Expanding the Bacterial Diversity of the Female Urinary Microbiome: Description of Eight New Corynebacterium Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Sample Collection
2.2. Culture Conditions and Strain Isolation
2.3. Phylogenetic Analysis
2.4. Comparative Genomic Analysis
2.5. Phenotypic and Chemotaxonomic Analysis
3. Results
3.1. MALDI-TOF MS Identification
3.2. Phylogenetic Analyses Based on 16S rRNA and rpoB Genes
3.3. Genomic Analysis
3.4. Phenotypic Characterization
3.5. Chemotaxonomic Characterizations
3.6. Description of Corynebacterium sp. nov.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, K.; Neumann, R. Atlas und Grundriss der Bakteriologie und Lehrbuch der Speziellen Bakteriologischen Diagnostik; J.F. Lehmann: Munich, Germany, 1896; pp. 1–448. [Google Scholar]
- Wei, Y.; Fang, J.; Xu, Y.; Zhao, W.; Cao, J. Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int. J. Syst. Evol. Microbiol. 2018, 68, 1474–1478. [Google Scholar] [CrossRef]
- Fudou, R.; Jojima, Y.; Seto, A.; Yamada, K.; Kimura, E.; Nakamatsu, T.; Hiraishi, A.; Yamanaka, S. Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetable. Int. J. Syst. Evol. Microbiol. 2002, 52, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- McMullen, A.R.; Anderson, N.; Wallace, M.A.; Shupe, A.; Burnham, C.D. When good bugs go bad: Epidemiology and antimicrobial resistance profiles of Corynebacterium striatum, an emerging multidrug-resistant, opportunistic pathogen. Antimicrob. Agents Chemother. 2017, 61, e01111-17. [Google Scholar] [CrossRef] [PubMed]
- Kalt, F.; Schulthess, B.; Sidler, F.; Herren, S.; Fucentese, S.F.; Zingg, P.O.; Berli, M.; Zinkernagel, A.S.; Zbinden, R.; Achermann, Y. Corynebacterium species rarely cause orthopedic infections. J. Clin. Microbiol. 2018, 56, e01200-18. [Google Scholar] [CrossRef]
- Bernard, K. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012, 50, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Oliveira, L.C.; Aburjaile, F.; Benevides, L.; Tiwari, S.; Jamal, S.B.; Silva, A.; Figueiredo, H.C.P.; Ghosh, P.; Portela, R.W.; et al. Insight of genus Corynebacterium: Ascertaining the role of pathogenic and non-pathogenic species. Front. Microbiol. 2017, 8, 1937. [Google Scholar] [CrossRef]
- Neugent, M.; Hulyalkar, N.V.; Nguyen, V.H.; Zimmern, P.E.; De Nisco, N.J. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio 2020, 11, e00218-20. [Google Scholar] [CrossRef]
- Ksiezarek, M.; Ugarcina-Perovic, S.; Rocha, J.; Grosso, F.; Peixe, L. Long-term stability of the urogenital microbiota of asymptomatic European women. BMC Microbiol. 2021, 21, 64. [Google Scholar] [CrossRef]
- Ugarcina Perovic, S.; Ksiezarek, M.; Rocha, J.; Cappelli, E.A.; Sousa, M.; Ribeiro, T.G.; Grosso, F.; Peixe, L. Urinary Microbiome of Reproductive-Age Asymptomatic European Women. Microbiol. Spectr. 2022, 10, e0130822. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, N.; Balachandran, A.; Krska, L.; Peppiatt-Wildman, C.; Wildman, S.; Duckett, J. A case-controlled study examining the bladder microbiome in women with overactive bladder (OAB) and healthy controls. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 214, 31–35. [Google Scholar] [CrossRef]
