Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids, Primers, and Culture Conditions
2.2. Electrotransformation
2.3. Plasmid Curing Using sucB Gene
2.4. Genome Reduction Using Cre/loxP System
2.4.1. Vector Construction
2.4.2. Genome-Reduction Strategy
3. Results
3.1. Isolation of Plasmid-Cured Strains
3.2. Development of Large Fragment Deletion (Genome-Reduction) Strategy Using the Cre/lox System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikeda, Y.; Kishimoto, M.; Shintani, M.; Yoshida, N. Oligotrophic Gene Expression in Rhodococcus erythropolis N9T-4 under Various Nutrient Conditions. Microorganisms 2022, 10, 1725. [Google Scholar] [CrossRef] [PubMed]
- Goethals, K.; Vereecke, D.; Jaziri, M.; Van Montagu, M.; Holsters, M. Leafy gall formation by Rhodococcus fascians. Annu. Rev. Phytopathol. 2001, 39, 27–52. [Google Scholar] [CrossRef]
- Meijer, W.G.; Prescott, J.F. Rhodococcus equi. Vet. Res. 2004, 35, 383–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, M.; Nishi, S.; Fukuoka, T.; Kitamoto, D.; Watsuji, T.O.; Nagano, Y.; Yabuki, A.; Nakagawa, S.; Hatada, Y.; Horiuchi, J. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar. Biotechnol. 2014, 16, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Roslee, A.F.A.; Zakaria, N.N.; Convey, P.; Zulkharnain, A.; Lee, G.L.Y.; Gomez-Fuentes, C.; Ahmad, S.A. Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ507. Extremophiles 2020, 24, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.J.; Kulakov, L.A.; Allen, C.C.R. Biodegradation and Rhodococcus—Masters of catabolic versatility. Curr. Opin. Biotechnol. 2005, 16, 282–290. [Google Scholar] [CrossRef]
- Maeda, M.; Chung, S.Y.; Song, E.; Kudo, T. Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis Ta421, isolated from a termite ecosystem. Appl. Environ. Microbiol. 1995, 61, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Dabrock, B.; Kesseler, M.; Averhoff, B.; Gottschalk, G. Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 1994, 60, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, W.; Kimura, N.; Kamagata, Y. A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J. Bacteriol. 2004, 186, 4894–4902. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, W.; Tamura, T. Three types of antibiotics produced from Rhodococcus erythropolis strains. Microb. Environ. 2008, 23, 167–171. [Google Scholar] [CrossRef]
- Iwatsuki, M.; Uchida, R.; Takakusagi, Y.; Matsumoto, A.; Jiang, C.L.; Takahashi, Y.; Arai, M.; Kobayashi, S.; Matsumoto, M.; Inokoshi, J.; et al. Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J. Antibiot. 2007, 60, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Harunari, E.; Bando, M.; Igarashi, Y. Rausuquinone, a non-glycosylated pluramycin-class antibiotic from Rhodococcus. J. Antibiot. 2022, 75, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.F. Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug. Int. J. Syst. Evol. Microbiol. 2005, 55, 1575–1579. [Google Scholar] [CrossRef] [Green Version]
- Hackbusch, S.; Noirungsee, N.; Viamonte, J.; Sun, X.; Bubenheim, P.; Kostka, J.E.; Muller, R.; Liese, A. Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the gulf of Mexico. Mar. Pollut. Bull. 2020, 150, 110683. [Google Scholar] [CrossRef]
- Ocampo-Sosa, A.A.; Lewis, D.A.; Navas, J.; Quigley, F.; Callejo, R.; Scortti, M.; Leadon, D.P.; Fogarty, U.; Vazquez-Boland, J.A. Molecular epidemiology of Rhodococcus equi based on traA, vapA, and vapB virulence plasmid markers. J. Infect. Dis. 2007, 196, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilford, P.E. Fasciation of sweet peas caused by Phytomonas fascians n. sp. J. Agric. Res. 1936, 53, 0383–0394. [Google Scholar]
