The Antibacterial Effect of Selected Essential Oils and Their Bioactive Constituents on Pseudomonas savastanoi pv. savastanoi: Phytotoxic Properties and Potential for Future Olive Disease Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bacterial Inoculum
2.2. Qualitative Determination of Antibacterial Effect
2.3. Quantitative Determination of Antibacterial Effect
2.4. Time–Kill Assay
2.5. Leakage of Cellular Metabolites
2.6. Determination of Phytotoxicity of Carvacrol to Olive Plants in Greenhouse
2.7. Data Analysis
3. Results
3.1. Qualitative Determination of Antibacterial Effects
Group | Antimicrobials | Inhibition of Growth of Pseudomonas savastanoi pv. savastanoi (Clearing Zone, mm) | ||
---|---|---|---|---|
C1 | C2 | C3 | ||
EOs | Mentha × piperita | 8.56 ± 0.88 + | 9.01 ± 1.14 + | 8.45 ± 3.29 + |
Thymus vulgaris | 21.07 ± 2.96 ++ | 8.50 ± 1.04 + | 10.08 ± 0.98 + | |
Origanum compactum | 20.29 ± 2.25 ++ | 8.90 ± 0.76 + | 10.18 ± 0.68 + | |
Origanum majorana | 10.17 ± 1.13 + | 9.78 ± 0.64 + | 10.31 ± 0.56 + | |
Salvia officinalis | 13.20 ± 2.52 + | 8.62 ± 0.77 + | 9.44 ± 0.76 + | |
Salvia sclarea | 0.00 ± 0.00 x | 8.87 ± 0.96 + | 8.29 ± 0.82 + | |
EOsC | DL-menthol * | 9.63 ± 0.38 + | 8.30 ± 2.95 + | 9.30 ± 1.67 + |
thymol * | 9.05 ± 0.71 + | 10.52 ± 1.66 + | 10.01 ± 0.87 + | |
carvacrol | 28.47 ± 3.99 ++ | 9.29 ± 0.70 + | 9.76 ± 0.83 + | |
linalyl acetate | 0.00 ± 0.00 x | 8.54 ± 1.08 + | 7.79 ± 1.03 + | |
(-)-terpinen-4-ol | 10.75 ± 2.16 + | 8.99 ± 0.90 + | 9.10 ± 0.89 + | |
α,β-thujone | 11.73 ± 0.93 + | 10.22 ± 0.74 + | 9.20 ± 0.53 + | |
Antibiotic | tetracycline | 36.22 ± 0.00 | n.t. | n.t. |
Copper-based commercial pesticide | copper(I)oxide | 16.32 ± 0.68 | n.t. | n.t. |
Negative control | sterile distilled water | 0.00 ± 0.00 | n.t. | n.t. |
3.2. Quantitative Determination of Antibacterial Effect
3.3. Time–Kill Assay
3.4. Leakage of Bacterial Cellular Metabolites
3.5. Phytotoxic Properties of Carvacrol in Planta
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Bipesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. Front. Sustain. Food Syst. 2021, 5, 619058. [Google Scholar] [CrossRef]
- Tegli, S.; Carboneschi, M.; Fatmi, M. Detection of Pseudomonas savastanoi pv. savastanoi in Asymptomatic Olive Plants. In Detection of Plant-Pathogenic Bacteria in Seed and Other Planting Material; Fatmi, M., Walcott, R.R., Schaad, N.W., Eds.; APS Press: St. Paul, MN, USA, 2017; pp. 311–319. [Google Scholar] [CrossRef]
- Košćak, L.; Lamovšek, J.; Ðermić, E.; Tegli, S.; Gruntar, I.; Godena, S. Identification and Characterisation of Pseudomonas savastanoi pv. savastanoi as the Causal Agent of Olive Knot Disease in Croatian, Slovenian and Portuguese Olive (Olea europaea L.) Orchards. Plants 2023, 12, 307. [Google Scholar] [CrossRef] [PubMed]
- Broniarek-Niemiec, A.; Børve, J.; Puławska, J. Control of Bacterial Canker in Stone Fruit Trees by Chemical and Biological Products. Agronomy 2023, 13, 1166. [Google Scholar] [CrossRef]
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot-Leclercq, M.-P.; Mahillon, J.; Bragard, C. On the use ofantibiotics to control plant pathogenic bacteria: A genetic and genomic perspective. Front. Microbiol. 2023, 14, 1221478. [Google Scholar] [CrossRef]
- Cesari, E.; Marocchi, F.; L’Aurora, A.; Pucci, N.; Scala, V.; Loreti, S.; Scortichini, M. Occurrence of copper-resistant Pseudomonas syringae pv. actinidiae strains in kiwifruit orchards of Central Italy. J. Phytopathol. 2023. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef]