- Perovic, S.U.; Ksiezarek, M.; Rocha, J.; Vale, L.; Silva, C.; Dinis, P.; Antunes-Lopes, T.; Peixe, L. 77-Time to change microbiological approach to overactive bladder. Eur. Urol. Suppl. 2019, 18, e103. [Google Scholar] [CrossRef]
- Homma, Y.; Yoshida, M.; Seki, N.; Yokoyama, O.; Kakizaki, H.; Gotoh, M.; Yamanishi, T.; Yamaguchi, O.; Takeda, M.; Nishizawa, O. Symptom assessment tool for overactive bladder syndrome—Overactive symptom score. Urology 2006, 68, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Khamis, A.; Raoult, D.; La Scola, B. rpoB gene sequencing for identification of Corynebacterium species. J. Clin. Microbiol. 2004, 42, 3925–3931. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahii, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Haft, D.H.; DiCuccio, M.; Badretdin, A.; Brover, V.; Chetvernin, V.; O’Neill, K.; Li, W.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; et al. RefSeq: An update on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018, 46, D851–D860. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Glöckner, F.O.; Peplies, J. JspeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, A.H.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Sasser, M. Idenfitication of Bacteria by Gas Chromatography of Cellular Fatty Acids; MIDI Technical Note 101; MIDI: Newark, DE, USA, 2006; pp. 1–6. [Google Scholar]
- Vieira, S.; Huber, K.J.; Neumann-Schaal, M.; Geppert, A.; Luckner, M.; Wanner, G.; Overmann, J. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int. J. Syst. Evol. Microbiol. 2021, 71, 4631. [Google Scholar] [CrossRef]
- Vilchèze, C.; Jacobs, W.R. Isolation and analysis of Mycobacterium tuberculosis mycolic acids. Curr. Protoc. Microbiol. 2007, 10, 10A.3. [Google Scholar] [CrossRef]
- Jaén-Luchoro, D.; Al-Shaer, S.; Piñeiro-Iglesias, B.; Gonzales-Siles, L.; Cardew, S.; Jensie-Markopolous, S.; Ohlén, M.; Inganäs, E.; Neumann-Schaal, M.; Wolf, J.; et al. Corynebacterium genitalium sp. nov., nom. rev. and Corynebacterium pseudogenitalium sp. nov., nom. rev., two old species of the genus Corynebacterium described from clinical and environmental samples. Res. Microbiol. 2022, 174, 103987. [Google Scholar] [CrossRef]
- Bouam, A.; Armstrong, N.; Levasseur, A.; Drancourt, M. Mycobacterium terramassiliense, Mycobacterium rhizamassiliense and Mycobacterium numidiamassiliense sp. nov., three new Mycobacterium simiae complex species cultured from plant roots. Sci. Rep. 2018, 8, 9309. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Tindall, B.J.; Sikorski, J.; Smibert, R.M.; Kreig, N.R. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd ed.; ASM Press: Washington, DC, USA; pp. 330–393.
- Schumann, P.; Kalensee, F.; Cao, J.; Criscuolo, A.; Clermont, D.; Köhler, J.M.; Meier-Kolthoff, J.P.; Neumann-Schaal, M.; Tindall, B.J.; Pukall, R. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int. J. Syst. Evol. Microbiol. 2021, 71, 4769. [Google Scholar] [CrossRef]
- Riegel, P.; De Briel, D.; Prévost, G.; Jehl, F.; Monteil, H.; Minck, R. Taxonomic study of Corynebcterium group ANF-1 strains: Proposal do Corynebacterium afermentans sp. nov. containing the subspecies C. afermentans subsp. afermentans subsp. nov. and C. afermentans subsp. lipophilum subsp. nov. Int. J. Syst. Bacteriol. 1993, 43, 287–292. [Google Scholar] [CrossRef]