- Watanabe, K.; Shimizu, H.; Aihara, H.; Nakamura, R.; Suzuki, K.; Komagata, K. Isolation and identification of cholesterol-degrading Rhodococcus strains from food of animal origin and their cholesterol oxidase activities. J. Gen. Appl. Microbiol. 1986, 32, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Holder, J.W.; Ulrich, J.C.; DeBono, A.C.; Godfrey, P.A.; Desjardins, C.A.; Zucker, J.; Zeng, Q.; Leach, A.L.; Ghiviriga, I.; Dancel, C.; et al. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet. 2011, 7, e1002219. [Google Scholar] [CrossRef] [Green Version]
- Benning, S.; Brugnone, N.; Siani, R.; Kublik, S.; Schloter, M.; Rad, V. Complete genome sequences of two Rhodococcus sp. strains with large and linear chromosomes, isolated from apple rhizosphere. Microbiol. Resour. Announc. 2021, 10, e0015921. [Google Scholar] [CrossRef]
- McLeod, M.P.; Warren, R.L.; Hsiao, W.W.L.; Araki, N.; Myhre, M.; Fernandes, C.; Miyazawa, D.; Wong, W.; Lillquist, A.L.; Wang, D.; et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA 2006, 103, 15582–15587. [Google Scholar] [CrossRef] [Green Version]
- Rhodococcus opacus B4, Complete Sequence. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NC_012522.1 (accessed on 30 December 2022).
- Stamler, R.A.; Vereecke, D.; Zhang, Y.; Schilkey, F.; Devitt, N.; Randall, J.J. Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus Isolates PBTS 1 and PBTS 2. Genome Announc. 2016, 4, e00495-16. [Google Scholar] [CrossRef] [PubMed]
- Rhodococcus rhodochrous Strain EP4 Chromosome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP032221.1 (accessed on 30 December 2022).
- Prescottella equi Strain DSSKP-R-001 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP027793.1 (accessed on 30 December 2022).
- Rhodococcus ruber Strain C1 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP044211.1 (accessed on 30 December 2022).
- Rhodococcus triatomae Strain DSM 44893 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP048813.1 (accessed on 30 December 2022).
- Rhodococcus globerulus Strain D757 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP079698.1 (accessed on 30 December 2022).
- Kitagawa, W.; Hata, M. Complete genome sequence of Rhodococcus erythropolis JCM 2895, an antibiotic protein-producing strain. Microbiol. Resour. Announc. 2022, 11, e0068222. [Google Scholar] [CrossRef] [PubMed]
- Kirby, R. Chromosome diversity and similarity within the Actinomycetales. FEMS Microbiol. Lett. 2011, 319, 1–10. [Google Scholar] [CrossRef]
- Chen, C.W.; Huang, C.H.; Lee, H.H.; Tsai, H.H.; Kirby, R. Once the circle has been broken: Dynamics and evolution of Streptomyces chromosomes. Trends Genet. 2002, 18, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Crespi, M.; Messens, E.; Caplan, A.B.; Vanmontagu, M.; Desomer, J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 1992, 11, 795–804. [Google Scholar] [CrossRef]
- Stes, E.; Francis, I.; Pertry, I.; Dolzblasz, A.; Depuydt, S.; Vereecke, D. The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol. Lett. 2013, 342, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, S.; Kobayashi, H.; Masai, E.; Fukuda, M. Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 2001, 67, 2021–2028. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, W.; Miyauchi, K.; Masai, E.; Fukuda, M. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J. Bacteriol. 2001, 183, 6598–6606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosono, S.; Maeda, M.; Fuji, F.; Arai, H.; Kudo, T. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl. Environ. Microbiol. 1997, 63, 3282–3285. [Google Scholar] [CrossRef] [Green Version]
- Stecker, C.; Johann, A.; Herzberg, C.; Averhoff, B.; Gottschalk, G. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J. Bacteriol. 2003, 185, 5269–5274. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, W.; Tamura, T. A quinoline antibiotic from Rhodococcus erythropolis JCM 6824. J. Antibiot. 2008, 61, 680–682. [Google Scholar] [CrossRef]
