zhao, S.; Tian, C.-Y. Effect of Halotolerant Rhizobacteria Isolated from Halophytes on the Growth of Sugar Beet (Beta vulgaris L.) under Salt Stress. FEMS Microbiol. Lett. 2017, 364, fnx091. [Google Scholar] [CrossRef] [PubMed]
- Numan, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z.K.; Khan, A.L.; Khan, A.; AL-Harrasi, A. Plant Growth Promoting Bacteria as an Alternative Strategy for Salt Tolerance in Plants: A Review. Microbiol. Res. 2018, 209, 21–32. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Hashem, A.; Abd-Allah, E.F.; Ahmad, P. Chapter 3—Arbuscular Mycorrhiza in Crop Improvement under Environmental Stress. In Emerging Technologies and Management of Crop Stress Tolerance; Ahmad, P., Rasool, S., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 69–95. [Google Scholar] [CrossRef]
- Abdelly, C.; Öztürk, M.; Ashraf, M.; Grignon, C. (Eds.) Biosaline Agriculture and High Salinity Tolerance; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Upadhyay, S.K.; Singh, J.S.; Singh, D.P. Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria Under Salinity Condition. Pedosphere 2011, 21, 214–222. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, Salt, and Temperature Stress-Induced Metabolic Rearrangements and Regulatory Networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef]
- Sunita, K.; Mishra, I.; Mishra, J.; Prakash, J.; Arora, N.K. Secondary Metabolites from Halotolerant Plant Growth Promoting Rhizobacteria for Ameliorating Salinity Stress in Plants. Front. Microbiol. 2020, 11, 567768. [Google Scholar] [CrossRef] [PubMed]
- Wutipraditkul, N.; Wongwean, P.; Buaboocha, T. Alleviation of Salt-Induced Oxidative Stress in Rice Seedlings by Proline and/or Glycinebetaine. Biol. Plant. 2015, 59, 547–553. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Davranov, K.; Wirth, S.; Hashem, A.; Abd_Allah, E.F. Impact of Soil Salinity on the Plant-Growth—Promoting and Biological Control Abilities of Root Associated Bacteria. Saudi J. Biol. Sci. 2017, 24, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Kumar Arora, N.; Fatima, T.; Mishra, J.; Mishra, I.; Verma, S.; Verma, R.; Verma, M.; Bhattacharya, A.; Verma, P.; Mishra, P.; et al. Halo-Tolerant Plant Growth Promoting Rhizobacteria for Improving Productivity and Remediation of Saline Soils. J. Adv. Res. 2020, 26, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Tapias, D.; Moreno-Galván, A.; Pardo-Díaz, S.; Obando, M.; Rivera, D.; Bonilla, R. Effect of Inoculation with Plant Growth-Promoting Bacteria (PGPB) on Amelioration of Saline Stress in Maize (Zea mays). Appl. Soil Ecol. 2012, 61, 264–272. [Google Scholar] [CrossRef]
