TORCH Congenital Syndrome Infections in Central America’s Northern Triangle
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Toxoplasmosis
3.2. Other—Chagas Diseases
3.3. Other—Zika Virus
3.4. Other—Dengue Virus
3.5. Cytomegalovirus
3.6. Herpes Simplex Virus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCoshen, M. Barriers to Sexual and Reproductive Health Care Access in Central America with a Focus on Modern Contraception. Master’s Thesis, Augsburg University, Minneapolis, MN, USA, 2019. [Google Scholar]
- Paulson, K.R.; Kamath, A.M.; Alam, T.; Bienhoff, K.; Abady, G.G.; Abbas, J.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abd-Elsalam, S.M. Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: All-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019. Lancet 2021, 398, 870–905. [Google Scholar]
- Ortiz, D.I.; Piche-Ovares, M.; Romero-Vega, L.M.; Wagman, J.; Troyo, A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. Insects 2021, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, J.A.-O.; Perico, M.A.-O. [The impact of poverty and violence against women’s reproductive health and rights in El Salvador]. Cad Saude Publica 2020, 6, e00039119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenham, C.; Abagaro, C.; Arévalo, A.; Coast, E.; Corrêa, S.; Cuéllar, K.; Leone, T.; Valongueiro, S. Analysing the intersection between health emergencies and abortion during Zika in Brazil, El Salvador and Colombia. Soc. Sci. Med. 2021, 270, 113671. [Google Scholar] [CrossRef] [PubMed]
- MINSAL. Ley Nacer con Cariño para un Parto Respetado y Cuidado Cariñoso y Sensible para el Recién Nacido; El Salvador Asamblea Legislativa: San Salvador, El Salvador, 2021; Volume 17, p. 15. [Google Scholar]
- Liang, B.; Guida, J.P.; Costa, M.L.; Mysorekar, I.U. Host and viral mechanisms of congenital Zika syndrome. Virulence 2019, 10, 768–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaan, A.; Rajnik, M. Torch complex. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Warnecke, J.; Pollmann, M.; Borchardt-Lohölter, V.; Moreira-Soto, A.; Kaya, S.; Sener, A.G.; Gómez-Guzmán, E.; Figueroa-Hernández, L.; Li, W.; Li, F. Seroprevalences of antibodies against ToRCH infectious pathogens in women of childbearing age residing in Brazil, Mexico, Germany, Poland, Turkey and China. Epidemiol. Infect. 2020, 148, E271. [Google Scholar] [CrossRef] [PubMed]
- Megli, C.J.; Coyne, C.B. Infections at the maternal–fetal interface: An overview of pathogenesis and defence. Nat. Rev. Microbiol. 2022, 20, 67–82. [Google Scholar]
- Ambou Frutos, I.; Lastra Pérez, L.; Vilches Lescaille, D.; Osorio Illas, L.; Ramos López, M.; Rodríguez Ahuar, N. Manifestaciones clínicas asociadas al síndrome de TORCH. Rev. Cuba. Oftalmol. 2018, 31, 132–144. [Google Scholar]
- Antoniou, E.; Orovou, E.; Sarella, A.; Iliadou, M.; Rigas, N.; Palaska, E.; Iatrakis, G.; Dagla, M. Zika virus and the risk of developing microcephaly in infants: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 3806. [Google Scholar] [CrossRef] [PubMed]
- Neu, N.; Duchon, J.; Zachariah, P. TORCH infections. Clin. Perinatol. 2015, 42, 77–103. [Google Scholar] [CrossRef]
- PAHO. WHO Director-General Congratulates the Americas for Eliminating Rubella and Congenital Rubella Syndrome; Pan American Health Organization: Washington, DC, USA, 2015. [Google Scholar]
- PAHO. Number of Vaccine Preventable Disease (VPD) Cases in the Americas; Pan American Health Organization: Washington, DC, USA, 2022. [Google Scholar]
- UN. 2030 Agenda for Sustainable Development; United Nations: Geneva, Switzerland, 2022. [Google Scholar]
