Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultivation
2.2. MALDI-TOF Mass Spectrometry
2.3. Genomic DNA Extraction
2.4. Illumina Sequencing, De Novo Assemblies and Ames Ancestor-Reference-Based Assemblies
2.5. Nanopore Sequencing and De Novo Hybrid Assembly
2.6. Nucleotide Sequence Accession Numbers
2.7. Public Genomes
2.8. Whole Genome SNPs and Population Clustering Analysis
2.9. Genomospecies Assignment and Virulence Factor Detection
2.10. Plasmid Analysis
2.11. MALDI-TOF Cereulide Production Detection
3. Results
3.1. Strain Isolation and Microbiology
3.2. Identification with MALDI-TOF MS
3.3. Phylogenetic Relationships between B. cereus s.l. Isolates Based on wgSNP Analyses
3.4. Close B. anthracis Neighbors
3.5. Taxonomic Assignment and Virulence Factor Detection
3.6. BC38B Plasmid Analysis
3.7. Detection of Cereulide Production with MALDI-TOF MS
4. Discussion
4.1. B. cereus s.l. Characterization
4.2. Unnamed B. anthracis Neighbors
4.3. Plasmid Analysis
4.4. Virulence Factor Detection and Toxin Profile Diversity
4.5. Biovars Anthracis, Emeticus and Thuringiensis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HHS and USDA Select Agents and Toxins, 7 CFR Part 331, 9 CFR Part 121, and 42 CFR Part 73. Available online: https://www.selectagents.gov/sat/list.htm (accessed on 29 June 2023).
- Irenge, L.M.; Gala, J.L. Rapid detection methods for Bacillus anthracis in environmental samples: A review. Appl. Microbiol. Biotechnol. 2012, 93, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Zasada, A.A. Detection and Identification of Bacillus anthracis: From Conventional to Molecular Microbiology Methods. Microorganisms 2020, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Anthrax in Humans and Animals, 4th ed.; WHO Guidelines Approved by the Guidelines Review Committee; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Chen, J.; Xu, F. Application of Nanopore Sequencing in the Diagnosis and Treatment of Pulmonary Infections. Mol. Diagn. Ther. 2023, 27, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Lasch, P.; Stämmler, M.; Schneider, A. Version 4 (20230306) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 2023. Available online: https://zenodo.org/records/7702375 (accessed on 15 May 2023).
- Torres-Sangiao, E.; Leal Rodriguez, C.; Garcia-Riestra, C. Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021, 9, 1539. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Cheng, R.A.; Wiedmann, M.; Kovac, J. Keeping up with the Bacillus cereus group: Taxonomy through the genomics era and beyond. Crit. Rev. Food Sci. Nutr. 2022, 62, 7677–7702. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, Q.; Goker, M.; Meier-Kolthoff, J.P.; Wang, M.; Sun, Y.; Wang, L.; Shao, Z. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 2015, 5, 14082. [Google Scholar] [CrossRef]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. mBio 2020, 11, e00034-20. [Google Scholar] [CrossRef]
- Carroll, L.M.; Matle, I.; Kovac, J.; Cheng, R.A.; Wiedmann, M. Laboratory Misidentifications Resulting from Taxonomic Changes to Bacillus cereus Group Species, 2018–2022. Emerg. Infect. Dis. 2022, 28, 1877–1881. [Google Scholar] [CrossRef]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. Bacterial Pesticidal Protein Resource Center. Available online: https://www.bpprc.org/ (accessed on 10 April 2023).