- Schollenberger, M.; Staniek, T.M.; Paduch-Cichal, E.; Dasiewicz, B.; Gadomska-Gajadhur, A.; Mirzwa-Mróz, E. The activity of essential oils obtained from species and interspecies hybrids of the Mentha genus against selected plant pathogenic bacteria. Acta Sci. Pol. Hortorum Cultus 2018, 17, 167–174. [Google Scholar] [CrossRef]
- Gormez, A.; Bozari, S.; Yanmis, D.; Gulluce, M.; Sahin, F.; Agar, G. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic bacteria. Pol. J. Microbiol. 2015, 64, 121–127. [Google Scholar] [CrossRef]
- Rastgou, M.; Danesh, Y.R.; Ercisli, S.; Sayyed, R.Z.; El Enshasy, H.A.; Dailin, D.J.; Alfarraj, S.; Ansari, M.J. The Effect of Some Wild Grown Plant Extracts and Essential Oils on Pectobacterium betavasculorum: The Causative Agent of Bacterial Soft Rot and Vascular Wilt of Sugar Beet. Plants 2022, 11, 1155. [Google Scholar] [CrossRef]
- Tarakanov, R.I.; Dzhalilov, F.S.U. Using of Essential Oils and Plant Extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean. Plants 2022, 11, 2989. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, I.A.; Soylu, S.; Kara, M.; Soylu, E.M. Chemical Composition and Antibacterial Activity of Essential Oils Isolated from Medicinal Plants against Gall Forming Plant Pathogenic Bacterial Disease Agents. KSU J. Agric. Nat. 2020, 23, 1474–1482. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Touj, N.; Hammami, I.; Dridi, K.; Al-Ayed, A.S.; Hamdi, N. Chemical Composition and in vivo Efficacy of the Essential Oil of Mentha piperita L. in the Suppression of Crown Gall Disease on Tomato Plants. J. Oleo Sci. 2019, 68, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Grul’ová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogal’ová, Z.; Poráčová, B.; Camele, I.; De Feo, V. Thymol Chemotype Origanum vulgare L. Essential Oil as a Potential Selective Bio-Based Herbicide on Monocot Plant Species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef]
- Brentini Santiago, M.; da Silva Moraes, T.; Massuco, J.E.; Silva, L.O.; Lucarini, R.; da Silva, D.F.; Manzini Vieira, T.; Miller Crotti, A.E.; Gomes Martins, C.H. In vitro evaluation of essential oils for potential antibacterial effects against Xyllela fastidiosa. J. Phytopathol. 2018, 166, 790–798. [Google Scholar] [CrossRef]
- Patel, H.K.; Gomes, E.N.; Wu, Q.; Patel, N.; Kobayashi, D.Y.; Wang, C.; Simon, J.E. Volatile metabolites from new cultivars of catnip and oregano as potential antibacterial and insect repellent agents. Front. Plant Sci. 2023, 14, 1124305. [Google Scholar] [CrossRef]
- Todorović, B.; Potočnik, I.; Rekanović, E.; Stepanović, M.; Kostić, M.; Ristić, M.; Milijašević-Marčić, S. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mashrooms. J. Environ. Sci. Health 2016, 51, 832–839. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Abdelgaleil, S.A.M. Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Ind. Crops Prod. 2014, 52, 776–782. [Google Scholar] [CrossRef]
- Vasinauskiene, M.; Radušiene, J.; Zitikaite, I.; Surviliene, E. Antibacterial activities of essential oils from aromatic and medicinal plants against growth of phytopathogenic bacteria. Agron. Res. 2006, 4, 437–440. [Google Scholar]
- Camele, I.; Elshafie, H.S.; Caputo, L.; De Feo, V. Anti-quorum Sensing and Antimicrobial Effect of Mediterranean Plant Essential Oils against Phytopathogenic Bacteria. Front. Microbiol. 2019, 10, 2619. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, M.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Koraichi Ibnsouda, S. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Schaad, N.W. Initial identification of Common Genera. In Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed.; Schaad, N.W., Jones, J.B., Chun, W., Eds.; APS Press: St. Paul, MN, USA, 2001; p. 4. [Google Scholar]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol; American Society for Microbiology: Washington, DC, USA, 2009; pp. 1–23. [Google Scholar]
