Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sample Collection, and Chemical Analysis
2.2. Extraction, High-Throughput Sequencing, and Bioinformatics Analysis
2.3. Statistical Analysis
3. Results
3.1. Diversity of Bacteria in the Ningxia Section of the Yellow River
3.2. Community Composition and Dynamics of Bacteria in the Two Habitats
3.3. The Major Environmental Drivers of Bacterial Community
3.4. Ecological Assembly Mechanism of Bacterial Community in Different Habitats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humphries, P.; Keckeis, H.; Finlayson, B. The River Wave Concept: Integrating River Ecosystem Models. Bioscience 2014, 64, 870–882. [Google Scholar] [CrossRef]
- Savio, D.; Sinclair, L.; Ijaz, U.Z.; Parajka, J.; Reischer, G.H.; Stadler, P.; Blaschke, A.P.; Blöschl, G.; Mach, R.L.; Kirschner, A.K.T.; et al. Bacterial diversity along a 2600 km river continuum. Environ. Microbiol. 2015, 17, 4994–5007. [Google Scholar] [CrossRef] [Green Version]
- Décamps, H. River networks as biodiversity hotlines. Comptes Rendus Biol. 2011, 334, 420–434. [Google Scholar] [CrossRef]
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zou, L.; Zhang, S.; Xie, S. Comparison of bacterioplankton communities in three heavily polluted streams in China. Biomed. Environ. Sci. 2011, 24, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, Y.; Huang, X.; Ni, P.; Wu, Y.; Deng, Y.; Zhan, A. Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. Environ. Pollut. 2019, 245, 290–299. [Google Scholar] [CrossRef]
- Ghosh, A.; Debnath, M.; Bhadury, P. Datasets of surface water microbial populations from two anthropogenically impacted sites on the Bhagirathi-Hooghly River. Data Brief 2020, 29, 105371. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Zhang, F.; Zhu, K.; Yang, C.; Xiang, Q.; Lei, B. Characteristics of planktonic and sediment bacterial communities in a heavily polluted urban river. Peerj 2021, 9, e10866. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Madsen, E.L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 2011, 22, 456–464. [Google Scholar] [CrossRef]
- Pin, L.; Eiler, A.; Fazi, S.; Friberg, N. Two different approaches of microbial community structure characterization in riverine epilithic biofilms under multiple stressors conditions: Developing molecular indicators. Mol. Ecol. Resour. 2021, 21, 1200–1215. [Google Scholar] [CrossRef]
- Findlay, S. Stream microbial ecology. J. N. Am. Benthol. Soc. 2010, 29, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Escalas, A.; Hale, L.; Voordeckers, J.W.; Yang, Y.; Firestone, M.K.; Alvarez-Cohen, L.; Zhou, J. Microbial functional diversity: From concepts to applications. Ecol. Evol. 2019, 9, 12000–12016. [Google Scholar] [CrossRef] [Green Version]
- Raes, J.; Bork, P. Molecular eco-systems biology: Towards an understanding of community function. Nat. Rev. Microbiol. 2008, 6, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Staley, C.; Unno, T.; Gould, T.J.; Jarvis, B.; Phillips, J.; Cotner, J.B.; Sadowsky, M.J. Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J. Appl. Microbiol. 2013, 115, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, Y.; Shen, Y.; Wang, C.; Wang, P.; Wang, L.; Niu, L.; Zhang, W. Vertical distribution and assemblages of microbial communities and their potential effects on sulfur metabolism in a black-odor urban river. J. Environ. Manag. 2019, 235, 368–376. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.F.V.; Margis, R. The Source of the River as a Nursery for Microbial Diversity. PLoS ONE 2015, 10, e0120608. [Google Scholar] [CrossRef]
- Yellow River Conservancy Commission (YRCC). Yellow River Sediment Bulletin. 2021. Available online: http://yrcc.gov.cn/nishagonggao/ (accessed on 20 October 2022).