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Martlbauer, E.; Granum, P.E. The Food Poisoning Toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef]
- Jovanovic, J.; Ornelis, V.F.M.; Madder, A.; Rajkovic, A. Bacillus cereus food intoxication and toxicoinfection. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3719–3761. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Fricker, M.; Grallert, H.; Rieck, P.; Wagner, M.; Scherer, S. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 2006, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Bohm, M.E.; Huptas, C.; Krey, V.M.; Scherer, S. Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evol. Biol. 2015, 15, 246. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Manktelow, C.J.; White, H.; Crickmore, N.; Raymond, B. Divergence in environmental adaptation between terrestrial clades of the Bacillus cereus group. FEMS Microbiol. Ecol. 2020, 97, fiaa228. [Google Scholar] [CrossRef]
- Baldwin, V.M. You Can’t B. cereus—A Review of Bacillus cereus Strains That Cause Anthrax-Like Disease. Front. Microbiol. 2020, 11, 1731. [Google Scholar] [CrossRef]
- Hoffmaster, A.R.; Ravel, J.; Rasko, D.A.; Chapman, G.D.; Chute, M.D.; Marston, C.K.; De, B.K.; Sacchi, C.T.; Fitzgerald, C.; Mayer, L.W.; et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 2004, 101, 8449–8454. [Google Scholar] [CrossRef]
- Scarff, J.M.; Seldina, Y.I.; Vergis, J.M.; Ventura, C.L.; O’Brien, A.D. Expression and contribution to virulence of each polysaccharide capsule of Bacillus cereus strain G9241. PLoS ONE 2018, 13, e0202701. [Google Scholar] [CrossRef]
- Hoffmaster, A.R.; Hill, K.K.; Gee, J.E.; Marston, C.K.; De, B.K.; Popovic, T.; Sue, D.; Wilkins, P.P.; Avashia, S.B.; Drumgoole, R.; et al. Characterization of Bacillus cereus isolates associated with fatal pneumonias: Strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 2006, 44, 3352–3360. [Google Scholar] [CrossRef]
- Klee, S.R.; Ozel, M.; Appel, B.; Boesch, C.; Ellerbrok, H.; Jacob, D.; Holland, G.; Leendertz, F.H.; Pauli, G.; Grunow, R.; et al. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J. Bacteriol. 2006, 188, 5333–5344. [Google Scholar] [CrossRef]
- Oh, S.Y.; Budzik, J.M.; Garufi, G.; Schneewind, O. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol. Microbiol. 2011, 80, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-M.; Kuo, H.-W.; Cheng, W. Retrospective Screening of Anthrax-like Disease Induced by Bacillus tropicus str. JMT from Chinese Soft-Shell Turtles in Taiwan. Pathogens 2023, 12, 693. [Google Scholar] [CrossRef] [PubMed]
- Afshinnekoo, E.; Meydan, C.; Chowdhury, S.; Jaroudi, D.; Boyer, C.; Bernstein, N.; Maritz, J.M.; Reeves, D.; Gandara, J.; Chhangawala, S.; et al. Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics. Cell Syst. 2015, 1, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bai, X.; Zhang, X.; Yuan, B.; Lin, L.; Guo, Y.; Cui, Y.; Liu, J.; Cui, H.; Ren, X.; et al. Development and application of DETECTR-based rapid detection for pathogenic Bacillus anthracis. Anal. Chim. Acta 2023, 1247, 340891. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Cheng, R.A.; Kovac, J. No Assembly Required: Using BTyper3 to Assess the Congruency of a Proposed Taxonomic Framework for the Bacillus cereus Group with Historical Typing Methods. Front. Microbiol. 2020, 11, 580691. [Google Scholar] [CrossRef] [PubMed]
- Cerar Kišek, T.; Pogačnik, N.; Godič Torkar, K. Genetic diversity and the presence of circular plasmids in Bacillus cereus isolates of clinical and environmental origin. Arch. Microbiol. 2021, 203, 3209–3217. [Google Scholar] [CrossRef] [PubMed]
- Torkar, K.G.; Bedenić, B. Antimicrobial susceptibility and characterization of metallo-β-lactamases, extended-spectrum β-lactamases, and carbapenemases of Bacillus cereus isolates. Microb. Pathog. 2018, 118, 140–145. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019, 20, 129. [Google Scholar] [CrossRef]
- Wick, R.R. Porechop. Available online: https://github.com/rrwick/Porechop (accessed on 18 October 2022).