- Kitagawa, W.; Hata, M.; Sekizuka, T.; Kuroda, M.; Ishikawa, J. Draft genome sequence of Rhodococcus erythropolis JCM 6824, an aurachin RE antibiotic producer. Genome Announ. 2014, 2, e01026-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, W.; Mitsuhashi, S.; Hata, M.; Tamura, T. Identification of a novel bacteriocin-like protein and structural gene from Rhodococcus erythropolis JCM 2895, using suppression-subtractive hybridization. J. Antibiot. 2018, 71, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Van der Geize, R.; Hessels, G.I.; van Gerwen, R.; van der Meijden, P.; Dijkhuizen, L. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol. Lett. 2001, 205, 197–202. [Google Scholar] [CrossRef]
- Nakashima, N.; Tamura, T. A novel system for expressing recombinant proteins over a wide temperature range from 4 to 35 degrees C. Biotechnol. Bioeng. 2004, 86, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Mitani, Y.; Tamura, T. Construction of random transposition mutagenesis system in Rhodococcus erythropolis using IS1415. J. Biotechnol. 2006, 121, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kitagawa, W.; Kumagai, T.; Tajima, N.; Nishimiya, Y.; Tamano, K.; Yasutake, Y.; Tamura, T.; Kameda, T. Developing a codon optimization method for improved expression of recombinant proteins in actinobacteria. Sci. Rep. 2019, 9, 8338. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, N.; Tamura, T. Isolation and characterization of a rolling-circle-type plasmid form Rhodococcus erythropolis and application of the plasmid to multiple-recombinant-protein expression. Appl. Environ. Microbiol. 2004, 70, 5557–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallam, K.I.; Tamura, N.; Tamura, T. A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis. Gene 2007, 386, 173–182. [Google Scholar] [CrossRef]
- Shao, Z.; Dick, W.A.; Behki, R.M. An improved Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett. Appl. Microbiol. 1995, 21, 261–266. [Google Scholar] [CrossRef]
- Fukuda, M.; Shimizu, S.; Okita, N.; Seto, M.; Masai, E. Structural alteration of linear plasmids encoding the genes for polychlorinated biphenyl degradation in Rhodococcus strain RHA1. Antonie Van Leeuwenhoek 1998, 74, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Redenbach, M.; Scheel, J.; Schmidt, U. Chromosome topology and genome size of selected actinomycetes species. Antonie Van Leeuwenhoek 2000, 78, 227–235. [Google Scholar] [CrossRef]
- Takai, S.; Sugawara, T.; Watanabe, Y.; Sasaki, Y.; Tsubaki, S.; Sekizaki, T. Effect of growth temperature on maintenance of virulent Rhodococcus equi. Vet. Microbiol. 1994, 39, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Molinatto, G.; Franzil, L.; Steels, S.; Puopolo, G.; Pertot, I.; Ongena, M. Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 developmental traits and lipopeptide production. Front. Microbiol. 2017, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.K.; Dubey, A.K. Metabolic burden as reflected by maintenance coefficient of recombinant Escherichia coli overexpressing target gene. Biotechnol. Lett. 1995, 17, 1155–1160. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, S.A.; Seo, S.O.; Li, L.; Han, N.S. Plasmid curing resulted in improved heterologous gene expression in Leuconostoc citreum EFEL2700. Lett. Appl. Microbiol. 2019, 68, 430–436. [Google Scholar] [CrossRef]
- Cappelletti, M.; Presentato, A.; Piacenza, E.; Firrincieli, A.; Turner, R.J.; Zannoni, D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl. Microbiol. Biotechnol. 2020, 104, 8567–8594. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol. Adv. 2021, 49, 107748. [Google Scholar] [CrossRef]
- Kitagawa, W.; Takami, S.; Miyauchi, K.; Masai, E.; Kamagata, Y.; Tiedje, J.M.; Fukuda, M. Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J. Bacteriol. 2002, 184, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Schafer, A.; Tauch, A.; Jager, W.; Kalinowski, J.; Thierbach, G.; Puhler, A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145, 69–73. [Google Scholar] [CrossRef]