- Riegel, P.; Creti, R.; Mattei, R.; Nieri, A.; von Hunolstein, C. Isolation of Corynebacterium tuscanie sp. nov. from blood cultures of a patient with endocarditis. J. Clin. Microbiol. 2006, 44, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Jackman, P.J.H.; Pitcher, D.G.; Pelczynska, S.; Borman, P. Classification of corynebacterial associated with endocarditis (Group JK) as Corynebacterium jeikeium sp. nov. Syst. Appl. Microbiol. 1987, 9, 83–90. [Google Scholar] [CrossRef]
- Feurer, C.; Clermont, D.; Bimet, F.; Candréa, A.; Jackson, M.; Glaser, P.; Bizet, C.; Dauga, C. Taxonomic characterization of nine strains isolated from clinical and environmental specimens, and proposal of Corynebacterium tuberculostearicum sp. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 1055–1061. [Google Scholar] [CrossRef]
- Yassin, A.F.; Steiner, U.; Ludwig, W. Corynebacterium aurimucosum sp. nov. and emended description of Corynebacterium minutissimum Collins and Jones (1983). Int. J. Syst. Evol. Microbiol. 2002, 52, 1001–1005. [Google Scholar] [CrossRef]
- Zasada, A.A.; Mosiej, E. Contemporary microbiology and identification of Corynebacterium spp. causing infections in human. Lett. Appl. Microbiol. 2018, 66, 472–483. [Google Scholar] [CrossRef]
- Luo, Q.; Chen, Q.; Feng, J.; Zhang, T.; Luo, L.; Chen, C.; Liu, X.; Xu, N.; Qu, P. Classification of 27 Corynebacterium kroppenstedtii-like isolates associated with mastitis in China and descriptions of C. parakroppenstedtii sp. nov. and C. pseudokroppenstedtii sp. nov. Microbiol Spectr. 2022, 10, e01372-21. [Google Scholar] [CrossRef] [PubMed]
- Dangel, A.; Berger, A.; Rau, J.; Eisenberg, T.; Kämpfer, P.; Margos, G.; Contzen, M.; Busse, H.-J.; Konrad, R.; Peters, M.; et al. Corynebacterium silvaticum sp. nov., a unique group of NTTB corynebacterial in wild boar and roe deer. Int. J. Syst. Evol. Microbiol. 2020, 70, 3614–3624. [Google Scholar] [CrossRef]
- Khamis, A.; Raoult, D.; La Scola, B. Comparasion between rpoB and 16S rRNA gene sequencing molecular identification of 168 clinical isolates of Corynebacterium. J. Clin. Microbiol. 2005, 43, 1934–1936. [Google Scholar] [CrossRef]
- Boxberger, M.; Antezack, A.; Magnien, S.; Cassir, N.; La Scola, B. Complete genome and description of Corynebacterium incognita sp. nov.: A new bacterium within the Corynebacterium genus. New Microbes New Infec. 2021, 42, 100893. [Google Scholar] [CrossRef]
- Dazas, M.; Badell, E.; Carmi-Leroy, A.; Criscuolo, A.; Brisse, S. Taxonomic status of Corynebacterium diphtheriae biovar Belfant and proposal of Corynebacterium belfantii sp. nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 3826–3831. [Google Scholar] [CrossRef]
- Ramasamy, D.; Mishra, A.K.; Lagier, J.-C.; Padhmanabhan, R.; Rossi, M.; Sentausa, E.; Raoult, D.; Fournier, P.-E. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 2, 384–391. [Google Scholar] [CrossRef]
- Jaén-Luchoro, D.; Siles, L.G.; Karisson, R.; Svensson-Stadler, L.; Molin, K.; Cardew, S.; Jensie-Markopolous, S.; Ohlén, M.; Inganãs, E.; Skovbjerg, S.; et al. Corynebacterium sanguinis sp. nov., a clinical and environmental associated Corynebacterium. Sist. Appl. Microbiol. 2020, 43, 126039. [Google Scholar] [CrossRef]