- Cardoso-dos-Santos, A.C.; Magalhães, V.S.; Medeiros-de-Souza, A.C.; Bremm, J.M.; Alves, R.F.S.; de Araujo, V.E.M.; Macario, E.M.; Oliveira, W.K.d.; de França, G.V.A. International collaboration networks for the surveillance of congenital anomalies: A narrative review. Epidemiol. Serviços Saúde 2020, 29, e2020093. [Google Scholar]
- Attias, M.; Teixeira, D.E.; Benchimol, M.; Vommaro, R.C.; Crepaldi, P.H.; De Souza, W. The life-cycle of Toxoplasma gondii reviewed using animations. Parasites Vectors 2020, 13, 588. [Google Scholar] [CrossRef] [PubMed]
- Paixão, E.S.; Teixeira, M.G.; Costa, M.d.C.N.; Barreto, M.L.; Rodrigues, L.C. Symptomatic Dengue during Pregnancy and Congenital Neurologic Malformations. Emerg. Infect. Dis. 2018, 24, 1748–1750. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, Y.A.; Read, J.S.; Byington, C.L.; Barnett, E.D.; Davies, H.; Edwards, K.M.; Lynfield, R.; Munoz, F.M.; Nolt, D.; Nyquist, A.-C. Diagnosis, treatment, and prevention of congenital toxoplasmosis in the United States. Pediatrics 2017, 139, e20163860. [Google Scholar] [CrossRef]
- Dubey, J.; Murata, F.; Cerqueira-Cézar, C.; Kwok, O.; Villena, I. Congenital toxoplasmosis in humans: An update of worldwide rate of congenital infections. Parasitology 2021, 148, 1406–1416. [Google Scholar] [CrossRef]
- Rostami, A.; Riahi, S.; Gamble, H.; Fakhri, Y.; Shiadeh, M.N.; Danesh, M.; Behniafar, H.; Paktinat, S.; Foroutan, M.; Mokdad, A. Global prevalence of latent toxoplasmosis in pregnant women: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 673–683. [Google Scholar] [CrossRef]
- Kota, A.S.; Shabbir, N. Congenital Toxoplasmosis. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2019. [Google Scholar]
- Rajendran, C.; Su, C.; Dubey, J.P. Molecular genotyping of Toxoplasma gondii from Central and South America revealed high diversity within and between populations. Infect. Genet. Evol. 2012, 12, 359–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, B.S.; Juhas, M.; Zhang, Y. Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis. Microbiol. Res. 2019, 227, 126293. [Google Scholar] [CrossRef]
- Shwab, E.K.; Zhu, X.-Q.; Majumdar, D.; Pena, H.F.; Gennari, S.M.; Dubey, J.P.; Su, C. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 2014, 141, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajapakse, S.; Weeratunga, P.; Rodrigo, C.; de Silva, N.L.; Fernando, S.D. Prophylaxis of human toxoplasmosis: A systematic review. Pathog. Glob. Health 2017, 111, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Ander, S.E.; Rudzki, E.N.; Arora, N.; Sadovsky, Y.; Coyne, C.B.; Boyle, J.P. Human placental syncytiotrophoblasts restrict Toxoplasma gondii attachment and replication and respond to infection by producing immunomodulatory chemokines. mBio 2018, 9, e01678-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Chávez, F.; Cañedo-Solares, I.; Ortiz-Alegría, L.B.; Flores-García, Y.; Figueroa-Damián, R.; Luna-Pastén, H.; Gómez-Toscano, V.; López-Candiani, C.; Arce-Estrada, G.E.; Bonilla-Ríos, C.A. A proinflammatory immune response might determine Toxoplasma gondii vertical transmission and severity of clinical features in congenitally infected newborns. Front. Immunol. 2020, 11, 390. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Sood, A.; Gupta, J. Toxoplasmosis in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 255, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Bigna, J.J.; Tochie, J.N.; Tounouga, D.N.; Bekolo, A.O.; Ymele, N.S.; Youda, E.L.; Sime, P.S.; Nansseu, J.R. Global, regional, and country seroprevalence of Toxoplasma gondii in pregnant women: A systematic review, modelling and meta-analysis. Sci. Rep. 2020, 10, 12102. [Google Scholar] [CrossRef]
- Chaudhry, S.A.; Gad, N.; Koren, G. Toxoplasmosis and pregnancy. Can. Fam. Physician 2014, 60, 334–336. [Google Scholar] [PubMed]