- Carroll, L.M.; Marston, C.K.; Kolton, C.B.; Gulvik, C.A.; Gee, J.E.; Weiner, Z.P.; Kovac, J. Strains Associated with Two 2020 Welder Anthrax Cases in the United States Belong to Separate Lineages within Bacillus cereus sensu lato. Pathogens 2022, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Sahl, J.W.; Pearson, T.; Okinaka, R.; Schupp, J.M.; Gillece, J.D.; Heaton, H.; Birdsell, D.; Hepp, C.; Fofanov, V.; Noseda, R.; et al. A Bacillus anthracis Genome Sequence from the Sverdlovsk 1979 Autopsy Specimens. mBio 2016, 7, e01501–e01516. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, J.; Bo, D.; Yu, Y.; Ye, W.; Peng, D.; Sun, M. BtToxin_Digger: A comprehensive and high-throughput pipeline for mining toxin protein genes from Bacillus thuringiensis. Bioinformatics 2021, 38, 250–251. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Goker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Goker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Goker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Peng, D.; Ruan, L.; Sun, M. Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the Bacillus cereus group. BMC Evol. Biol. 2013, 13, 262. [Google Scholar] [CrossRef]
- Dong, M.J.; Luo, H.; Gao, F. Ori-Finder 2022: A Comprehensive Web Server for Prediction and Analysis of Bacterial Replication Origins. Genom. Proteom. Bioinform. 2022, 20, 1207–1213. [Google Scholar] [CrossRef]
- Ducrest, P.J.; Pfammatter, S.; Stephan, D.; Vogel, G.; Thibault, P.; Schnyder, B. Rapid detection of Bacillus ionophore cereulide in food products. Sci. Rep. 2019, 9, 5814. [Google Scholar] [CrossRef]
- Tinsley, E.; Khan, S.A. A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J. Bacteriol. 2006, 188, 2829–2835. [Google Scholar] [CrossRef] [PubMed]
- Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell Biol. 2005, 6, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Lobry, J.R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 1996, 13, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.; Raab, C.; Brugger, K.; Ehling-Schulz, M.; Wagner, M.; Stessl, B. Performance Testing of Bacillus cereus Chromogenic Agar Media for Improved Detection in Milk and Other Food Samples. Foods 2022, 11, 288. [Google Scholar] [CrossRef]
- Tallent, S.M.; Kotewicz, K.M.; Strain, E.A.; Bennett, R.W. Efficient isolation and identification of Bacillus cereus group. J. AOAC Int. 2012, 95, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Papaparaskevas, J.; Houhoula, D.P.; Papadimitriou, M.; Saroglou, G.; Legakis, N.J.; Zerva, L. Ruling out Bacillus anthracis. Emerg. Infect. Dis. 2004, 10, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Jo, H.J.; Choi, E.K.; Kim, Y.; Kim, J.; Cho, H.J. Reliable Identification of Bacillus cereus Group Species Using Low Mass Biomarkers by MALDI-TOF MS. J. Microbiol. Biotechnol. 2019, 29, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Manzulli, V.; Rondinone, V.; Buchicchio, A.; Serrecchia, L.; Cipolletta, D.; Fasanella, A.; Parisi, A.; Difato, L.; Iatarola, M.; Aceti, A.; et al. Discrimination of Bacillus cereus Group Members by MALDI-TOF Mass Spectrometry. Microorganisms 2021, 9, 1202. [Google Scholar] [CrossRef]