Salinity (mM NaCl) | Treatments | Germination % | Plumule Emergence % | Radicle Length (cm) | Plumule Length (cm) | Radicle Weight (mg) | Plumule Weight (mg) | Total Weight (mg) | Seedling Vigor | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Control | 92 | ± | 0.0 | ab | 22 | ± | 0.6 | ab | 10.3 | ± | 0.6 | ac | 4.0 | ± | 0.1 | ad | 136.3 | ± | 13.1 | a | 261.0 | ± | 7.0 | ad | 397.3 | ± | 16.2 | ab | 132.2 | ± | 5.8 | ad |
Bacillus sp. SVHM1.1 | 92 | ± | 0.0 | ab | 22 | ± | 1.0 | ab | 9.0 | ± | 1.0 | bf | 4.3 | ± | 0.4 | ab | 126.7 | ± | 10.4 | ac | 283.3 | ± | 15.3 | ab | 410.0 | ± | 22.9 | a | 122.7 | ± | 11.0 | af | |
Halomonas sp. SVCN6 | 96 | ± | 4.0 | a | 22 | ± | 2.1 | ab | 7.2 | ± | 0.8 | eh | 3.8 | ± | 0.3 | be | 104.3 | ± | 2.5 | df | 274.7 | ± | 5.5 | ad | 379.0 | ± | 7.8 | ac | 105.5 | ± | 12.7 | df | |
Halomonas sp. SVHM8 | 99 | ± | 2.3 | a | 24 | ± | 0.6 | a | 11.0 | ± | 1.0 | ab | 4.1 | ± | 0.2 | ac | 131.0 | ± | 4.6 | ab | 233.7 | ± | 11.6 | bd | 364.7 | ± | 10.4 | ac | 149.1 | ± | 11.4 | a | |
Consortium | 95 | ± | 6.1 | a | 23 | ± | 1.2 | ab | 7.5 | ± | 0.5 | dh | 4.8 | ± | 0.3 | a | 90.0 | ± | 8.0 | f | 310.7 | ± | 11.0 | a | 400.7 | ± | 19.0 | ab | 116.0 | ± | 4.6 | bf | |
20 | Control | 93 | ± | 1.0 | ab | 15 | ± | 2.6 | cd | 8.7 | ± | 0.8 | cg | 3.7 | ± | 0.3 | bf | 114.3 | ± | 9.0 | be | 271.0 | ± | 10.1 | ad | 385.3 | ± | 15.4 | ac | 115.6 | ± | 7.5 | bf |
Bacillus sp. SVHM1.1 | 95 | ± | 2.3 | a | 18 | ± | 0.0 | bc | 11.3 | ± | 0.8 | a | 3.3 | ± | 0.3 | df | 97.3 | ± | 7.1 | ef | 222.3 | ± | 28.6 | cd | 319.7 | ± | 29.3 | c | 138.3 | ± | 9.8 | ac | |
Halomonas sp. SVCN6 | 95 | ± | 2.3 | a | 16 | ± | 1.5 | cd | 11.0 | ± | 1.0 | ab | 3.8 | ± | 0.3 | be | 114.7 | ± | 2.5 | ae | 221.0 | ± | 16.5 | d | 335.7 | ± | 18.6 | bc | 140.4 | ± | 12.2 | ab | |
Halomonas sp. SVHM8 | 92 | ± | 6.4 | ab | 18 | ± | 2.3 | bc | 9.3 | ± | 1.0 | ae | 3.4 | ± | 0.3 | cf | 120.0 | ± | 10.0 | ad | 233.0 | ± | 35.6 | bd | 353.0 | ± | 39.0 | ac | 117.5 | ± | 13.6 | bf | |
Consortium | 95 | ± | 2.3 | a | 19 | ± | 2.3 | ac | 7.2 | ± | 0.5 | eh | 4.5 | ± | 0.3 | ab | 107.7 | ± | 2.5 | cf | 299.0 | ± | 14.4 | a | 406.7 | ± | 16.4 | a | 111.1 | ± | 7.6 | cf | |
60 | Control | 91 | ± | 2.3 | ab | 12 | ± | 2.1 | d | 10.3 | ± | 0.8 | ac | 3.1 | ± | 0.1 | ef | 118.0 | ± | 6.2 | ae | 272.7 | ± | 12.2 | ad | 390.7 | ± | 18.0 | ab | 122.2 | ± | 9.6 | af |
Bacillus sp. SVHM1.1 | 93 | ± | 2.3 | a | 14 | ± | 1.5 | cd | 10.9 | ± | 0.6 | ab | 3.0 | ± | 0.5 | fg | 122.7 | ± | 6.7 | ad | 272.0 | ± | 15.1 | ad | 394.7 | ± | 15.3 | ab | 130.0 | ± | 7.2 | ae | |