- Liu, Q.; Yang, J.; Ahmed, W.; Wan, X.; Wei, L.; Ji, G. Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. J. Microbiol. 2022, 60, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ubaldo, A.L.; Rivero-Perez, N.; Avila-Ramos, F.; Aquino-Torres, E.; Prieto-Méndez, J.; Hetta, H.F.; El-Saber Batiha, G.; Zaragoza-Bastida, A. Bactericidal Activity of Larrea tridentata Hydroalcoholic Extract against Phytopathogenic Bacteria. Agronomy 2021, 11, 957. [Google Scholar] [CrossRef]
- CLSI. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Wayne, P.A., Ed.; Approved Guideline. CLSI Document M26-A; Clinical Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- Miksusanti; Jenie, B.S.L.; Priosoeryanto, B.P.; Syarief, R.; Rekso, G.T. Mode of action temu kunci (Kaempferia pandurata) essential oil on E. coli k1.1 cell determined by leakage of material cell and salt tolerance assays. HAYATI J. Biosci. 2008, 15, 56–60. [Google Scholar] [CrossRef]
- Elcocks, E.R.; Spencer-Phillips, P.T.N.; Adukwu, E.C. Rapid bactericidal effect of cinnamon bark essential oil against Pseudomonas aeruginosa. J. Appl. Microbiol. 2019, 128, 1025–1037. [Google Scholar] [CrossRef]
- Andre, W.P.P.; Ribeiro, W.L.C.; Cavalcante, G.S.; dos Santos, J.M.L.; Macedo, I.T.F.; de Paula, H.C.B.; de Freitas, R.M.; de Morais, S.M.; de Melo, J.V.; Bevilaqua, M.L. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet. Parasitol. 2016, 218, 52–58. [Google Scholar] [CrossRef]
- Obanor, F.O.; Jaspers, M.V.; Jones, E.E.; Walter, M. Greenhouse and field evaluation of fungicides for control of olive leaf spot in New Zealand. Crop Prot. 2008, 27, 1335–1342. [Google Scholar] [CrossRef]
- Bogunia, M.; Makowski, M. Influence of Ionic Strength on Hydrophobic Interactions in Water: Dependence on Solute Size and Shape. J. Phys. Chem. B 2020, 124, 10326–10336. [Google Scholar] [CrossRef]
- Aires, A.; Mota, V.R.; Saavedra, M.J.; Monteiro, A.A.; Simões, M.; Rosa, E.A.S.; Bennett, R.N. Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J. Appl. Microbiol. 2009, 106, 2096–2105. [Google Scholar] [CrossRef] [PubMed]
- Mirik, M.; Aysan, Y.; Sahin, F. Characterization of Pseudomonas savastanoi pv. savastanoi strains isolated from several host plants in Turkey and report of fontanesia as a new host. J. Plant Pathol. 2011, 93, 263–270. [Google Scholar]
- Chiocchio, I.; Mandrone, M.; Tacchini, M.; Guerrini, A.; Poli, F. Phytochemical Profile and in vitro Bioactivities of Plant-Based By-Products in View of a Potential Reuse and Valorization. Plants 2023, 12, 795. [Google Scholar] [CrossRef] [PubMed]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 5, 15. [Google Scholar] [CrossRef]
- Moretti, C.; Vinatzer, B.A.; Onofri, A.; Valentini, F.; Buonaurio, R. Genetic and phenotypic diversity of Mediterranean populations of the olive knot pathogen, Pseudomonas savastanoi pv. savastanoi. Plant Pathol. 2017, 66, 595–605. [Google Scholar] [CrossRef]
- Bubonja, M.; Mesarić, M.; Miše, A.; Jakovac, M.; Abram, M. Utjecaj različitih čimbenika na rezultate testiranja osjetljivosti bakterija disk difuzijskom metodom. Medicina 2008, 44, 280–284. [Google Scholar]
- Bubonja Šonje, M.; Knežević, M.; Abram, M. Challenges to antimicrobial susceptibility testing of plant-derived polyphenolic compounds. Arh. Za Hig. Rada I Toksikol. 2020, 71, 300–311. [Google Scholar] [CrossRef]
