Signatures of HIV and Major Depressive Disorder in the Plasma Microbiome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Neuromedical and Laboratory Assessment
2.3. Evaluation of Depression
2.4. Protocol Details on the 16S qPCR
2.5. Profiling of the Plasma Microbiome Composition Using Shallow-Shotgun Sequencing
2.6. Differential Abundance Analysis
3. Results
3.1. Demographic and Clinical Characteristics
Feature Group | Sets | Taxa |
---|---|---|
HIV features | Set 1 top 25% | Cytophagia, Flavobacteriia, Sphingobacteriia, Bacilli, Clostridia, Nitrospira, Acidithiobacillia |
Set 2 bottom 25% | Thermoprotei, Bacteroidia, Negativicutes, Fusobacteriia, Planctomycetia, Spirochaetia; phylum Cyanobacteria | |
MDD features | Set 3 top 25% | Blastocatellia, Flavobacteriia, Nitrospira, Alphaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria; phylum Cyanobacteria |
Set 4 bottom 25% | Thermoprotei, Coriobacteriia, Bacteroidia, Cytophagia, Negativicutes, Spirochaetia, Opitutae |
3.2. Composition of Microbial Communities within HIV and MDD Subgroups
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zicari, S.; Sessa, L.; Cotugno, N.; Ruggiero, A.; Morrocchi, E.; Concato, C.; Palma, P. Immune Activation, Inflammation, and Non-AIDS Co-Morbidities in HIV-Infected Patients under Long-Term ART. Viruses 2019, 11, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Luo, Z.; Alekseyenko, A.V.; Martin, L.; Wan, Z.; Ling, B.; Jiang, W. Distinct systemic microbiome and microbial translocation are associated with plasma level of anti-CD4 autoantibody in HIV infection. Sci. Rep. 2018, 8, 12863. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Cardoso, S.; Klatt, N.R.; Reyes-Terán, G. Impact of antiretroviral drugs on the microbiome: Unknown answers to important questions. Curr. Opin. HIV AIDS 2018, 13, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva-Millán, M.J.; Pérez-Matute, P.; Recio-Fernández, E.; Lezana Rosales, J.M.; Oteo, J.A. Differential effects of antiretrovirals on microbial translocation and gut microbiota composition of HIV-infected patients. J. Int. AIDS Soc. 2017, 20, 21526. [Google Scholar] [CrossRef]
- Winter, G.; Hart, R.A.; Charlesworth, R.P.; Sharpley, C.F. Gut microbiome and depression: What we know and what we need to know. Rev. Neurosci. 2018, 29, 629–643. [Google Scholar] [CrossRef]
- Seo, D.-O.; O’Donnell, D.; Jain, N.; Ulrich, J.D.; Herz, J.; Li, Y.; Holtzman, D.M. ApoE isoform–and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science 2023, 379, eadd1236. [Google Scholar] [CrossRef]
- Hong, S.; Banks, W.A. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav. Immun. 2015, 45, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pearson-Leary, J.; Zhao, C.; Bittinger, K.; Eacret, D.; Luz, S.; Vigderman, A.S.; Dayanim, G.; Bhatnagar, S. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol. Psychiatry 2020, 25, 1068–1079. [Google Scholar] [CrossRef]
- Taylor, B.C.; Weldon, K.C.; Ellis, R.J.; Franklin, D.; Groth, T.; Gentry, E.C.; Tripathi, A.; McDonald, D.; Humphrey, G.; Bryant, M.; et al. Depression in individuals coinfected with HIV and HCV is associated with systematic differences in the gut microbiome and metabolome. Msystems 2020, 5, e00465-20. [Google Scholar] [CrossRef]
- Fukui, H. Endotoxin and other microbial translocation markers in the blood: A clue to understand leaky gut syndrome. Cell. Mol. Med. 2016, 2. [Google Scholar] [CrossRef]