- Rostami, A.; Riahi, S.M.; Contopoulos-Ioannidis, D.G.; Gamble, H.R.; Fakhri, Y.; Shiadeh, M.N.; Foroutan, M.; Behniafar, H.; Taghipour, A.; Maldonado, Y.A.; et al. Acute Toxoplasma infection in pregnant women worldwide: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007807. [Google Scholar] [CrossRef] [Green Version]
- El Bissati, K.; Levigne, P.; Lykins, J.; Adlaoui, E.B.; Barkat, A.; Berraho, A.; Laboudi, M.; El Mansouri, B.; Ibrahimi, A.; Rhajaoui, M. Global initiative for congenital toxoplasmosis: An observational and international comparative clinical analysis. Emerg. Microbes Infect. 2018, 7, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binquet, C.; Lejeune, C.; Seror, V.; Peyron, F.; Bertaux, A.-C.; Scemama, O.; Quantin, C.; Béjean, S.; Stillwaggon, E.; Wallon, M. The cost-effectiveness of neonatal versus prenatal screening for congenital toxoplasmosis. PloS ONE 2019, 14, e0221709. [Google Scholar] [CrossRef] [Green Version]
- Abril Kirste, H.R. Determinación De La Presencia De Igm, De Toxoplasma Gondii, en Dos Grupos De Mujeres Con Y Sin Tenencia De Gatos, en El Municipio De San Juan Sacatepéquez, Mediante La Prueba De Quimio-luminiscencia; Repositorio Universidad de San Carlos de Guatemala: Ciudad de Guatemala, Guatemala, 2015. [Google Scholar]
- Estrada Sanchez, A.; Lemus Arias, G.; Portillo Valdez, D. Determinación Serológica De Anticuerpos Igg Contra Toxoplasma Gondii en Muejrs De Edad Fértil De 15–45 años Que Habitan en Varias Comunidades Del Departamento De Zacapa De Febrero a Julio Del Año 2011; Universidad de San Carlos de Guatemala, Repositorio Universidad de San Carlos de Guatemala: Ciudad de Guatemala, Guatemala, 2012. [Google Scholar]
- Aresti Alvarado, M.; Guerra Carías, E.; Pensamiento López, J. Tamizaje Neonatal De Toxoplasmosis Congénita. Estudio Piloto; Universidad de San Carlos de Guatemala, Repositorio Universidad de San Carlos de Guatemala: Ciudad de Guatemala, Guatemala, 2013. [Google Scholar]
- Ruiz Flores, A.I. Factores De Riesgo Asociados a Toxoplasmosis en Mujeres Embarazadas Atendidas en La Unidad De Control Prenatal Del Centro De Salud Luis Lazo, Ciudad De El Paraíso, Honduras, Primer Trimestre 2013. Master’s Thesis, Universidad Nacional Autonoma de Nicaragua, Nueva Segovia, Nicaragua, 2013. [Google Scholar]
- Pérez Mata, E.; González González, V.; Romero Medrano, P. Determinación De La Presencia De Inmunoglobulinas Igg E Igm en Infección Por Toxoplasma Gondii en Mujeres De 15 a 45 años Que Con-sultan La Unidad De Salud De Concepción Batres Departamento De Usulután, Periodo De Agosto a Septiembre De 2012; Universidad de El Salvador, Universidad de El Salvador Sitema Bibliotecario: San Salvador, El Salvador, 2012. [Google Scholar]
- Guevara Diaz, I.; Navarrete Chavez, M.; Lazo Cruz, J. Detección De Anticuerpos Anti Toxoplasma Gondii De Tipo Igm, en Hemocomponentes Provenientes De Donantes Mujeres en El Área De Banco De Sangre Del Hospital Nacional San Juan De Dios De San Miguel. Periodo: Agosto Y Septiembre De 2013; Universidad de El Salvador, Universidad de El Salvador Sistema Biblioteario Repositorio: San Salvador, El Salvador, 2013. [Google Scholar]
- Silva Garcia, R.C.; Rosales, W.; Martinez Romero, L. Perfil Clinico Y Epidemiológico De Lactantes Menores O Igual a 1 año Con Microcefalia Que Son Evaluados en La Consulta Externa De Neurología Del Hospital Nacional De Niños Benjamín Bloom De Enero De 2015 a Diciembre De 2016; Posgrado de especialidades medicas, Universidad de El Salvador: San Salvador, El Salvador, 2018. [Google Scholar]
- Rivas, H. Reportan muerte de niño por toxoplasmosis. Prensa. 2019. Available online: https://www.pressreader.com/el-salvador/la-prensa-grafica/20190507/282389810915466 (accessed on 10 October 2021).