- Domingues, R.B.; Barbosa, A.B.; Sommer, U.; Galvao, H.M. Environmental drivers of phytoplankton in a turbid estuary: Nutrient vs. light limitation. Eur. J. Phycol. 2011, 46, 165–166. [Google Scholar]
- Lu, Z.; Gan, J. Controls of seasonal variability of phytoplankton blooms in the Pearl River Estuary. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 117, 86–96. [Google Scholar] [CrossRef]
- Gascón, S.; Brucet, S.; Sala, J.; Boix, D.; Quintana, X.D. Comparison of the effects of hydrological disturbance events on benthos and plankton salt marsh communities. Estuar. Coast. Shelf Sci. 2007, 74, 419–428. [Google Scholar] [CrossRef]
- Olomukoro, J.; Dirisu, A.; Edema, C. Effects of ecosystem disturbance on zoobenthos of a river in Western Nigeria. J. Aquat. Sci. 2016, 31, 143. [Google Scholar] [CrossRef]
- Xia, N.; Xia, X.; Liu, T.; Hu, L.; Zhu, B.; Zhang, X.; Dong, J. Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world. J. Soils Sediments 2014, 14, 1894–1904. [Google Scholar] [CrossRef]
- He, H.; Pan, B.; Yu, K.; Zheng, X.; Wu, Y.; Xiao, L.; Zhao, G.; Zhu, P. Determinants of bacterioplankton structures in the typically turbid Weihe River and its clear tributaries from the northern foot of the Qinling Mountains. Ecol. Indic. 2021, 121, 107168. [Google Scholar] [CrossRef]
- Wei, G.; Li, M.; Li, F.; Li, H.; Gao, Z. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Appl. Microbiol. Biotechnol. 2016, 100, 9683–9697. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Huang, H.; Mou, L.; Ru, J.; Zhao, J.; Xiao, S. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci. Total Environ. 2018, 637–638, 1400–1412. [Google Scholar] [CrossRef]
- Zhao, M.M.; Wang, S.-M.; Chen, Y.-P.; Wu, J.-H.; Xue, L.-G.; Fan, T.T. Pollution status of the Yellow River tributaries in middle and lower reaches. Sci. Total Environ. 2020, 722, 137861. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, R.; Qiu, X.; Wan, Y.; Lee, L. Structural Diversity of Bacterial Communities and Its Relation to Environmental Factors in the Surface Sediments from Main Stream of Qingshui River. Water 2022, 14, 3356. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2021. R Package Version 0.7.0. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 15 August 2022).
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, P.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2020. R Package Version 2.5-7. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 August 2022).
- Gweon, H.S.; Bowes, M.J.; Moorhouse, H.L.; Oliver, A.E.; Bailey, M.J.; Acreman, M.C.; Read, D.S. Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environ. Microbiol. 2020, 23, 484–498. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Forward selection of explanatory variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Harell, F.E., Jr. Hmisc: Harrell Miscellaneous. R Package Version 4.6-0. 2021. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 17 August 2022).