- Bernard, K.A.; Funke, G. Corynebacterium. In Bergey’s Manual of Systematic of Archaea and Bacteria; Whitman, W.B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B., Dedysh, S., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2015; pp. 1–70. [Google Scholar] [CrossRef]
- Horn, K.J.; Jaberi Vivar, A.C.; Arenas, V.; Andani, S.; Janoff, E.N.; Clark, S.E. Corynebacterium Species Inhibit Streptococcus pneumoniae Colonization and Infection of the Mouse Airway. Front. Microbiol. 2022, 12, 804935. [Google Scholar] [CrossRef] [PubMed]
- Cogen, A.L.; Nizet, V.; Gallo, R.L. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [Google Scholar] [CrossRef]
- Gladysheva, I.V.; Cherkasov, S.V.; Khlopko, Y.A.; Plotnikov, A.O. Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. Microorganisms 2022, 10, 249. [Google Scholar] [CrossRef]
- Bomar, L.; Brugger, S.D.; Yost, B.H.; Davies, S.S.; Lemon, K.P. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016, 7, e01725-15. [Google Scholar] [CrossRef] [PubMed]
- Hardy, B.L.; Bansal, G.; Hewlett, K.H.; Arora, A.; Schaffer, S.D.; Kamau, E.; Bennett, J.W.; Merrell, D.S. Antimicrobial Activity of Clinically Isolated Bacterial Species Against Staphylococcus aureus. Front. Microbiol. 2020, 10, 2977. [Google Scholar] [CrossRef] [PubMed]
Strain | Species | Number of Contigs | Genome Size (Mbp) | G + C (%) | tRNA | Proteins | CDS | Genomic Accession Number | Closest Related Corynebacterium Species | |
---|---|---|---|---|---|---|---|---|---|---|
ANI (%) | dDDH (%) | |||||||||
c8Ua_144 | Corynebacterium lehmanniae | 81 | 2.5 | 65.4 | 47 | 2349 | 2373 | JAKMUR000000000 | C. afermentans DSM 44280T | |
90.3 | 42.6 | |||||||||
c8Ua_172 | Corynebacterium meitnerae | 50 | 2.3 | 61.0 | 44 | 2078 | 2101 | JAKMUS000000000 | C. tuscaniense CCUG 51321T | |
84.7 | 28.6 | |||||||||
c8Ua_174 | Corynebacterium evansiae | 28 | 2.2 | 62.9 | 50 | 1922 | 1999 | JAKMUT000000000 | C. jeikeium ATCC 43734T | |
91.4 | 44.2 | |||||||||
c8Ua_181 | Corynebacterium curieae | 30 | 2.5 | 58.5 | 51 | 2282 | 2316 | JAKMUU000000000 | C. tuberculostearicum DSM 44922T | |
87.8 | 34.4 | |||||||||
c9Ua_112 | Corynebacterium macclintockiae | 35 | 2.2 | 62.0 | 56 | 1931 | 1974 | JAKMUV000000000 | C. jeikeium ATCC 43734T | |
85.6 | 29.7 | |||||||||
c19Ua_109 | Corynebacterium hessae | 32 | 2.6 | 61.0 | 51 | 2431 | 2465 | JAKMUW000000000 | C. aurimucosum DSM 44532T | |
88.4 | 34.7 | |||||||||
c19Ua_121 | Corynebacterium marquesiae | 34 | 2.5 | 59.5 | 50 | 2274 | 2309 | JAKMUY000000000 | C. tuberculostearicum DSM 44922T | |
94.0 | 55.6 | |||||||||
c21Ua_68 | Corynebacterium yonathiae | 54 | 2.4 | 58.7 | 50 | 2232 | 2270 | JAKMUZ000000000 | C. tuberculostearicum DSM 44922T | |
88.7 | 36.4 |
Characteristic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conditions for growth: | |||||||||||||
Temperature (°C) | 20–37 | 15–42 | 15–42 | 25–42 | 25–42 | 15–42 | 15–42 | 15–42 | nd | nd | nd | nd | nd |
(NaCl) (%) | 5–8 | 5–7 | 5–9 | 5–9 | 5–7.5 | 5–8 | 5–9 | 5–8 | 5–6.5 | nd | nd | nd | nd |
Nitrate reduction | − | − | − | − | − | − | − | − | − | − | − | v | − |