- Kemmerling, U.; Osuna, A.; Schijman, A.G.; Truyens, C. Congenital Transmission of Trypanosoma cruzi: A review about the interactions between the parasite, the placenta, the maternal and the fetal/neonatal immune responses. Front. Microbiol. 2019, 10, 1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. Chagas disease in the United States: A public health approach. Clin. Microbiol. Rev. 2019, 33, e00023-19. [Google Scholar] [CrossRef] [PubMed]
- Rios, L.; Campos, E.E.; Menon, R.; Zago, M.P.; Garg, N.J. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165591. [Google Scholar] [CrossRef]
- Zingales, B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. 2018, 184, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Callejas-Hernández, F.; Gironès, N.; Fresno, M. Genome sequence of Trypanosoma cruzi strain Bug2148. Genome Announc. 2018, 6, e01497-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis-Cunha, J.L.; Rodrigues-Luiz, G.F.; Valdivia, H.O.; Baptista, R.P.; Mendes, T.A.; de Morais, G.L.; Guedes, R.; Macedo, A.M.; Bern, C.; Gilman, R.H. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genom. 2015, 16, 499. [Google Scholar] [CrossRef]
- Carlier, Y.; Truyens, C. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses. Acta Tropica 2015, 151, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Carrillo, I.; Libisch, G.; Juiz, N.; Schijman, A.; Robello, C.; Kemmerling, U. Host-parasite interaction: Changes in human placental gene expression induced by Trypanosoma cruzi. Parasites Vectors 2018, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Bustos, P.L.; Milduberger, N.; Volta, B.J.; Perrone, A.E.; Laucella, S.A.; Bua, J. Trypanosoma cruzi infection at the maternal-fetal interface: Implications of parasite load in the congenital transmission and challenges in the diagnosis of infected newborns. Front. Microbiol. 2019, 10, 1250. [Google Scholar] [CrossRef] [Green Version]
- Stillwaggon, E.; Perez-Zetune, V.; Bialek, S.R.; Montgomery, S.P. Congenital Chagas disease in the United States: Cost savings through maternal screening. Am. J. Trop. Med. Hyg. 2018, 98, 1733. [Google Scholar] [CrossRef] [Green Version]
- Sasagawa, E.; Aiga, H.; Soriano, E.Y.C.; Marroquín, B.L.C.; Ramírez, M.A.H.; de Aguilar, A.V.G.; Chévez, J.E.R.; Hernández, H.M.R.; Cedillos, R.A.; Misago, C. Mother-to-child transmission of chagas disease in El Salvador. Am. J. Trop. Med. Hyg. 2015, 93, 326–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irish, A.; Whitman, J.D.; Clark, E.H.; Marcus, R.; Bern, C. Updated Estimates and Mapping for Prevalence of Chagas Disease among Adults, United States. Emerg. Infect. Dis. 2022, 28, 1313. [Google Scholar] [CrossRef]
- Buekens, P.; Cafferata, M.L.; Alger, J.; Althabe, F.; Belizán, J.M.; Bustamante, N.; Carlier, Y.; Ciganda, A.; Del Cid, J.H.; Dumonteil, E. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: An observational prospective study. Am. J. Trop. Med. Hyg. 2018, 98, 478–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, J.K.; Yoshioka, K.; Hashimoto, K.; Caranci, A.; Gottdenker, N.; Monroy, C.; Saldaña, A.; Rodriguez, S.; Dorn, P.; Zúniga, C. Chagas Disease Epidemiology in Central America: An Update. Curr. Trop. Med. Rep. 2019, 6, 92–105. [Google Scholar] [CrossRef]
- Ramírez Gómez, A.; Florez Aquino, E. Determinación de la frecuencia de la enfermedad de Chagas en mujeres en edad fértil, en dos aldeas del municipio de San Pedro Pinula, Jalapa, Guatemala; Universidad De San Carlos De Guatemala, Repositorio Universidad de San Carlos Guatemala: Ciudad de Guatemala, Guatemala, 2014. [Google Scholar]
