An Evaluation of Avian Influenza Virus Whole-Genome Sequencing Approaches Using Nanopore Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses Used in This Study
2.2. RT-PCR
2.3. Library Kit Comparison
2.4. MinION Runs
2.5. Sequence Analysis
3. Results
3.1. cDNA Generation by RT-PCR
3.2. Library Construction Kits Evaluated
3.3. Read Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Tao, K.; Tzou, P.L.; Nouhin, J.; Gupta, R.K.; de Oliveira, T.; Kosakovsky Pond, S.L.; Fera, D.; Shafer, R.W. The Biological and Clinical Significance of Emerging SARS-CoV-2 Variants. Nat. Rev. Genet. 2021, 22, 757–773. [Google Scholar] [CrossRef] [PubMed]
- Oude Munnink, B.B.; Worp, N.; Nieuwenhuijse, D.F.; Sikkema, R.S.; Haagmans, B.; Fouchier, R.A.M.; Koopmans, M. The next Phase of SARS-CoV-2 Surveillance: Real-Time Molecular Epidemiology. Nat. Med. 2021, 27, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Youk, S.; Lee, D. Role of Wild Birds in the Spread of Clade 2.3.4.4e H5N6 Highly Pathogenic Avian Influenza Virus into South Korea and Japan. Infect. Genet. Evol. 2022, 101, 105281. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, J.H.; Fouchier, R.A.M.; Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021, 13, 212. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, V.; Lewis, N.S.; Pohlmann, A.; Baillie, S.R.; Banyard, A.C.; Beer, M.; Brown, I.H.; Fouchier, R.A.M.; Hansen, R.D.E.; Lameris, T.K.; et al. Transatlantic Spread of Highly Pathogenic Avian Influenza H5N1 by Wild Birds from Europe to North America in 2021. Sci. Rep. 2022, 12, 11729. [Google Scholar] [CrossRef]
- Bevins, S.N.; Shriner, S.A.; Cumbee, J.C.; Dilione, K.E.; Douglass, K.E.; Ellis, J.W.; Killian, M.L.; Torchetti, M.K.; Lenoch, J.B. Intercontinental Movement of Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4 Virus to the United States, 2021. Emerg. Infect. Dis. 2022, 28, 1006–1011. [Google Scholar] [CrossRef]
- Denzin, N.; Bölling, M.; Pohlmann, A.; King, J.; Globig, A.; Conraths, F.J. Investigation into a Superspreading Event of the German 2020–2021 Avian Influenza Epidemic. Pathogens 2022, 11, 309. [Google Scholar] [CrossRef]
- Engelsma, M.; Heutink, R.; Harders, F.; Germeraad, E.A.; Beerens, N. Multiple Introductions of Reassorted Highly Pathogenic Avian Influenza H5Nx Viruses Clade 2.3.4.4b Causing Outbreaks in Wild Birds and Poultry in The Netherlands, 2020–2021. Microbiol. Spectr. 2022, 10, e02499-21. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; et al. Avian Influenza Overview March–June 2022. EFSA J. 2022, 20, e07415. [Google Scholar] [CrossRef]
- US Department of Agriculture 2022 Confirmations of Highly Pathogenic Avian Influenza in Commercial and Backyard Flocks. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/hpai-2022/2022-hpai-commercial-backyard-flocks (accessed on 12 September 2022).
- US Department of Agriculture 2022 Detections of Highly Pathogenic Avian Influenza in Wild Birds. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/hpai-2022/2022-hpai-wild-birds (accessed on 12 September 2022).
- International Committee on Taxonomy of Viruses: ICTV Current ICTV Taxonomy Release: Orthomyxoviridae. 2021. Available online: https://ictv.global/taxonomy/taxondetails?taxnode_id=202103956 (accessed on 12 September 2022).