Halomonas sp. SVCN6 | 80 | ± | 4.0 | b | 12 | ± | 1.7 | d | 9.6 | ± | 0.9 | ad | 3.3 | ± | 0.2 | cf | 101.0 | ± | 4.4 | df | 267.3 | ± | 29.7 | ad | 368.3 | ± | 25.4 | ac | 103.5 | ± | 4.4 | ef | |
Halomonas sp. SVHM8 | 89 | ± | 4.6 | ab | 15 | ± | 1.5 | cd | 7.9 | ± | 0.4 | dg | 3.3 | ± | 0.3 | df | 113.0 | ± | 9.8 | be | 260.7 | ± | 34.0 | ad | 373.7 | ± | 41.8 | ac | 100.2 | ± | 10.7 | f | |
Consortium | 91 | ± | 4.6 | ab | 14 | ± | 2.3 | cd | 10.7 | ± | 0.6 | ac | 3.7 | ± | 0.3 | bf | 106.0 | ± | 2.6 | cf | 280.0 | ± | 17.7 | ad | 386.0 | ± | 20.1 | ac | 131.3 | ± | 12.6 | ad | |
100 | Control | 33 | ± | 2.3 | d | 2 | ± | 1.5 | e | 6.7 | ± | 0.3 | gi | 1.6 | ± | 0.2 | h | 46.7 | ± | 1.5 | g | 72.7 | ± | 6.4 | f | 119.3 | ± | 6.7 | e | 27.7 | ± | 2.1 | g |
Bacillus sp. SVHM1.1 | 37 | ± | 5.0 | cd | 2 | ± | 1.2 | e | 5.4 | ± | 0.6 | hi | 1.6 | ± | 0.1 | h | 53.7 | ± | 11.2 | g | 86.3 | ± | 18.5 | ef | 140.0 | ± | 28.2 | de | 26.0 | ± | 6.1 | g | |
Halomonas sp. SVCN6 | 36 | ± | 6.9 | cd | 1 | ± | 1.0 | e | 6.9 | ± | 0.5 | fh | 1.7 | ± | 0.3 | h | 63.0 | ± | 1.0 | g | 143.3 | ± | 17.5 | e | 206.3 | ± | 16.5 | d | 31.0 | ± | 5.5 | g | |
Halomonas sp. SVHM8 | 47 | ± | 8.3 | c | 1 | ± | 1.0 | e | 4.6 | ± | 0.8 | i | 1.7 | ± | 0.2 | h | 43.7 | ± | 4.0 | g | 86.3 | ± | 14.4 | ef | 130.0 | ± | 10.4 | e | 29.2 | ± | 4.3 | g | |
Consortium | 30 | ± | 5.5 | d | 1 | ± | 0.6 | e | 5.5 | ± | 0.2 | hi | 2.3 | ± | 0.3 | gh | 49.3 | ± | 4.5 | g | 127.7 | ± | 19.8 | ef | 177.0 | ± | 21.5 | de | 22.9 | ± | 3.8 | g |
Germination % | Plumule Emergence % | Radicle Length (cm) | Plumule Length (cm) | Radicle Weight (mg) | Plumule Weight (mg) | Total Weight (mg) | Seedling Vigor | |
---|---|---|---|---|---|---|---|---|
F-Value | ||||||||
Treatment | 2.8 * | 2.46 | 8.09 *** | 17.41 *** | 9.35 *** | 11.89 *** | 4.62 ** | 2.16 |
Salinity | 643.51 *** | 436.62 *** | 101.97 *** | 240.77 *** | 297.3 *** | 272.53 *** | 394.85 *** | 438.99 *** |
Treatment × Salinity | 3.16 ** | 1.14 | 13.08 *** | 1.69 | 8.98 *** | 4.23 *** | 4.81 *** | 8.16 *** |
Salinity (mM NaCl) | Treatments | Fruit Yield (g/Planta) | Fresh Weight of Plant (g) | Dry Weight of Plant (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Control | 1126 | ± | 36.0 | ce | 431 | ± | 50.8 | j | 162 | ± | 20.1 | ad |
Bacillus sp. SVHM1.1 | 1107 | ± | 67.0 | df | 620 | ± | 43.0 | hj | 162 | ± | 5.6 | ad | |
Halomonas sp. SVCN6 | 1264 | ± | 44.5 | bd | 842 | ± | 79.5 | dh | 175 | ± | 27.2 | ad | |
Halomonas sp. SVHM8 | 1337 | ± | 111.0 | ac | 523 | ± | 90.7 | ij | 151 | ± | 15.6 | bd | |