- Juarez, J.G.; Pennington, P.M.; Bryan, J.P.; Klein, R.E.; Beard, C.B.; Berganza, E.; Rizzo, N.; Cordon-Rosales, C. A decade of vector control activities: Progress and limitations of Chagas disease prevention in a region of Guatemala with persistent Triatoma dimidiata infestation. PLoS Negl. Trop. Dis. 2018, 12, e0006896. [Google Scholar] [CrossRef]
- Alonzo Solano, J.; López Sigüenza, M. Prevalencia De La Enfermedad De Chagas en Mujeres en Edad Fértil en La Aldea Las Palmas De Olopa, Chiquimula; Universidad de San Carlos de Guatemala Repositorio Universidad de San Carlos de Guatemala: Ciudad de Guatemala, Guatemala, 2020. [Google Scholar]
- Valladares Herrera, C. Seroprevalencia De Infección Por Trypanosoma Cruzi en Mujeres Embarazadas en 12 Departa-mentos De Honduras, 2013–2015; Universidad Nacional Autónoma De Nicaragua: Nueva Segovia, Nicaragua, 2015. [Google Scholar]
- Romero, L.; Arita, I.; Martínez, A.; Alas, C. Enfermedad de Chagas Congénito: Presentación de caso clínico. Acta Pediátrica Hondureña 2019, 10, 1006–1010. [Google Scholar] [CrossRef]
- Pérez Mata, B.; Franco Márquez, V.; Flores Moreno, I. Incidencia De La Enfermedad De Chagas en Mujeres Embarazadas De 10 a 49 años De Las Unidades Comunitarias De Salud Familiar: Ciudad Barrios (San Miguel), Chilanga (Morazán) Y Cantón El Piche (La Unión) en El Periodo De Sep-tiembre a Noviembre De 2012; Universidad de El Salvador, Repositorio Universidad de El Salvador: San Salvador, El Salvador, 2013. [Google Scholar]
- Ventura Urbino, F.; Caledonio Blanco, E.; Arya Bonilla, D. Enfermedad De Chagas en Mujeres en El Tercer Trimestre De Gestacion Y Su Transmision Transplacentaria, Que Asisten Al Control Prenatal De La Unidad Comunitaria De Salud Familiar De Conchagua Del Departamento De La Union Periodo De Julio—Agosto 2012; Universidad de El Salvador, Repositorio Universidad de El Salvador: San Salvador, El Salvador, 2012. [Google Scholar]
- MINSAL. El Salvador Asamblea Legislativa. Lineamientos Técnicos Para La Atención De La Mujer en El Período Preconcepcional, Prenatal, Parto, Puerperio Y Al Recién Nacido. Servicios en Ssr Para Atención De Emergencias O Desastres; El Salvador Asamblea Legislativa: San Salvador, El Salvador, 2021. [Google Scholar]
- Hui, Y.; Wu, Z.; Qin, Z.; Zhu, L.; Liang, J.; Li, X.; Fu, H.; Feng, S.; Yu, J.; He, X. Micro-droplet digital polymerase chain reaction and real-time quantitative polymerase chain reaction technologies provide highly sensitive and accurate detection of Zika Virus. Virol. Sin. 2018, 33, 270–277. [Google Scholar] [CrossRef]
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.V.; da Fonseca, E.B.; Ribeiro, E.M.; Ventura, L.O.; Neto, N.N.; Arena, J.F. Congenital zika syndrome: Characterizing the pattern of anomalies for pediatric healthcare providers. JAMA Pediatr. 2017, 171, 288. [Google Scholar] [CrossRef] [Green Version]
- Vouga, M.; Chiu, Y.-C.; Pomar, L.; de Meyer, S.V.; Masmejan, S.; Genton, B.; Musso, D.; Baud, D.; Stojanov, M. Dengue, Zika and chikungunya during pregnancy: Pre-and post-travel advice and clinical management. J. Travel Med. 2019, 26, taz077. [Google Scholar] [CrossRef]
- Ades, A.; Thorne, C.; Soriano-Arandes, A.; Peckham, C.S.; Brown, D.W.; Lang, D.; Morris, J.G.; Christie, C.D.; Giaquinto, C. Researching Zika in pregnancy: Lessons for global preparedness. Lancet Infect. Dis. 2020, 20, e61–e68. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Watber, P.; Santos, C.N.O.; Ribeiro, D.R.; Alves, J.C.; Fonseca, A.B.; Bispo, A.J.; Porto, R.L.; Bokea, K.; De Jesus, A.M.R. Strong CD4 T cell responses to Zika virus antigens in a cohort of dengue virus immune mothers of congenital zika virus syndrome infants. Front. Immunol. 2020, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Plourde, A.R.; Bloch, E.M. A literature review of Zika virus. Emerg. Infect. Dis. 2016, 22, 1185. [Google Scholar] [CrossRef] [Green Version]