- Zhou, B.; Wentworth, D.E. Influenza A Virus Molecular Virology Techniques. In Influenza Virus; Kawaoka, Y., Neumann, G., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 865, pp. 175–192. ISBN 978-1-61779-620-3. [Google Scholar]
- Lefterova, M.I.; Suarez, C.J.; Banaei, N.; Pinsky, B.A. Next-Generation Sequencing for Infectious Disease Diagnosis and Management. J. Mol. Diagn. 2015, 17, 623–634. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Li, Z.; Li, R.; Tan, P.; Zhang, R.; Li, J. mNGS in Clinical Microbiology Laboratories: On the Road to Maturity. Crit. Rev. Microbiol. 2019, 45, 668–685. [Google Scholar] [CrossRef] [PubMed]
- Tshiabuila, D.; Giandhari, J.; Pillay, S.; Ramphal, U.; Ramphal, Y.; Maharaj, A.; Anyaneji, U.J.; Naidoo, Y.; Tegally, H.; San, E.J.; et al. Comparison of SARS-CoV-2 Sequencing Using the ONT GridION and the Illumina MiSeq. BMC Genom. 2022, 23, 319. [Google Scholar] [CrossRef] [PubMed]
- Quick, John. Real-Time Gene Sequencing Can Help Control—And May Someday Prevent—Pandemics. Stat. News 2020. Available online: https://www.statnews.com/2020/09/11/real-time-gene-sequencing-can-help-control-and-may-someday-prevent-pandemics/ (accessed on 12 September 2022).
- Charre, C.; Ginevra, C.; Sabatier, M.; Regue, H.; Destras, G.; Brun, S.; Burfin, G.; Scholtes, C.; Morfin, F.; Valette, M.; et al. Evaluation of NGS-Based Approaches for SARS-CoV-2 Whole Genome Characterisation. Virus Evol. 2020, 6, veaa075. [Google Scholar] [CrossRef]
- Crossley, B.M.; Rejmanek, D.; Baroch, J.; Stanton, J.B.; Young, K.T.; Killian, M.L.; Torchetti, M.K.; Hietala, S.K. Nanopore Sequencing as a Rapid Tool for Identification and Pathotyping of Avian Influenza A Viruses. J. Vet. Diagn. Investig. Off. Publ. Am. Assoc. Vet. Lab. Diagn. Inc. 2021, 33, 253–260. [Google Scholar] [CrossRef]
- King, J.; Harder, T.; Globig, A.; Stacker, L.; Günther, A.; Grund, C.; Beer, M.; Pohlmann, A. Highly Pathogenic Avian Influenza Virus Incursions of Subtype H5N8, H5N5, H5N1, H5N4, and H5N3 in Germany during 2020-21. Virus Evol. 2022, 8, veac035. [Google Scholar] [CrossRef]
- Bull, R.A.; Adikari, T.N.; Ferguson, J.M.; Hammond, J.M.; Stevanovski, I.; Beukers, A.G.; Naing, Z.; Yeang, M.; Verich, A.; Gamaarachchi, H.; et al. Analytical Validity of Nanopore Sequencing for Rapid SARS-CoV-2 Genome Analysis. Nat. Commun. 2020, 11, 6272. [Google Scholar] [CrossRef]
- Yip, C.C.-Y.; Chan, W.-M.; Ip, J.D.; Seng, C.W.-M.; Leung, K.-H.; Poon, R.W.-S.; Ng, A.C.-K.; Wu, W.-L.; Zhao, H.; Chan, K.-H.; et al. Nanopore Sequencing Reveals Novel Targets for Detection and Surveillance of Human and Avian Influenza A Viruses. J. Clin. Microbiol. 2020, 58, e02127-19. [Google Scholar] [CrossRef]
- Mitchell, P.K.; Cronk, B.D.; Voorhees, I.E.H.; Rothenheber, D.; Anderson, R.R.; Chan, T.H.; Wasik, B.R.; Dubovi, E.J.; Parrish, C.R.; Goodman, L.B. Method Comparison of Targeted Influenza A Virus Typing and Whole-Genome Sequencing from Respiratory Specimens of Companion Animals. J. Vet. Diagn. Investig. 2021, 33, 191–201. [Google Scholar] [CrossRef]
- El Gazzar, M. Chaves Protocol for Whole Genome Sequencing of Influenza Virus. Available online: https://community.nanoporetech.com/docs/prepare/library_prep_protocols/ligation-sequencing-influenza-whole-genome/v/inf_9166_v109_reva_24aug2022 (accessed on 12 September 2022).