Consortium | 1136 | ± | 30.0 | ce | 845 | ± | 103.4 | dh | 147 | ± | 24.0 | bd | |
20 | Control | 995 | ± | 49.0 | eh | 969 | ± | 85.7 | ce | 182 | ± | 19.9 | ad |
Bacillus sp. SVHM1.1 | 1520 | ± | 28.5 | a | 945 | ± | 80.3 | cg | 158 | ± | 9.5 | ad | |
Halomonas sp. SVCN6 | 939 | ± | 64.0 | ei | 1144 | ± | 25.7 | ac | 139 | ± | 11.5 | bd | |
Halomonas sp. SVHM8 | 1443 | ± | 80.0 | ab | 1062 | ± | 102.6 | ad | 211 | ± | 24.7 | a | |
Consortium | 1086 | ± | 58.5 | dg | 689 | ± | 116.2 | gj | 155 | ± | 14.6 | ad | |
60 | Control | 848 | ± | 34.0 | hi | 892 | ± | 57.4 | cg | 140 | ± | 25.7 | bd |
Bacillus sp. SVHM1.1 | 977 | ± | 60.5 | eh | 922 | ± | 71.8 | cg | 127 | ± | 12.9 | d | |
Halomonas sp. SVCN6 | 898 | ± | 78.1 | fi | 784 | ± | 98.3 | eh | 175 | ± | 14.7 | ad | |
Halomonas sp. SVHM8 | 1127 | ± | 128.3 | ce | 700 | ± | 113.5 | fi | 149 | ± | 24.6 | bd | |
Consortium | 874 | ± | 44.5 | gi | 1238 | ± | 90.2 | ab | 194 | ± | 20.8 | ab | |
100 | Control | 552 | ± | 46.5 | j | 1107 | ± | 64.9 | ac | 170 | ± | 22.5 | ad |
Bacillus sp. SVHM1.1 | 831 | ± | 76.0 | hi | 1266 | ± | 78.7 | a | 177 | ± | 4.2 | ad | |
Halomonas sp. SVCN6 | 860 | ± | 56.0 | hi | 960 | ± | 100.1 | cf | 185 | ± | 17.0 | ac | |
Halomonas sp. SVHM8 | 595 | ± | 69.0 | j | 1143 | ± | 85.5 | ac | 131 | ± | 20.4 | cd | |
Consortium | 726 | ± | 107.6 | ij | 1006 | ± | 80.6 | be | 157 | ± | 19.3 | ad |
Fruit Yield (g/Planta) | Fresh Weight of Plant (g) | Dry Weight of Plant (g) | |
---|---|---|---|
F-Value | |||
Treatment | 27.35 *** | 3.72 * | 0.73 |
Salinity | 169.88 *** | 73.23 *** | 1.22 |
Treatment × Salinity | 14.69 *** | 15.86 *** | 5.63 *** |
Salinity (mM NaCl) | Treatments | pH | Total Dissolved Salts (g/mL) | Total Dissolved Sugar (°Brix) | Firmness (lbf) | Citric Acid (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Control | 4.22 | ± | 0.04 | a | 3.17 | ± | 0.06 | fh | 4.7 | ± | 0.1 | i | 9.2 | ± | 0.8 | d | 0.44 | ± | 0.02 | h |
Bacillus sp. SVHM1.1 | 4.10 | ± | 0.03 | bd | 2.89 | ± | 0.04 | h | 4.7 | ± | 0.1 | i | 10.4 | ± | 1.0 | ad | 0.44 | ± | 0.02 | h | |
Halomonas sp. SVCN6 | 4.03 | ± | 0.01 | cg | 3.12 | ± | 0.19 | gh | 6.7 | ± | 0.1 | ab | 11.9 | ± | 1.1 | ac | 0.63 | ± | 0.02 | cd | |
Halomonas sp. SVHM8 | 4.11 | ± | 0.02 | bc | 3.14 | ± | 0.15 | gh | 5.0 | ± | 0.2 | i | 9.9 | ± | 1.0 | bd | 0.44 | ± | 0.02 | h | |
Consortium | 3.99 | ± | 0.01 | eh | 3.20 | ± | 0.22 | fh | 6.9 | ± | 0.1 | ab | 9.5 | ± | 1.3 | cd | 0.60 | ± | 0.02 | cd | |
20 | Control | 4.13 | ± | 0.01 | b | 3.42 | ± | 0.11 | eg | 5.1 | ± | 0.1 | i | 10.8 | ± | 0.8 | ad | 0.45 | ± | 0.02 | gh |