- Steele, R.W. Zika virus: An explosive pandemic and a new TORCH agent. Clin. Pediatr. 2016, 55, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.A.; Mier-y-Teran-Romero, L.; Reefhuis, J.; Gilboa, S.M.; Hills, S.L. Zika and the risk of microcephaly. N. Engl. J. Med. 2016, 375, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ortoni, G.E.; Rocha, A.S.; Veríssimo, T.C.R.A.; Moreira, M.I.C.; Ribeiro, M.F.M.; Prudente, C.O.M. Factors related to the quality of life of mothers of children with Congenital Zika Virus Syndrome. Rev. Gaúcha Enferm. 2022, 43, e20200374. [Google Scholar] [CrossRef] [PubMed]
- PAHO. Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015–2018: Cumulative Cases; PAHO: Washington, DC, USA, 2018. [Google Scholar]
- PAHO. Cases of Zika Virus Disease by Country or Territory Cumulative Cases; Pan American Health Organization: Washington, DC, USA, 2022. [Google Scholar]
- Ikejezie, J.; Shapiro, C.N.; Kim, J.; Chiu, M.; Almiron, M.; Ugarte, C.; Espinal, M.A.; Aldighieri, S. Zika virus transmission—Region of the Americas, May 15, 2015–December 15, 2016. Morb. Mortal. Wkly. Rep. 2017, 66, 329. [Google Scholar] [CrossRef]
- Paixao, E.S.; Harron, K.; Campbell, O.; Teixeira, M.G.; Costa, M.d.C.N.; Barreto, M.L.; Rodrigues, L.C. Dengue in pregnancy and maternal mortality: A cohort analysis using routine data. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Jamdar, S.F.; Alalowi, M.; Al Beaiji, S.M.A.A. Dengue virus: A global human threat: Review of literature. J. Int. Soc. Prev. Community Dent. 2016, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machain-Williams, C.; Raga, E.; Baak-Baak, C.M.; Kiem, S.; Blitvich, B.J.; Ramos, C. Maternal, fetal, and neonatal outcomes in pregnant dengue patients in Mexico. BioMed Res. Int. 2018, 2018, 9643083. [Google Scholar] [CrossRef]
- WHO. Dengue vaccine: WHO position paper–September 2018–Note de synthèse de l’OMS sur le vaccin contre la dengue–septembre 2018. Wkly. Epidemiol. Rec. Relev. Épidémiol. Hebd. 2018, 93, 457–476. [Google Scholar]
- Paz-Bailey, G.; Adams, L.; Wong, J.M.; Poehling, K.A.; Chen, W.H.; McNally, V.; Atmar, R.L.; Waterman, S.H. Dengue vaccine: Recommendations of the advisory committee on immunization practices, United States, 2021. MMWR Recomm. Rep. 2021, 70, 1. [Google Scholar] [CrossRef]
- Joyce, A.L.; Alvarez, F.S.; Hernandez, E. Forest Coverage and Socioeconomic Factors Associated with Dengue in El Salvador, 2011–2013. Vector-Borne Zoonotic Dis. 2021, 21, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Sabeena, S.P.; Varma, M.; Arunkumar, G. Current understanding of the pathogenesis of dengue virus infection. Curr. Microbiol. 2021, 78, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Arragain, L.; Dupont-Rouzeyrol, M.; O’Connor, O.; Sigur, N.; Grangeon, J.-P.; Huguon, E.; Dechanet, C.; Cazorla, C.; Gourinat, A.-C.; Descloux, E. Vertical transmission of dengue virus in the peripartum period and viral kinetics in newborns and breast milk: New data. J. Pediatr. Infect. Dis. Soc. 2017, 6, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basurko, C.; Everhard, S.; Matheus, S.; Restrepo, M.; Hildéral, H.; Lambert, V.; Boukhari, R.; Duvernois, J.-P.; Favre, A.; Valmy, L. A prospective matched study on symptomatic dengue in pregnancy. PLoS ONE 2018, 13, e0202005. [Google Scholar] [CrossRef] [Green Version]