Esculin hydrolysis | − | − | − | − | − | − | − | − | − | − | − | − | − |
Gelatin hydrolysis | − | − | − | − | − | − | − | − | − | − | − | v | − |
Fermentation of: | |||||||||||||
D-glucose | − | − | w | w | − | + | − | − | − | + | + | + | + |
D-mannose | − | − | − | w | − | + | − | − | − | nd | − | − | − |
D-ribose | − | − | − | w | − | − | − | − | − | − | nd | + | − |
D-maltose | − | − | − | − | − | + | − | − | − | + | v | v | + |
D-saccharose | − | − | − | − | − | − | − | − | − | − | − | v | + |
Enzyme activity: | |||||||||||||
Urease | − | − | − | − | − | − | − | − | − | − | − | − | − |
Pyrazinamidase | − | − | w | − | − | + | − | − | + | + | + | + | + |
α-Glucosidase | − | − | − | − | − | − | − | − | − | − | − | − | − |
ß-Glucosidase | − | − | − | − | − | − | − | − | − | nd | nd | − | − |
ß-Glucuronidase | − | − | − | − | − | − | − | − | nd | − | − | nd | − |
Alkaline phosphatase | − | + | + | + | + | − | − | − | + | + | + | v | + |
Leucine arylamidase | − | − | − | − | − | − | − | − | nd | nd | nd | v | + |
Fatty Acid (%) 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | - | - | - | - | - | - | - | - | - | nd | 1.0 | - | 1.2 |
C15:0 | - | - | - | - | - | - | - | - | - | nd | - | 3.0 | - |
C16:0 | 11.4 | 26.7 | 18.9 | 11.1 | 17.9 | 15.3 | 16.9 | 13.7 | + (ni) | nd | 27.0 | 28.0 | 55.5 |
C17:0 | - | - | - | - | - | - | - | - | - | nd | 2.0 | 2.0 | - |
C18:0 | 1.1 | 16.1 | 1.6 | 1.5 | tr | 2.0 | 1.6 | 1.4 | - | nd | 16.0 | 14.0 | 3.2 |
C18:1 ω9c | 74.1 | 37.9 | 58.8 | 74.8 | 61.4 | 68.8 | 66.1 | 74.4 | + (ni) | nd | 28.0 | 26.0 | 32.6 |
10-Methyl-C18:0 | 6.5 | - | - | 5.6 | - | 4.7 | 5.0 | 4.1 | - | nd | - | 2.0 | 6.5 |
C16:1 ω9c | - | - | 13.8 | - | 12.9 | - | - | - | - | nd | - | - | - |
C18:2 ω6,9c | - | 13.5 | - | - | - | - | - | - | Nd | nd | - | - | - |
C18:1 ω7c | 4.6 | 2.6 | 3.3 | 4.3 | 2.7 | 4.4 | 3.8 | 4.2 | - | nd | - | - | - |
C16:1 ω7c | - | - | 2.4 | 0.9 | 3.0 | 0.8 | 0.8 | 1.0 | - | nd | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappelli, E.A.; Ksiezarek, M.; Wolf, J.; Neumann-Schaal, M.; Ribeiro, T.G.; Peixe, L. Expanding the Bacterial Diversity of the Female Urinary Microbiome: Description of Eight New Corynebacterium Species. Microorganisms 2023, 11, 388. https://doi.org/10.3390/microorganisms11020388
Cappelli EA, Ksiezarek M, Wolf J, Neumann-Schaal M, Ribeiro TG, Peixe L. Expanding the Bacterial Diversity of the Female Urinary Microbiome: Description of Eight New Corynebacterium Species. Microorganisms. 2023; 11(2):388. https://doi.org/10.3390/microorganisms11020388
Chicago/Turabian StyleCappelli, Elisabete Alves, Magdalena Ksiezarek, Jacqueline Wolf, Meina Neumann-Schaal, Teresa Gonçalves Ribeiro, and Luísa Peixe. 2023. "Expanding the Bacterial Diversity of the Female Urinary Microbiome: Description of Eight New Corynebacterium Species" Microorganisms 11, no. 2: 388. https://doi.org/10.3390/microorganisms11020388
APA StyleCappelli, E. A., Ksiezarek, M., Wolf, J., Neumann-Schaal, M., Ribeiro, T. G., & Peixe, L. (2023). Expanding the Bacterial Diversity of the Female Urinary Microbiome: Description of Eight New Corynebacterium Species. Microorganisms, 11(2), 388. https://doi.org/10.3390/microorganisms11020388