Bacillus sp. SVHM1.1 | 3.98 | ± | 0.06 | eh | 3.63 | ± | 0.18 | bf | 5.5 | ± | 0.3 | gh | 10.8 | ± | 0.8 | ad | 0.45 | ± | 0.02 | gh | |
Halomonas sp. SVCN6 | 4.05 | ± | 0.01 | be | 3.54 | ± | 0.12 | cg | 4.9 | ± | 0.1 | i | 10.6 | ± | 0.5 | ad | 0.52 | ± | 0.02 | ef | |
Halomonas sp. SVHM8 | 3.94 | ± | 0.04 | gh | 4.07 | ± | 0.21 | ab | 6.6 | ± | 0.2 | bc | 10.6 | ± | 0.4 | ad | 0.70 | ± | 0.02 | ab | |
Consortium | 3.99 | ± | 0.02 | eh | 3.45 | ± | 0.07 | dg | 5.1 | ± | 0.1 | i | 9.1 | ± | 0.4 | d | 0.47 | ± | 0.02 | fh | |
60 | Control | 4.02 | ± | 0.02 | dg | 3.89 | ± | 0.20 | bd | 5.1 | ± | 0.1 | hi | 11.2 | ± | 1.0 | ad | 0.52 | ± | 0.04 | ef |
Bacillus sp. SVHM1.1 | 3.92 | ± | 0.03 | h | 3.82 | ± | 0.21 | be | 6.5 | ± | 0.1 | bd | 12.3 | ± | 0.6 | ab | 0.63 | ± | 0.02 | cd | |
Halomonas sp. SVCN6 | 4.06 | ± | 0.04 | be | 3.82 | ± | 0.12 | be | 5.7 | ± | 0.1 | fg | 9.9 | ± | 1.1 | bd | 0.56 | ± | 0.02 | de | |
Halomonas sp. SVHM8 | 4.03 | ± | 0.04 | cf | 3.70 | ± | 0.23 | be | 4.9 | ± | 0.1 | i | 11.1 | ± | 0.9 | ad | 0.51 | ± | 0.02 | eg | |
Consortium | 4.04 | ± | 0.03 | cf | 3.99 | ± | 0.07 | ac | 5.7 | ± | 0.1 | fg | 10.3 | ± | 0.8 | ad | 0.56 | ± | 0.02 | de | |
100 | Control | 3.99 | ± | 0.02 | eh | 3.86 | ± | 0.16 | be | 6.1 | ± | 0.1 | df | 10.4 | ± | 0.5 | ad | 0.52 | ± | 0.02 | ef |
Bacillus sp. SVHM1.1 | 4.03 | ± | 0.04 | cf | 3.71 | ± | 0.19 | be | 5.9 | ± | 0.1 | eg | 11.7 | ± | 0.6 | ad | 0.52 | ± | 0.02 | ef | |
Halomonas sp. SVCN6 | 3.91 | ± | 0.06 | h | 3.63 | ± | 0.07 | bf | 5.7 | ± | 0.1 | g | 12.2 | ± | 0.8 | ab | 0.56 | ± | 0.02 | de | |
Halomonas sp. SVHM8 | 3.95 | ± | 0.03 | fh | 4.37 | ± | 0.11 | a | 7.1 | ± | 0.1 | a | 12.7 | ± | 1.2 | a | 0.77 | ± | 0.04 | a | |
Consortium | 3.91 | ± | 0.01 | h | 4.38 | ± | 0.09 | a | 6.2 | ± | 0.2 | ce | 9.9 | ± | 0.7 | bd | 0.67 | ± | 0.02 | bc |
Salinity (mM NaCl) | Treatments | Proline (mM/g) | Trehalose (mM/g) | Glycine Betaine (mM/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Control | 0.818 | ± | 0.085 | bc | 27.87 | ± | 0.72 | bc | 1.53 | ± | 0.19 | ab |
Bacillus sp. SVHM1.1 | 0.866 | ± | 0.008 | b | 27.41 | ± | 0.66 | bc | 1.38 | ± | 0.15 | ae | |
Halomonas sp. SVCN6 | 0.783 | ± | 0.022 | bc | 27.67 | ± | 2.85 | bc | 1.04 | ± | 0.13 | df | |
Halomonas sp. SVHM8 | 0.880 | ± | 0.054 | b | 27.75 | ± | 1.38 | bc | 1.28 | ± | 0.01 | af | |
Consortium | 1.107 | ± | 0.036 | a | 25.99 | ± | 2.47 | cd | 1.41 | ± | 0.18 | ae | |
20 | Control | 0.617 | ± | 0.095 | d | 25.41 | ± | 0.26 | cd | 1.23 | ± | 0.17 | bf |
Bacillus sp. SVHM1.1 | 0.730 | ± | 0.105 | bd | 19.63 | ± | 1.00 | ef | 1.00 | ± | 0.01 | ef | |