- Paixão, E.S.; Teixeira, M.G.; Maria da Conceição, N.C.; Rodrigues, L.C. Dengue during pregnancy and adverse fetal outcomes: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.F.; Lopes, V.G.S.; Brasil, P.; Coelho, J.; Muniz, A.G.; Nogueira, R.M.R. Perinatal transmission of dengue: A report of 7 cases. J. Pediatr. 2013, 163, 1514–1516. [Google Scholar] [CrossRef]
- Nascimento, L.B.d.; Siqueira, C.M.; Coelho, G.E.; Siqueira, J.B. Dengue in pregnant women: Characterization of cases in Brazil, 2007–2015. Epidemiol. Serviços Saúde 2017, 26, 433–442. [Google Scholar] [CrossRef]
- Ranjan, R.; Kumar, K.; Nagar, N. Congenital dengue infection: Are we missing the diagnosis? Pediatr. Infect. Dis. 2016, 8, 120–123. [Google Scholar] [CrossRef]
- Swaminathan, A.; Kirupanandhan, S.; Rathnavelu, E. Challenges in a unique presentation of congenital dengue with congenital heart disease. BMJ Case Rep. CP 2019, 12, e228855. [Google Scholar] [CrossRef]
- Kagan, K.O.; Hamprecht, K. Cytomegalovirus infection in pregnancy. Arch. Gynecol. Obstet. 2017, 296, 15–26. [Google Scholar] [CrossRef]
- Gugliesi, F.; Coscia, A.; Griffante, G.; Galitska, G.; Pasquero, S.; Albano, C.; Biolatti, M. Where do we stand after decades of studying human cytomegalovirus? Microorganisms 2020, 8, 685. [Google Scholar] [CrossRef] [PubMed]
- Prince, H.E.; Lapé-Nixon, M. Role of cytomegalovirus (CMV) IgG avidity testing in diagnosing primary CMV infection during pregnancy. Clin. Vaccine Immunol. 2014, 21, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sezgin, E.; An, P.; Winkler, C.A. Host genetics of cytomegalovirus pathogenesis. Front. Genet. 2019, 10, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leruez-Ville, M.; Foulon, I.; Pass, R.; Ville, Y. Cytomegalovirus infection during pregnancy: State of the science. Am. J. Obstet. Gynecol. 2020, 223, 330–349. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; Boppana, S.B. Congenital cytomegalovirus infection. Semin. Perinatol 2018, 42, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Lanzieri, T.M.; Dollard, S.C.; Bialek, S.R.; Grosse, S.D. Systematic review of the birth prevalence of congenital cytomegalovirus infection in developing countries. Int. J. Infect. Dis. 2014, 22, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Lanzieri, T.M.; Caviness, A.C.; Blum, P.; Demmler-Harrison, G. Progressive, long-term hearing loss in congenital CMV disease after ganciclovir therapy. J. Pediatr. Infect. Dis. Soc. 2022, 11, 16–23. [Google Scholar] [CrossRef]
- Adler, S.P. Prevention of Maternal–Fetal Transmission of Cytomegalovirus. eBioMedicine 2015, 2, 1027–1028. [Google Scholar] [CrossRef] [Green Version]
- Hammad, W.A.B.; Konje, J.C. Herpes simplex virus infection in pregnancy–An update. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 259, 38–45. [Google Scholar] [CrossRef]
- Looker, K.J.; Magaret, A.S.; Turner, K.M.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PloS ONE 2015, 10, e114989. [Google Scholar] [CrossRef] [Green Version]
- Boppana, S.B.; Britt, W.J.; Fowler, K.; Hutto, S.C.; James, S.H.; Kimberlin, D.W.; Poole, C.; Ross, S.A.; Whitley, R.J. Pathogenesis of non-Zika congenital viral infections. J. Infect. Dis. 2017, 216, S912–S918. [Google Scholar] [CrossRef] [Green Version]
- James, S.H.; Sheffield, J.S.; Kimberlin, D.W. Mother-to-child transmission of herpes simplex virus. J. Pediatr. Infect. Dis. Soc. 2014, 3, S19–S23. [Google Scholar] [CrossRef] [Green Version]