- Eloff, J.N. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement. Altern. Med. 2019, 22, 106. [Google Scholar] [CrossRef]
- Cáceres, M.; Hidalgo, W.; Stashenko, E.; Torres, R.; Ortiz, C. Essential Oils of Aromatic Plants with Antibacterial, Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics 2020, 9, 147. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Kang, S.; Xu, H.; Lee, S.-G.; Baek, K.-H.; Kang, S.C. Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review. Plant Pathol. J. 2011, 27, 207–224. [Google Scholar] [CrossRef]
- de Almeida, J.M.; Crippa, B.L.; Martins Alencar de Souza, V.V.; Perez Alonso, V.P.; da Motta Santos Júnior, E.; Picone, C.F.S.; Prata, A.S.; Silva, N.C.C. Antimicrobial action of Oregano, Thyme, Clove, Cinnamon and Black pepper essential oils free and encapsulated against foodborne pathogens. Food Control 2023, 144, 109356. [Google Scholar] [CrossRef]
- Melchionna Albuquerque, P.; Gomes Azevedo, S.; Pereira de Andrade, C.; Corrêa de Souza D’Ambros, N.; Martins Pérez, M.T.; Manzato, L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers 2022, 14, 5495. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, F.; Schiavi, D.; Ciarroni, S.; Tagliavento, V.; De Stradis, A.; Vergaro, V.; Suranna, G.P.; Balestra, G.M.; Ciccarella, G. Thymol-Nanoparticles as Effective Biocides against the Quarantine Pathogen Xyllela fastidiosa. Nanomaterials 2023, 13, 1285. [Google Scholar] [CrossRef] [PubMed]
- Kröl, S.K.; Skalicka-Wożniak, K.; Kandefer-Szerszeń, M.; Stepulak, A. Aktywność biologiczna i farmakologiczna olejkóv eterycznych w leczeniu i profilaktyce chorób infekcyjnych. Postępy Hig. I Med. Doświadczalnej 2013, 67, 1000–1007. [Google Scholar]
- NCBI. 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=carvacrol+antibacterial (accessed on 27 September 2023).
- Aydin, E.; Türkez, H.; Sait Keles, M. The effect of carvacrol on healthy neurons and N2a cancer cells: Some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology 2014, 66, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Raveau, R.; Fontaine, J.; Lounès-Hadj, S.A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 2020, 9, 365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Košćak, L.; Lamovšek, J.; Đermić, E.; Godena, S. The Antibacterial Effect of Selected Essential Oils and Their Bioactive Constituents on Pseudomonas savastanoi pv. savastanoi: Phytotoxic Properties and Potential for Future Olive Disease Control. Microorganisms 2023, 11, 2735. https://doi.org/10.3390/microorganisms11112735
Košćak L, Lamovšek J, Đermić E, Godena S. The Antibacterial Effect of Selected Essential Oils and Their Bioactive Constituents on Pseudomonas savastanoi pv. savastanoi: Phytotoxic Properties and Potential for Future Olive Disease Control. Microorganisms. 2023; 11(11):2735. https://doi.org/10.3390/microorganisms11112735
Chicago/Turabian StyleKošćak, Laura, Janja Lamovšek, Edyta Đermić, and Sara Godena. 2023. "The Antibacterial Effect of Selected Essential Oils and Their Bioactive Constituents on Pseudomonas savastanoi pv. savastanoi: Phytotoxic Properties and Potential for Future Olive Disease Control" Microorganisms 11, no. 11: 2735. https://doi.org/10.3390/microorganisms11112735
APA StyleKošćak, L., Lamovšek, J., Đermić, E., & Godena, S. (2023). The Antibacterial Effect of Selected Essential Oils and Their Bioactive Constituents on Pseudomonas savastanoi pv. savastanoi: Phytotoxic Properties and Potential for Future Olive Disease Control. Microorganisms, 11(11), 2735. https://doi.org/10.3390/microorganisms11112735