- Saloner, R.; Cherner, M.; Grelotti, D.J.; Paolillo, E.W.; Moore, D.J.; Heaton, R.K.; Letendre, S.L.; Kumar, A.; Grant, I.; Ellis, R.J. Lower CSF homovanillic acid relates to higher burden of neuroinflammation and depression in people with HIV disease. Brain Behav. Immun. 2020, 90, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Rivera, Y.; Vázquez-Santiago, F.J.; Albino, E.; Sánchez, M.D.; Rivera-Amill, V. Impact of Depression and Inflammation on the Progression of HIV Disease. J. Clin. Cell. Immunol. 2016, 7, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 2016, 99, 110–132. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.M.; Kibbie, J.; Lee, E.J.; Guo, K.; Santiago, M.L.; Austin, G.L.; Gianella, S.; Landay, A.L.; Donovan, A.M.; Frank, D.N.; et al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. Aids 2017, 31, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yun, Y.; An, H.; Zhao, W.; Ma, T.; Wang, Z.; Yang, F. Gut Microbiome Composition Associated With Major Depressive Disorder and Sleep Quality. Front. Psychiatry 2021, 12, 551. [Google Scholar] [CrossRef]
- Chung, Y.C.; Chen, H.C.; Chou, H.C.; Chen, I.M.; Lee, M.S.; Chuang, L.C.; Liu, Y.W.; Lu, M.L.; Chen, C.H.; Wu, C.S.; et al. Exploration of microbiota targets for major depressive disorder and mood related traits. J. Psychiatr. Res. 2019, 111, 74–82. [Google Scholar] [CrossRef]
- Poore, G.D.; Kopylova, E.; Zhu, Q.; Carpenter, C.; Fraraccio, S.; Wandro, S.; Kosciolek, T.; Janssen, S.; Metcalf, J.; Song, S.J.; et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020, 579, 567–574. [Google Scholar] [CrossRef]
- Morton, J.T.; Marotz, C.; Washburne, A.; Silverman, J.; Zaramela, L.S.; Edlund, A.; Zengler, K.; Knight, R. Establishing microbial compositionmeasurement standards with reference frames. Nat. Commun. 2019, 10, 2719. [Google Scholar] [CrossRef] [Green Version]
- Martino, C.; Morton, J.T.; Marotz, C.A.; Thompson, L.R.; Tripathi, A.; Knight, R.; Zengler, K. A novel sparse compositional technique reveals microbial perturbations. MSystems 2019, 4, e00016-19. [Google Scholar] [CrossRef] [Green Version]
- Fedarko, M.W.; Martino, C.; Morton, J.T.; González, A.; Rahman, G.; Marotz, C.A.; Minich, J.J.; Allen, E.E.; Knight, R. Visualizing’omic feature rankings and log-ratios using Qurro. NAR Genom. Bioinform. 2020, 2, lqaa023. [Google Scholar] [CrossRef]
- Hillmann, B.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Zhu, Q.; Gohl, D.M.; Beckman, K.B.; Knight, R.; Knights, D. Evaluating the information content of shallow shotgun metagenomics. Msystems 2018, 3, e00069-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depression Inventory; Harcourt Brace Jovanovich: New York, NY, USA, 1987. [Google Scholar]
- Sanders, J.G.; Nurk, S.; Salido, R.A.; Minich, J.; Xu, Z.Z.; Zhu, Q.; Martino, C.; Fedarko, M.; Arthur, T.D.; Chen, F.; et al. Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biol. 2019, 20, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Mai, U.; Pfeiffer, W.; Janssen, S.; Asnicar, F.; Sanders, J.G.; Belda-Ferre, P.; Al-Ghalith, G.A.; Kopylova, E.; McDonald, D.; et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat. Commun. 2019, 10, 5477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contamnant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J. Permutational multivariate analysis of variance (PERMANOVA). In Wiley Statsref: Statistics Reference Online; Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–15. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef] [Green Version]
- Castillo, D.J.; Rifkin, R.F.; Cowan, D.A.; Potgieter, M. The healthy human blood microbiome: Fact or fiction? Front. Cell. Infect. Microbiol. 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Santiago, J.; Marquine, M.J.; Cookson, D.; Giraud-Colón, R.; Heaton, R.K.; Grant, I.; Ellis, R.J.; Letendre, S.L.; Peterson, S.N. Gut microbiota dysbiosis is associated with worse emotional states in HIV infection. J. Neurovirol. 2021, 27, 228–238. [Google Scholar] [CrossRef]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry 2013, 70, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; Letendre, S.L.; Atkinson, J.H.; Clifford, D.; Collier, A.C.; Gelman, B.B.; Marra, C.; McCutchan, J.A.; Morgello, S.; Sacktor, N.; et al. Higher levels of plasma inflammation biomarkers are associated with depressed mood and quality of life in aging, virally suppressed men, but not women, with HIV. Brain Behav. Immun.