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Peng, F.; Gao, X.; Xiao, P.; Logares, R.; Jeppesen, E.; Ren, K.; Xue, Y.; Yang, J. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 2021, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Konopka, A.E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 2015, 6, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Sloan, W.T.; Lunn, M.; Woodcock, S.; Head, I.M.; Nee, S.; Curtis, T.P. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 2006, 8, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ren, K.; Isabwe, A.; Chen, H.; Liu, M.; Yang, J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 2019, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 11436–11440. [Google Scholar] [CrossRef] [Green Version]
- Zeglin, L.H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 2015, 6, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glassman, S.I.; Martiny, J.B.H. Broadscale Ecological Patterns Are Robust to Use of Exact Sequence Variants versus Operational Taxonomic Units. Msphere 2018, 3, e00148-18. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Pan, B.; He, H.; Zhao, G.; Hou, Y.; Zhu, P. Assembly processes and co-occurrence relationships in the bacterioplankton communities of a large river system. Ecol. Indic. 2021, 126, 107643. [Google Scholar] [CrossRef]
- Newton, R.J.; Jones, S.E.; Eiler, A.; McMahon, K.D.; Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 2011, 75, 14–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yang, Y.; Zhao, L.; Li, Y.; Xie, S.; Liu, Y. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl. Microbiol. Biotechnol. 2015, 99, 3291–3302. [Google Scholar] [CrossRef] [PubMed]
- Saccà, M.L.; Ferrero, V.E.V.; Loos, R.; Di Lenola, M.; Tavazzi, S.; Grenni, P.; Ademollo, N.; Patrolecco, L.; Huggett, J.; Caracciolo, A.B.; et al. Chemical mixtures and fluorescence in situ hybridization analysis of natural microbial community in the Tiber river. Sci. Total Environ. 2019, 673, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, Z.; Du, B.; Wang, G.; Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 2012, 112, 79–89. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, L.; Cheng, Y.; Yang, Y.; Sun, Y.; Liu, Q. Control of cyanobacterial blooms in different polyculture patterns of filter feeders and effects of these patterns on water quality and microbial community in aquacultural ponds. Aquaculture 2021, 542, 736913. [Google Scholar] [CrossRef]
- Zhang, L.; Delgado-Baquerizo, M.; Shi, Y.; Liu, X.; Yang, Y.; Chu, H. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems. Water Res. 2021, 198, 117139. [Google Scholar] [CrossRef]
- Cardinale, B.J. Biodiversity improves water quality through niche partitioning. Nature 2011, 472, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Qu, X.; Peng, W.; Yu, Y.; Zhang, M. Nutrients Drive the Structures of Bacterial Communities in Sediments and Surface Waters in the River-Lake System of Poyang Lake. Water 2019, 11, 930. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Wu, X.; Wang, X.; Wei, Q.; Ma, S.; Sun, G.; Zhang, H.; Wang, L.; Dou, H.; Zhang, H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci. Total Environ. 2022, 805, 150294. [Google Scholar] [CrossRef]
- Dai, Y.; Hein, T.; Preiner, S.; Reitsema, R.E.; Schoelynck, J. Influence of water temperature and water depth on macrophyte–bacterioplankton interaction in a groundwater-fed river. Environ. Sci. Pollut. Res. 2020, 27, 13166–13179. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.; Wang, J.; He, Y.; Yang, S.; Chen, Y.; Liu, T.; Fu, J.; Chen, Q.; Ni, J. Rare biosphere regulates the planktonic and sedimentary bacteria by disparate ecological processes in a large source water reservoir. Water Res. 2022, 216, 118296. [Google Scholar] [CrossRef] [PubMed]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhong, M.; Li, X.; Lu, W.; Li, J. River bacterial community structure and co-occurrence patterns under the influence of different domestic sewage types. J. Environ. Manag. 2020, 266, 110590. [Google Scholar] [CrossRef]