- Suzuki, N.; Nonaka, H.; Tsuge, Y.; Inui, M.; Yukawa, H. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl. Environ. Microbiol. 2005, 71, 8472–8480. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.C.; Cohen, S.N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 1978, 134, 1141–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, N.; Tamura, T. Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res. 2009, 37, e103. [Google Scholar] [CrossRef] [PubMed]
- Takai, S.; Sekizaki, T.; Ozawa, T.; Sugawara, T.; Watanabe, Y.; Tsubaki, S. Association between a large plasmid and 15- to 17-kilodalton antigens in virulent Rhodococcus equi. Infect. Immun. 1991, 59, 4056–4060. [Google Scholar] [CrossRef] [Green Version]
- Gasson, M.J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 1983, 154, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazlurrahman; Batra, M.; Pandey, J.; Suri, C.R.; Jain, R.K. Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil. Lett. Appl. Microbiol. 2009, 49, 721–729. [Google Scholar] [CrossRef]
- Coleman, N.V.; Spain, J.C.; Duxbury, T. Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J. Appl. Microbiol. 2002, 93, 463–472. [Google Scholar] [CrossRef]
- Dodge, A.G.; Wackett, L.P.; Sadowsky, M.J. Plasmid localization and organization of melamine degradation genes in Rhodococcus sp. strain Mel. Appl. Environ. Microbiol. 2012, 78, 1397–1403. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, W.; Ozaki, T.; Nishioka, T.; Yasutake, Y.; Hata, M.; Nishiyama, M.; Kuzuyama, T.; Tamura, T. Cloning and heterologous expression of the aurachin RE biosynthesis gene cluster afford a new cytochrome P450 for quinoline N-hydroxylation. ChemBioChem 2013, 14, 1085–1093. [Google Scholar] [CrossRef]
- Komatsu, M.; Uchiyama, T.; Omura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Van Duyne, G.D. Cre-loxP biochemistry. Methods 2002, 28, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Ohtsubo, Y.; Ikeda-Ohtsubo, W.; Nagata, Y.; Tsuda, M. GenomeMatcher: A graphical user interface for DNA sequence comparison. BMC Bioinform. 2008, 9, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, L.; Lazos, O.; Haines, A.; Thomas, C. An efficient stress-free strategy to displace stable bacterial plasmids. Biotechniques 2010, 48, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, M.F.; Quandt, J.; O’Connell, M.P.; Pühler, A. Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Gene 1989, 78, 111–120. [Google Scholar] [CrossRef] [PubMed]
Strain | Deletion Size (bp) | Total Deletion Size (bp) | Genome Size (bp) | Description |
---|---|---|---|---|
R. erythropolis JCM 2895 | 0 | 0 | 6,773,716 | Wild-type, 1 chromosome and 4 plasmids |
R0901 | 79,600 | 79,600 | 6,694,116 | pR09C01 cured strain of JCM 2895 |
R0902 | 227,989 | 307,589 | 6,466,127 | pR09L01 cured strain of R0901 |
R0903 | 5420 | 313,009 | 6,460,707 | pREC01 cured strain of R0902 |
R0904 | 5444 | 318,453 | 6,455,263 | pREC02 cured strain of R0903 |
R0905 | 117,555 | 436,008 | 6,337,754 | T1 reduction strain of R0904 |
R0906 | 6428 | 442,436 | 6,331,332 | T2 reduction strain of R0905 |
R0907 | 20,023 | 462,459 | 6,311,355 | T3 reduction strain of R0906 |
R0908 | 45,236 | 507,695 | 6,266,177 | T4 reduction strain of R0907 |
R0909 | 21,194 | 528,889 | 6,245,042 | T5 reduction strain of R0908 |
R0910 | 45,770 | 574,659 | 6,199,331 | T6 reduction strain of R0909 |
R0911 | 27,820 | 602,479 | 6,171,581 | T7 reduction strain of R0910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitagawa, W.; Hata, M. Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis. Microorganisms 2023, 11, 268. https://doi.org/10.3390/microorganisms11020268
Kitagawa W, Hata M. Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis. Microorganisms. 2023; 11(2):268. https://doi.org/10.3390/microorganisms11020268
Chicago/Turabian StyleKitagawa, Wataru, and Miyako Hata. 2023. "Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis" Microorganisms 11, no. 2: 268. https://doi.org/10.3390/microorganisms11020268