- Delahaye, C.; Nicolas, J. Sequencing DNA with Nanopores: Troubles and Biases. PLoS ONE 2021, 16, e0257521. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention Influenza Virus Genome Sequencing and Genetic Characterization. Available online: https://www.cdc.gov/flu/about/professionals/genetic-characterization.htm (accessed on 12 September 2022).
- Gardy, J.L.; Loman, N.J. Towards a Genomics-Informed, Real-Time, Global Pathogen Surveillance System. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.M.; Martin, I.W.; Moschetti, W.E.; Kershaw, C.M.; Tsongalis, G.J. Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing. J. Clin. Microbiol. 2019, 58, e01315-19. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Ebranati, E.; Pellegrinelli, L.; Airoldi, M.; Veo, C.; Della Ventura, C.; Seiti, A.; Binda, S.; Galli, M.; Zehender, G.; et al. From Clinical Specimen to Whole Genome Sequencing of A(H3N2) Influenza Viruses: A Fast and Reliable High-Throughput Protocol. Vaccines 2022, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Whitford, W.; Hawkins, V.; Moodley, K.S.; Grant, M.J.; Lehnert, K.; Snell, R.G.; Jacobsen, J.C. Proof of Concept for Multiplex Amplicon Sequencing for Mutation Identification Using the MinION Nanopore Sequencer. Sci. Rep. 2022, 12, 8572. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Moore, N.E.; Deng, Y.-M.; Eccles, D.A.; Hall, R.J. MinION Nanopore Sequencing of an Influenza Genome. Front. Microbiol. 2015, 6, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ip, H.S.; Uhm, S.; Killian, M.L.; Torchetti, M. Raw MinION FASTQ Datafiles Corresponding to the Paper “An Evaluation of Avian Influenza Virus Whole Genome Se-quencing Approaches Using Nanopore Technology. U.S. Geological Survey Data Release. 2022. Available online: https://www.sciencebase.gov/catalog/item/638a4df0d34ed907bf7907ea (accessed on 12 September 2022).
Sample ID | Animal Information | State | Collection Date | Sample Type | Matrix Ct value | GISAID ID |
---|---|---|---|---|---|---|
245467 | Neotropical Cormorant | Arizona | 23/5/22 | Cloacal Swab | 25.18 | EPI_ISL_16555203 |
245626 | Eared Grebe | North Dakota | 16/6/22 | Tracheal Swab | 30.51 | EPI_ISL_16555204 |
246038 | Canada Goose | California | 5/7/22 | Tracheal Swab | 16.44 | EPI_ISL_16555205 |
Primer name | Nucleotide Sequence | Reference | Used in Method |
---|---|---|---|
Set 1. 080304(Uni12/Inf1) | 5’-GGGGGGAGCAAAAGCAGG-3’ | [13] | A |
Set 1. 080305(Uni12/Inf3) | 5’-GGGGGGAGCGAAAGCAGG-3’ | [13] | ″ |
Set 1. 080306(Uni13/Inf1) | 5’-GGGGTTATTAGTAGAAACAAGG-3’ | [13] | ″ |
Set 2. 080307(PSK004/Uni12) | 5’-TTTCTGTTGGTGCTGATATTGCGATCAGCAAAAGCAGG-3’ | This study | S |
Set 2. 080308(PSK004/Uni12.4) | 5’-TTTCTGTTGGTGCTGATATTGCGATCAGCGAAAGCAGG-3’ | This study | ″ |
Set 2. 080309(PSK004/Uni13) | 5’-ACTTGCCTGTCGCTCTATCTTCGATCAGTAGAAACAAGG-3’ | This study | ″ |