- Pauker, V.I.; Thoma, B.R.; Grass, G.; Bleichert, P.; Hanczaruk, M.; Zoller, L.; Zange, S. Improved Discrimination of Bacillus anthracis from Closely Related Species in the Bacillus cereus Sensu Lato Group Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2018, 56, e01900–e01917. [Google Scholar] [CrossRef]
- Quagliariello, A.; Cirigliano, A.; Rinaldi, T. Bacilli in the International Space Station. Microorganisms 2022, 10, 2309. [Google Scholar] [CrossRef]
- Abo-Aba, S.E.; Sabir, J.S.; Baeshen, M.N.; Sabir, M.J.; Mutwakil, M.H.; Baeshen, N.A.; D’Amore, R.; Hall, N. Draft Genome Sequence of Bacillus Species from the Rhizosphere of the Desert Plant Rhazya stricta. Genome Announc. 2015, 3, e00957-15. [Google Scholar] [CrossRef]
- Venkateswaran, K.; Singh, N.K.; Checinska Sielaff, A.; Pope, R.K.; Bergman, N.H.; van Tongeren, S.P.; Patel, N.B.; Lawson, P.A.; Satomi, M.; Williamson, C.H.D.; et al. Non-Toxin-Producing Bacillus cereus Strains Belonging to the B. anthracis Clade Isolated from the International Space Station. mSystems 2017, 2, e00021-17. [Google Scholar] [CrossRef]
- Irenge, L.M.; Bearzatto, B.; Ambroise, J.; Gala, J.L. Complete Genome Sequence of an Environmental Bacillus cereus Isolate Belonging to the Bacillus anthracis Clade. Microbiol. Resour. Announc. 2020, 9, e00917-20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, S.; Liu, S.; Peng, J.; Zhang, H.; Zhao, Q.; Zheng, L.; Chen, Y.; Shen, Z.; Xu, X.; et al. Enhancing the Phytoremediation of Heavy Metals by Combining Hyperaccumulator and Heavy Metal-Resistant Plant Growth-Promoting Bacteria. Front. Plant Sci. 2022, 13, 912350. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Guan, Z.; Cao, S.; Peng, D.; Ruan, L.; Jiang, D.; Sun, M. Plasmids are vectors for redundant chromosomal genes in the Bacillus cereus group. BMC Genom. 2015, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Capozzi, L.; Monno, M.R.; Del Sambro, L.; Manzulli, V.; Pesole, G.; Loconsole, D.; Parisi, A. Characterization of Bacillus cereus Group Isolates from Human Bacteremia by Whole-Genome Sequencing. Front. Microbiol. 2020, 11, 599524. [Google Scholar] [CrossRef] [PubMed]
- Fraccalvieri, R.; Bianco, A.; Difato, L.M.; Capozzi, L.; Del Sambro, L.; Simone, D.; Catanzariti, R.; Caruso, M.; Galante, D.; Normanno, G.; et al. Toxigenic Genes, Pathogenic Potential and Antimicrobial Resistance of Bacillus cereus Group Isolated from Ice Cream and Characterized by Whole Genome Sequencing. Foods 2022, 11, 2480. [Google Scholar] [CrossRef] [PubMed]
- Frentzel, H.; Kelner-Burgos, Y.; Fischer, J.; Heise, J.; Gohler, A.; Wichmann-Schauer, H. Occurrence of selected bacterial pathogens in insect-based food products and in-depth characterisation of detected Bacillus cereus group isolates. Int. J. Food Microbiol. 2022, 379, 109860. [Google Scholar] [CrossRef]
- Huang, Y.; Flint, S.H.; Yu, S.; Ding, Y.; Palmer, J.S. Phenotypic properties and genotyping analysis of Bacillus cereus group isolates from dairy and potato products. LWT 2021, 140, 110853. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Guinebretiere, M.H.; Monthan, A.; Berge, O.; Fricker, M.; Svensson, B. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 2006, 260, 232–240. [Google Scholar] [CrossRef]