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.; Vickerman, P.; Newman, L.M.; Gottlieb, S.L. First estimates of the global and regional incidence of neonatal herpes infection. Lancet Glob. Health 2017, 5, e300–e309. [Google Scholar] [CrossRef] [Green Version]
- Paulino, N.A.; Vázquez, M.S.; Bolúmar, F. Indigenous language and inequitable maternal health care, Guatemala, Mexico, Peru and the Plurinational State of Bolivia. Bull. World Health Organ. 2019, 97, 59. [Google Scholar] [CrossRef]
- Budiman, A.; Tamir, C.; Morea, L.; Noe-Bustamante, L. Statistical Portrait of the Foreign-Born Population in the United States; Pew Research Center: Washington, DC, USA, 2020. [Google Scholar]
- Lemus-Way, M.C.; Johansson, H. Strengths and resilience of migrant women in transit: An analysis of the narratives of Central American women in irregular transit through Mexico towards the USA. J. Int. Migr. Integr. 2020, 21, 745–763. [Google Scholar] [CrossRef]
- United Nations. Femicide or Feminicide. Available online: https://oig.cepal.org/en/indicators/femicide-or-feminicide (accessed on 27 November 2022).
Symptoms | Symptom Category | TOXO | CHAG | ZIKV | DENV | RUBV | CMV | HSV |
---|---|---|---|---|---|---|---|---|
Fever | Acute/Inflammatory condition | X | ||||||
Jaundice | Acute/Inflammatory condition | X | X | X | ||||
Meningitis | Acute/Inflammatory condition | X | X | X | ||||
Rash | Acute/Inflammatory condition | X | X | X | X | |||
Anemia | Blood disorder | X | X | X | ||||
Thrombocytopenia | Blood disorder | X | X | X | ||||
Hydrocephalus | CNS disorder | X | X | X | X | |||
Intracranial calcifications/brain malformations | CNS disorder | X | X | X | X | X | ||
Microcephaly | CNS disorder | X | X | X | X | |||
Ventriculomegaly | CNS disorder | X | X | X | X | |||
Low birthweight/IUGR | Growth/gestation impacts | X | X | X | X | X | X | |
Preterm birth | Growth/gestation impacts | X | X | |||||
Stillbirth/fetal loss/neonatal death | Growth/gestation impacts | X | X | X | X | |||
Chorioretinitis/ocular disease | Long-term sequelae/CNS disorder | X | X | X | X | X | ||
Developmental delay | Long-term sequelae/CNS disorder | X | X | X | ||||
Hearing loss | Long-term sequelae/Organ system conditions | X | X | X | X | |||
Hepatosplenomegaly | Conditions of organs/tissues | X | X | X | X | X | X | |
Hydrops | Conditions of organs/tissues | X | X | |||||
Cardiomyopathy/cardiaclesions/myocarditis | Conditions of organs/tissues | X | X | X | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynn, M.K.; Aquino, M.S.R.; Self, S.C.W.; Kanyangarara, M.; Campbell, B.A.; Nolan, M.S. TORCH Congenital Syndrome Infections in Central America’s Northern Triangle. Microorganisms 2023, 11, 257. https://doi.org/10.3390/microorganisms11020257
Lynn MK, Aquino MSR, Self SCW, Kanyangarara M, Campbell BA, Nolan MS. TORCH Congenital Syndrome Infections in Central America’s Northern Triangle. Microorganisms. 2023; 11(2):257. https://doi.org/10.3390/microorganisms11020257
Chicago/Turabian StyleLynn, Mary K., M. Stanley Rodriguez Aquino, Stella C. W. Self, Mufaro Kanyangarara, Berry A. Campbell, and Melissa S. Nolan. 2023. "TORCH Congenital Syndrome Infections in Central America’s Northern Triangle" Microorganisms 11, no. 2: 257. https://doi.org/10.3390/microorganisms11020257
APA StyleLynn, M. K., Aquino, M. S. R., Self, S. C. W., Kanyangarara, M., Campbell, B. A., & Nolan, M. S. (2023). TORCH Congenital Syndrome Infections in Central America’s Northern Triangle. Microorganisms, 11(2), 257. https://doi.org/10.3390/microorganisms11020257