- Wu, B.; Wang, P.; Devlin, A.; Chen, L.; Xia, Y.; Zhang, H.; Nie, M.; Ding, M. Spatial and Temporal Distribution of Bacterioplankton Molecular Ecological Networks in the Yuan River under Different Human Activity Intensity. Microorganisms 2021, 9, 1532. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, X.; He, N.; Zhang, J.; Wu, J.; Liu, C. Shifts in microbial communities and networks are correlated with the soil ionome in a kiwifruit orchard under different fertilization regimes. Appl. Soil Ecol. 2020, 149, 103517. [Google Scholar] [CrossRef]
- Chun, S.-J.; Cui, Y.; Baek, S.H.; Ahn, C.-Y.; Oh, H.-M. Seasonal succession of microbes in different size-fractions and their modular structures determined by both macro- and micro-environmental filtering in dynamic coastal waters. Sci. Total Environ. 2021, 784, 147046. [Google Scholar] [CrossRef]
- Logue, J.B.; Lindström, E.S. Biogeography of Bacterioplankton in Inland Waters. Freshw. Rev. 2008, 1, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Schiaffino, M.R.; Unrein, F.; Gasol, J.M.; Massana, R.; Balagué, V.; Izaguirre, I. Bacterial community structure in a latitudinal gradient of lakes: The roles of spatial versus environmental factors. Freshw. Biol. 2011, 56, 1973–1991. [Google Scholar] [CrossRef]
- Shao, K.; Yao, X.; Wu, Z.; Jiang, X.; Hu, Y.; Tang, X.; Xu, Q.; Gao, G. The bacterial community composition and its environmental drivers in the rivers around eutrophic Chaohu Lake, China. BMC Microbiol. 2021, 21, 179. [Google Scholar] [CrossRef]
- Deng, R.; Chen, X.; Qiu, L.-P.; Chen, J.-Z.; Meng, S.-L. Bacterial Community Structure and Diversity in the Aqueous Environment of Shihou Lake and its Relationship with Environmental Factors. Indian J. Microbiol. 2021, 61, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Dortch, Q.; Packard, T.T. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep. Sea Res. Part A. Oceanogr. Res. Pap. 1989, 36, 223–240. [Google Scholar] [CrossRef]
- Wu, J.; Yang, H.; Pancost, R.D.; Naafs, B.D.A.; Qian, S.; Dang, X.; Sun, H.; Pei, H.; Wang, R.; Zhao, S.; et al. Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions. Chem. Geol. 2021, 579, 120348. [Google Scholar] [CrossRef]
- Chen, Q.; Fan, J.; Ming, H.; Su, J.; Wang, Y.; Wang, B. Effects of environmental factors on denitrifying bacteria and functional genes in sediments of Bohai Sea, China. Mar. Pollut. Bull. 2020, 160, 111621. [Google Scholar] [CrossRef]
- Wu, S.; Li, R.; Xie, S.; Shi, C. Depth-related change of sulfate-reducing bacteria community in mangrove sediments: The influence of heavy metal contamination. Mar. Pollut. Bull. 2019, 140, 443–450. [Google Scholar] [CrossRef]
- Chase, J.M. Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science 2010, 328, 1388–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Gao, Y.; Zhang, W.; Wang, C.; Wang, P.; Niu, L.; Wu, H. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci. Total Environ. 2019, 690, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ning, D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol. Mol. Biol. Rev. 2017, 81, e00002-17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Xu, S.; Yan, R.; Wang, R.; Gao, Y.; Kong, M.; Yi, Q.; Zhang, Y. Similar geographic patterns but distinct assembly processes of abundant and rare bacterioplankton communities in river networks of the Taihu Basin. Water Res. 2022, 211, 118057. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Guo, M.; Wu, W.; Zhou, X.; Li, M.; Xie, S. Spatial and Seasonal Patterns of Sediment Bacterial Communities in Large River Cascade Reservoirs: Drivers, Assembly Processes, and Co-occurrence Relationship. Microb. Ecol. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Liu, Z.; Zhang, C.; Wei, Q.; Zhang, S.; Li, M. Spatial and seasonal variations of sediment bacterial communities in a river-bay system in South China. Appl. Microbiol. Biotechnol. 2021, 105, 1979–1989. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, W.; Li, Y.; Gao, Y.; Niu, L.; Zhang, H.; Wang, L. Hydrodynamics-driven community coalescence determines ecological assembly processes and shifts bacterial network stability in river bends. Sci. Total Environ. 2023, 858, 159772. [Google Scholar] [CrossRef] [PubMed]
Habitat Type | Enviromental Parameters | April | July | October | Statistical Significance |
---|---|---|---|---|---|
Water | WT (°C) | 14.19 ± 0.96 | 18.14 ± 1.24 | 10.84 ± 1.73 | *** |
pH | 7.17 ± 0.19 | 8.00 ± 0.05 | 8.27 ± 0.17 | *** | |
DO (mg/L) | 7.89 ± 0.60 | 7.05 ± 1.07 | 6.25 ± 0.41 | *** | |
Cond (μS/cm) | 510.68 ± 99.44 | 575.19 ± 146.53 | 540.00 ± 140.10 | ns | |
Sal (ppt) | 0.31 ± 0.06 | 0.34 ± 0.07 | 0.28 ± 0.08 | ns | |
TDS (mg/L) | 416.57 ± 73.10 | 428.08 ± 101.53 | 379.00 ± 98.41 | ns | |
Chl a (mg/L) | 18.68 ± 7.41 | 5.21 ± 0.98 | 8.47 ± 5.32 | *** | |
TN (mg/L) | 1.89 ± 0.32 | 2.23 ± 0.34 | 0.48 ± 0.12 | *** | |
NH4+-N (mg/L) | 0.26 ± 0.17 | 0.15 ± 0.13 | 0.76 ± 0.38 | *** | |
TP (mg/L) | 0.03 ± 0.02 | 0.06 ± 0.02 | 0.07 ± 0.04 | * | |
AP (mg/L) | 0.06 ± 0.06 | 0.05 ± 0.05 | 0.04 ± 0.03 | ns | |
CODMn (mg/L) | 1.38 ± 0.35 | 0.99 ± 0.15 | 2.08 ± 0.32 | *** | |
CODCr (mg/L) | 9.41 ± 4.45 | 7.88 ± 2.35 | 10.51 ± 2.23 | ns | |
Cl− (mg/L) | 100.08 ± 57.3 | 70.06 ± 25.32 | 112.69 ± 37.19 | ns | |
F− (mg/L) | 0.40 ± 0.05 | 0.39 ± 0.10 | 0.40 ± 0.04 | ns | |
SO42− (mg/L) | 176.73 ± 61.24 | 202.71 ± 224.01 | 40.9 ± 21.85 | ns | |
Sediment | OM (g/kg) | 6.31 ± 3.51 | 4.66 ± 1.94 | 2.59 ± 0.94 | * |
TN (g/kg) | 0.29 ± 0.17 | 0.17 ± 0.06 | 0.13 ± 0.06 | * | |
NH4+-N (mg/kg) | 18.24 ± 7.01 | 17.16 ± 7.05 | 12.28 ± 3.32 | ns | |
TP (g/kg) | 0.34 ± 0.07 | 0.48 ± 0.15 | 0.40 ± 0.11 | ns | |
AP (g/kg) | 5.37 ± 3.79 | 3.10 ± 2.01 | 1.90 ± 0.83 | * | |
Pb (mg/kg) | 16.41 ± 1.39 | 16.89 ± 2.22 | 17.45 ± 1.33 | ns | |
Hg (mg/kg) | 0.06 ± 0.11 | 0.03 ± 0.02 | 0.03 ± 0.02 | ns | |
As (mg/kg) | 8.1 ± 1.10 | 8.57 ± 1.40 | 10.17 ± 0.89 | ** | |
Cr (mg/kg) | 0.08 ± 0.03 | 0.09 ± 0.03 | 0.08 ± 0.03 | ns | |
Cd (mg/kg) | 0.09 ± 0.03 | 0.24 ± 0.14 | 0.19 ± 0.14 | ns |
Habitat Type | Nodes | Edges | ACC | APL | Diameter | Density | Modularity |
---|---|---|---|---|---|---|---|
Water | 200 | 1722 | 0.551 | 3.138 | 9 | 0.087 | 0.323 |
Sediment | 276 | 658 | 0.373 | 5.531 | 14 | 0.017 | 0.707 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.-Z.; Zhang, W.-J.; Zhao, Z.-F.; Qiu, X.-C. Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River. Microorganisms 2023, 11, 496. https://doi.org/10.3390/microorganisms11020496
Zhao R-Z, Zhang W-J, Zhao Z-F, Qiu X-C. Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River. Microorganisms. 2023; 11(2):496. https://doi.org/10.3390/microorganisms11020496
Chicago/Turabian StyleZhao, Rui-Zhi, Wei-Jiang Zhang, Zeng-Feng Zhao, and Xiao-Cong Qiu. 2023. "Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River" Microorganisms 11, no. 2: 496. https://doi.org/10.3390/microorganisms11020496
APA StyleZhao, R. -Z., Zhang, W. -J., Zhao, Z. -F., & Qiu, X. -C. (2023). Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River. Microorganisms, 11(2), 496. https://doi.org/10.3390/microorganisms11020496