Halomonas sp. SVCN6 | 0.852 | ± | 0.001 | b | 34.53 | ± | 2.35 | a | 1.48 | ± | 0.09 | ac | |
Halomonas sp. SVHM8 | 1.129 | ± | 0.006 | a | 20.14 | ± | 0.54 | ef | 1.21 | ± | 0.15 | bf | |
Consortium | 0.785 | ± | 0.045 | bc | 27.36 | ± | 1.80 | bc | 1.70 | ± | 0.27 | a | |
60 | Control | 0.863 | ± | 0.004 | b | 32.25 | ± | 2.82 | ab | 0.86 | ± | 0.08 | f |
Bacillus sp. SVHM1.1 | 0.764 | ± | 0.032 | bd | 16.67 | ± | 0.72 | fh | 1.05 | ± | 0.06 | cf | |
Halomonas sp. SVCN6 | 0.822 | ± | 0.003 | bc | 12.87 | ± | 0.69 | h | 0.94 | ± | 0.07 | f | |
Halomonas sp. SVHM8 | 1.072 | ± | 0.002 | a | 32.23 | ± | 1.96 | ab | 1.14 | ± | 0.07 | bf | |
Consortium | 0.780 | ± | 0.026 | bc | 33.82 | ± | 3.16 | a | 1.14 | ± | 0.09 | bf | |
100 | Control | 0.872 | ± | 0.000 | b | 22.99 | ± | 0.96 | ce | 0.99 | ± | 0.05 | ef |
Bacillus sp. SVHM1.1 | 0.796 | ± | 0.045 | bc | 18.55 | ± | 0.18 | eg | 1.29 | ± | 0.14 | af | |
Halomonas sp. SVCN6 | 0.842 | ± | 0.006 | b | 14.52 | ± | 0.58 | gh | 1.26 | ± | 0.16 | bf | |
Halomonas sp. SVHM8 | 0.674 | ± | 0.035 | cd | 16.55 | ± | 0.22 | fh | 1.14 | ± | 0.18 | bf | |
Consortium | 0.753 | ± | 0.096 | bd | 21.71 | ± | 0.62 | de | 1.43 | ± | 0.18 | ad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Inocencio, J.; Iturriaga, G.; Aguirre-Mancilla, C.L.; Vásquez-Murrieta, M.S.; Lastiri-Hernández, M.A.; Álvarez-Bernal, D. Reduction in Salt Stress Due to the Action of Halophilic Bacteria That Promote Plant Growth in Solanum lycopersicum. Microorganisms 2023, 11, 2625. https://doi.org/10.3390/microorganisms11112625
Pérez-Inocencio J, Iturriaga G, Aguirre-Mancilla CL, Vásquez-Murrieta MS, Lastiri-Hernández MA, Álvarez-Bernal D. Reduction in Salt Stress Due to the Action of Halophilic Bacteria That Promote Plant Growth in Solanum lycopersicum. Microorganisms. 2023; 11(11):2625. https://doi.org/10.3390/microorganisms11112625
Chicago/Turabian StylePérez-Inocencio, Javier, Gabriel Iturriaga, Cesar L. Aguirre-Mancilla, María Soledad Vásquez-Murrieta, Marcos Alfonso Lastiri-Hernández, and Dioselina Álvarez-Bernal. 2023. "Reduction in Salt Stress Due to the Action of Halophilic Bacteria That Promote Plant Growth in Solanum lycopersicum" Microorganisms 11, no. 11: 2625. https://doi.org/10.3390/microorganisms11112625
APA StylePérez-Inocencio, J., Iturriaga, G., Aguirre-Mancilla, C. L., Vásquez-Murrieta, M. S., Lastiri-Hernández, M. A., & Álvarez-Bernal, D. (2023). Reduction in Salt Stress Due to the Action of Halophilic Bacteria That Promote Plant Growth in Solanum lycopersicum. Microorganisms, 11(11), 2625. https://doi.org/10.3390/microorganisms11112625