-Health 2020, 7, 100121. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, G.M.; Oltean, B.P.; Kaser, M.; Dibben, C.R.; Ramana, R.; Jadon, D.R.; Dantzer, R.; Coles, A.J.; Lewis, G.; Jones, P.B. Protocol for the insight study: A randomised controlled trial of single-dose tocilizumab in patients with depression and low-grade inflammation. BMJ Open 2018, 8, e025333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HIV−/MDD− (a) | HIV−/MDD+ (b) | HIV+/MDD− (c) | HIV+/MDD+ (d) | Group Significance (α = 0.05) | |
---|---|---|---|---|---|
N | 23 | 44 | 18 | 66 | |
Age 1 | 45.7 (13.5) | 45.0 (12.6) | 44.5 (14.3) | 46.1 (11.3) | |
Education 1 | 14.4 (2.7) | 13.6 (2.7) | 13.8 (2.0) | 13.4 (2.5) | |
Male, n (%) | 20 (87%) | 30 (68%) | 16 (89%) | 58 (88%) | b < d |
Ethnicity, n (%) | |||||
African American | 4 (17%) | 4 (9%) | 1 (6%) | 13 (20%) | |
Caucasian | 14 (61%) | 32 (73%) | 10 (55%) | 34 (51%) | b > d |
Hispanic | 4 (17%) | 5 (11%) | 5 (28%) | 16 (24%) | |
Other | 1 (5%) | 3 (7%) | 2 (11%) | 3 (5%) | |
Estimate premorbid verbal IQ 1 | 103.2 (13.7) | 103.9 (14.2) | 100 (15.2) | 100.4 (11.9) | |
Sexual orientation, n (%) | |||||
Bisexual | 0 (0%) | 8 (18%) | 3 (18%) | 6 (9%) | |
Heterosexual | 12 (55%) | 28 (64%) | 2 (12%) | 13 (20%) | a, b > c, d |
Homosexual | 11 (45%) | 8 (18%) | 13 (70%) | 47 (71%) | |
AIDS, n (%) | 6 (33%) | 30 (45%) | |||
Estimated duration of infection (years) 1 | 8.5 (7.6) | 13.1 (8.2) | c < d | ||
Nadir CD4+ T-cell count 2 | 319 (105–5141) | 234 (147–350) | |||
CD4+ T-cell count 2 | 660 (426–9361) | 639 (492–7681) | |||
Undetectable plasma on ART, n (%) | 16 (89%) | 63 (95%) | |||
Undetectable CSF on ART, n (%) | 18 (100%) | 57 (87%) | |||
ART status, n (%) | |||||
On ART | 17 (94%) | 64 (97%) | |||
ARV regimen type | |||||
NNRTIs + NRTIs | 7 (39%) | 22 (33%) | |||
NRTIs + IIs | 6 (33%) | 12 (18%) | |||
NRTIs + PIs | 1 (5%) | 25 (38%) | |||
NRTIs | 1 (5%) | 2 (3%) | |||
Other | 2 (11%) | 3 (5%) | |||
Off ART | 1 (6%) | 2 (3%) | |||
Employed, n (%) | 11 (45%) | 19 (43%) | 9 (50%) | 26 (40%) | |
Lifetime any substance diagnosis | 12 (52%) | 38 (86%) | 9 (50%) | 55 (66) | |
Current substance use diagnosis | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Beck Depression Inventory-II 1 | 6.61 (8.83) | 14.57 (12.59) | 5.57 (5.91) | 15.88 (10.57) | b > a, c; d > a, c |
Microbial DNA concentration (ng/μL) 2 | 0.58 (0.21–0.99) | 0.44 (0.21–0.95) | 0.27 (0.22–0.43) | 0.45 (0.31–0.82) | |
% Microbial DNA 2 | 3.4 (2.3–4.51) | 2.8 (2.0–4.8) | 3.5 (2.2–6.5) | 3.2 (2.3–4.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, B.C.; Sheikh Andalibi, M.; Wandro, S.; Weldon, K.C.; Sepich-Poore, G.D.; Carpenter, C.S.; Fraraccio, S.; Franklin, D.; Iudicello, J.E.; Letendre, S.; et al. Signatures of HIV and Major Depressive Disorder in the Plasma Microbiome. Microorganisms 2023, 11, 1022. https://doi.org/10.3390/microorganisms11041022
Taylor BC, Sheikh Andalibi M, Wandro S, Weldon KC, Sepich-Poore GD, Carpenter CS, Fraraccio S, Franklin D, Iudicello JE, Letendre S, et al. Signatures of HIV and Major Depressive Disorder in the Plasma Microbiome. Microorganisms. 2023; 11(4):1022. https://doi.org/10.3390/microorganisms11041022
Chicago/Turabian StyleTaylor, Bryn C., Mohammadsobhan Sheikh Andalibi, Stephen Wandro, Kelly C. Weldon, Gregory D. Sepich-Poore, Carolina S. Carpenter, Serena Fraraccio, Donald Franklin, Jennifer E. Iudicello, Scott Letendre, and et al. 2023. "Signatures of HIV and Major Depressive Disorder in the Plasma Microbiome" Microorganisms 11, no. 4: 1022. https://doi.org/10.3390/microorganisms11041022