Set 3. 969501(Pan-IVA-1F) | 5’-TCCCAGTCACGACGTCGTAGCGAAAGCAGG-3’ | [20] | E |
Set 3. 969502(Pan-IVA-1F) | 5’-GGAAACAGCTATGACCATGAGTAGAAACAAGG-3’ | [20] | ″ |
Set 4. 1071804(MitchellBUni12) | 5’-TTTCTGTTGGTGCTGATATTGTTACGCGCCAGCAAAAGCAGG-3’ | Modified after [23] | K, N |
Set 4. 1071805(MitchellBUni12.4) | 5’-TTTCTGTTGGTGCTGATATTGTTACGCGCCAGCGAAAGCAGG-3’ | Modified after [23] | ″ |
Set 4. 1071806(MitchellBUni13) | 5’-ACTTGCCTGTCGCTCTATCTTCGTTACGCGCCAGTAGAAACAAGG-3’ | Modified after [23] | ″ |
Method | Method A | Method S | Method E | Method K | Method N |
---|---|---|---|---|---|
Total # reads | 4,910,043 | 9,433,118 | 2,896,000 | 5,498,527 | 1,721,746 |
# mapped reads | 3,899,374 | 8,275,317 | 1,982,488 | 4,854,536 | 1,525,701 |
% mapped reads | 87.7% | 87.7% | 68.5% | 88.3% | 88.6% |
AIV Segments | Method A | CDS | Method S | CDS | Method E | CDS | Method K | CDS | Method N | CDS |
---|---|---|---|---|---|---|---|---|---|---|
PB2 | 15,698 | Edited | 2,289,167 | Partial | 7476 | Partial | 142,151 | Edited | 695 | Edited |
PB1 | 63,842 | Edited | 1,101,735 | Partial | 551 | Partial | 26,142 | Auto | 734 | Auto |
PA | 1489 | Edited | 94,586 | Partial | 2669 | Partial | 342,122 | Edited | 1064 | Auto |
H5 | 83,360 | Auto | 5775 | Partial | 16 | Partial | 344,541 | Auto | 5127 | Auto |
NP | 32,937 | Auto | 45 | Partial | 7 | Partial | 127,815 | Auto | 2930 | Auto |
N1 | 46,701 | Auto | 3408 | Auto | 10 | Partial | 25,004 | Auto | 7144 | Auto |
MA | 204,565 | Auto | 91,729 | Auto | 18 | Partial | 389,719 | Auto | 262,346 | Auto |
NS | 435,686 | Auto | 67,187 | Auto | 12 | Partial | 473,247 | Auto | 101,586 | Auto |
Total # reads | 884.278 | 3,653,632 | 10,759 | 1,870,741 | 381,626 |
Kits | No. Mutations |
---|---|
Method A | 4 |
Method S | 1 |
Method E | 190 |
Method K | 2 |
Method N | 4 + del7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ip, H.S.; Uhm, S.; Killian, M.L.; Torchetti, M.K. An Evaluation of Avian Influenza Virus Whole-Genome Sequencing Approaches Using Nanopore Technology. Microorganisms 2023, 11, 529. https://doi.org/10.3390/microorganisms11020529
Ip HS, Uhm S, Killian ML, Torchetti MK. An Evaluation of Avian Influenza Virus Whole-Genome Sequencing Approaches Using Nanopore Technology. Microorganisms. 2023; 11(2):529. https://doi.org/10.3390/microorganisms11020529
Chicago/Turabian StyleIp, Hon S., Sarah Uhm, Mary Lea Killian, and Mia K. Torchetti. 2023. "An Evaluation of Avian Influenza Virus Whole-Genome Sequencing Approaches Using Nanopore Technology" Microorganisms 11, no. 2: 529. https://doi.org/10.3390/microorganisms11020529
APA StyleIp, H. S., Uhm, S., Killian, M. L., & Torchetti, M. K. (2023). An Evaluation of Avian Influenza Virus Whole-Genome Sequencing Approaches Using Nanopore Technology. Microorganisms, 11(2), 529. https://doi.org/10.3390/microorganisms11020529