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M.; Elkin, B.T.; Epp, T.; Shury, T.K.; Zhang, W.; et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Franz, D.R. Preparedness for an anthrax attack. Mol. Asp. Med. 2009, 30, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M. Dr. Jekyll and Mr. Hyde: A short history of anthrax. Mol. Asp. Med. 2009, 30, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Martlbauer, E.; Dietrich, R.; Luo, H.; Ding, S.; Zhu, K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit. Rev. Toxicol. 2019, 49, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Wiedmann, M. Cereulide Synthetase Acquisition and Loss Events within the Evolutionary History of Group III Bacillus cereus Sensu Lato Facilitate the Transition between Emetic and Diarrheal Foodborne Pathogens. mBio 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Svensson, B.; Guinebretiere, M.H.; Lindback, T.; Andersson, M.; Schulz, A.; Fricker, M.; Christiansson, A.; Granum, P.E.; Martlbauer, E.; et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 2005, 151, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Hoton, F.M.; Fornelos, N.; N’Guessan, E.; Hu, X.; Swiecicka, I.; Dierick, K.; Jaaskelainen, E.; Salkinoja-Salonen, M.; Mahillon, J. Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ. Microbiol. Rep. 2009, 1, 177–183. [Google Scholar] [CrossRef]
- Thorsen, L.; Hansen, B.M.; Nielsen, K.F.; Hendriksen, N.B.; Phipps, R.K.; Budde, B.B. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 2006, 72, 5118–5121. [Google Scholar] [CrossRef]
- Meng, J.-N.; Liu, Y.-J.; Shen, X.; Wang, J.; Xu, Z.-K.; Ding, Y.; Beier, R.C.; Luo, L.; Lei, H.-T.; Xu, Z.-L. Detection of emetic Bacillus cereus and the emetic toxin cereulide in food matrices: Progress and perspectives. Trends Food Sci. Technol. 2022, 123, 322–333. [Google Scholar] [CrossRef]
- Ulrich, S.; Gottschalk, C.; Dietrich, R.; Martlbauer, E.; Gareis, M. Identification of cereulide producing Bacillus cereus by MALDI-TOF MS. Food Microbiol. 2019, 82, 75–81. [Google Scholar] [CrossRef]
- Biggel, M.; Jessberger, N.; Kovac, J.; Johler, S. Recent paradigm shifts in the perception of the role of Bacillus thuringiensis in foodborne disease. Food Microbiol. 2022, 105, 104025. [Google Scholar] [CrossRef]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar] [CrossRef]
- Sauka, D.H.; Peralta, C.; Pérez, M.P.; Onco, M.I.; Fiodor, A.; Caballero, J.; Caballero, P.; Berry, C.; Del Valle, E.E.; Palma, L. Bacillus toyonensis biovar Thuringiensis: A novel entomopathogen with insecticidal activity against lepidopteran and coleopteran pests. Biol. Control 2022, 167, 104838. [Google Scholar] [CrossRef]
- Lan, X.; Wang, Q.; Wu, T.; Li, N.; Wang, H.; Zheng, Z. Draft Genome Sequence of Bacillus wiedmannii Biovar thuringiensis ZZQ-138, Isolated from a Saline Lake. Microbiol. Resour. Announc. 2022, 11, e0096421. [Google Scholar] [CrossRef]
- Lazarte, J.N.; Lopez, R.P.; Ghiringhelli, P.D.; Beron, C.M. Bacillus wiedmannii biovar thuringiensis: A Specialized Mosquitocidal Pathogen with Plasmids from Diverse Origins. Genome Biol. Evol. 2018, 10, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
Strain id. | Virulence Factors | Closest Reference Species | Taxonomic Assignment by BTyper3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nheABC | hblABCD | cesABCD | cytK-1 | cytK-2 | spH | Bt toxins * | cya, lef, pagA | capABCDE | hasABC | bpsABCDEFGHX | |||
B. toyonensis (BCT-7112), B. toyonensis (P18) | + | + | − | − | − | + | − | − | − | − | (+) | B. toyonensis | B. toyonensis |
SIBC12A, SIBC12B | + | + | − | − | − | + | − | − | − | − | (+) | B. toyonensis | B. toyonensis |
B. luti (TD41), B. luti (FJ) | + | − | − | − | − | + | − | − | − | − | (+) | B. luti | B. luti |
B. paramobilis (BML-BC017) | + | + | − | − | − | + | − | − | − | − | (+) | B. paramobilis | B. mosaicus |
B. mobilis (16-00177), B. mobilis (0711P9-1) | + | − | − | − | − | + | − | − | − | − | (+) | B. mobilis | B. mosaicus |
SIBC20B | + | − | − | − | − | + | − | − | − | − | (+) | B. mobilis | B. mosaicus |
B. wiedmannii (FSL W8-0169) | + | + | − | − | + | + | − | − | − | − | (+) | B. wiedmannii | B. mosaicus |
B. wiedmannii (SR52) | + | + | − | − | − | + | − | − | − | − | (+) | B. wiedmannii | B. mosaicus |
SIBC58 | + | + | − | − | − | + | − | − | − | − | (+) | B. wiedmannii | B. mosaicus |
B. sanguinis (BML-BC004) | + | − | − | − | − | + | − | − | − | − | (+) | B. sanguinis | B. mosaicus |
B. tropicus (N24) | + | − | − | − | + | + | − | − | − | − | (+) | B. tropicus | B. mosaicus |
SIBC56, SIBC60, SIBC20A | + | − | − | − | + | + | − | − | − | − | (+) | B. tropicus | B. mosaicus |
G9241, FDAARGOS_897, 03BB87, LA2007, BacLA2020a, BacLA2020b | + | + | − | − | + | + | − | + | − | + | + | B. tropicus | B. mosaicus biovar Anthracis (1) |
BcFL2013 | + | + | − | − | + | + | − | + | − | + | (+) | B. tropicus | B. mosaicus biovar Anthracis (1) |
BC-AK | + | + | − | − | + | + | − | (+) | + | + | (+) | B. tropicus | B. mosaicus biovar Anthracis (1) |
B. tropicus (AOA-CPS1) | + | + | − | − | + | + | − | − | − | − | (+) | B. tropicus | B. mosaicus |
B. pacificus (EB422) | + | − | − | − | + | + | − | − | − | − | (+) | B. pacificus | B. mosaicus |
B. pacificus (anQ-h4) | + | − | − | − | − | + | − | − | − | − | (+) | B. pacificus | B. mosaicus |
SIBC91 | + | − | − | − | − | + | − | − | − | − | (+) | B. pacificus | B. mosaicus |
SIBC34, SIBC39 | + | + | − | − | − | + | + | − | − | − | (+) | B. paranthracis | B. mosaicus biovar Thuringiensis (3) |
B. paranthracis (Mn5) | + | − | − | − | + | + | − | − | − | − | (+) | B. paranthracis | B. mosaicus subps. cereus (4) |
SIBC18, SIBC31 | + | − | − | − | − | + | − | − | − | − | (+) | B. paranthracis | B. mosaicus subsp. cereus (4) |
SIBC49, SIBC63, SIBC51B | + | − | − | − | + | + | + | − | − | − | (+) | B. paranthracis | B. mosaicus biovar Thuringiensis (3) |
B. paranthracis (14-9) | + | − | − | − | − | + | − | − | − | − | (+) | B. paranthracis | B. mosaicus subps. cereus (4) |
SIBC41 | + | − | − | − | − | + | − | − | − | − | (+) | B. paranthracis | B. mosaicus subsp. cereus (4) |
SIBC93 | + | − | + | − | − | + | − | − | − | − | (+) | B. paranthracis (5) | B. mosaicus subsp. cereus biovar Emeticus (6) |
Emetic B. cereus strain (AH187) | + | − | + | − | − | + | − | − | − | − | (+) | B. paranthracis (5) | B. mosaicus subsp. cereus biovar Emeticus (6) |
SIBC14, SIBC46B, SIBC59, SIBC61B, SIBC92, SIBC98, SIBC50, SIBC84, SIBC35, SIBC9B | + | − | + | − | − | + | − | − | − | − | (+) | B. paranthracis (5) | B. mosaicus subsp. cereus biovar Emeticus (6) |
SIBC26 | + | − | − | − | − | + | − | − | − | − | (+) | B. paranthracis (5) | B. mosaicus subsp. cereus (4) |
03BB102, FDAARGOS_918, CI | + | − | − | − | − | + | − | + | + | + | (+) | B. anthracis | B. mosaicus biovar Anthracis (1) |
BacTX2020a | + | − | − | − | − | + | − | + | − | + | (+) | B. anthracis | B. mosaicus biovar Anthracis (1) |
B. anthracis (Ames Ancestor), B. anthracis (Vollum) | + | − | − | − | − | + | − | + | + | + | (+) | B. anthracis | B. mosaicus subsp. anthracis biovar Anthracis (1,2) |
BC38B | + | − | − | − | − | + | − | − | − | − | (+) | B. anthracis | B. mosaicus |
SIBC44, SIBC51A, SIBC16, SIBC19, SIBC27, SIBC17B | + | − | − | − | + | + | − | − | − | − | (+) | B. anthracis | B. mosaicus |
SIBC40 | + | − | − | − | − | + | + | − | − | − | (+) | B. anthracis | B. mosaicus biovar Thuringiensis (3) |
B. albus (N35-10-2), B. albus (PG 26) | + | + | − | − | − | + | − | − | − | − | (+) | B. albus | B. mosaicus |
B. fungorum (17-SMS-01) | + | (+) | − | − | − | + | − | − | − | − | (+) | B. fungorum | B. mosaicus |
B. cereus s.s. (ATCC 14579) | + | + | − | − | + | + | − | − | − | − | (+) | B. cereus s.s. | B. cereus s.s. |
SIBC21, SIBC28, SIBC29, SIBC22, SIBC43, SIBC30, SIBC37, SIBC78, SIBC9A, SIBC79, SIBC68, SIBC94, SIBC72, SIBC97, SIBC17A | + | + | − | − | + | + | − | − | − | − | (+) | B. cereus s.s. | B. cereus s.s. |
B. “bombysepticus” (Wang) | + | + | − | − | + | + | − | − | − | − | (+) | B. cereus s.s. | B. cereus s.s. |
SIBC13, SIBC38A, SIBC10, SIBC45, SIBC61A, SIBC36 | + | + | − | − | + | + | − | − | − | − | (+) | B. cereus s.s. | B. cereus s.s. |
B. thuringiensis (ATCC 10792) | + | + | − | − | + | + | + | − | − | − | (+) | B. thuringiensis | B. cereus s.s. biovar Thuringiensis (3) |
SIBC8, SIBC54, SIBC80, SIBC32 | + | + | − | − | + | + | − | − | − | − | (+) | B. thuringiensis | B. cereus s.s. |
SIBC47 | + | − | − | − | + | + | − | − | − | − | (+) | B. thuringiensis | B. cereus s.s. |
SIBC65 | + | − | − | − | + | + | − | − | − | − | (+) | B. thuringiensis | B. cereus s.s. |
SIBC99 | + | − | − | − | + | + | − | − | − | − | (+) | B. thuringiensis | B. cereus s.s. |
SIBC46A | + | − | − | − | + | + | − | − | − | − | (+) | B. thuringiensis | B. cereus s.s. |
Strain ID | Pesticidal Toxins |
---|---|
SIBC34 | Cry28Aa2, Mpp64Aa1, Vpb4Aa1, Spp1Aa1 |
SIBC39 | Cry28Aa2, Mpp64Aa1, Vpb4Aa1, Spp1Aa1 |
SIBC40 | Cry1Ie5, Spp1Aa1 |
SIBC49 | Cry13Aa2, Cry41Ba2, Spp1Aa1 |
SIBC51B | Cry13Aa2, Cry41Ba2, Spp1Aa1 |
SIBC63 | Cry13Aa2, Cry41Ba2, Spp1Aa1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelli, M.; Falaise, C.; Morineaux-Hilaire, V.; Cumont, A.; Taysse, L.; Raynaud, F.; Ramisse, V. Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group. Microorganisms 2023, 11, 2721. https://doi.org/10.3390/microorganisms11112721
Abdelli M, Falaise C, Morineaux-Hilaire V, Cumont A, Taysse L, Raynaud F, Ramisse V. Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group. Microorganisms. 2023; 11(11):2721. https://doi.org/10.3390/microorganisms11112721
Chicago/Turabian StyleAbdelli, Mehdi, Charlotte Falaise, Valérie Morineaux-Hilaire, Amélie Cumont, Laurent Taysse, Françoise Raynaud, and Vincent Ramisse. 2023. "Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group" Microorganisms 11, no. 11: 2721. https://doi.org/10.3390/microorganisms11112721
APA StyleAbdelli, M., Falaise, C., Morineaux-Hilaire, V., Cumont, A., Taysse, L., Raynaud, F., & Ramisse, V. (2023). Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group. Microorganisms, 11(11), 2721. https://doi.org/10.3390/microorganisms11112721