Effect of the Mode of Fermentation on the Behavior of Penicillium bilaiae in Conditions of Abiotic Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Fermentation Processes
2.2.1. Solid-State Fermentation (SSF)
2.2.2. Submerged Fermentation
2.2.3. Immobilized Cell Fermentation
2.3. Analytical Methods
3. Results and Discussion
4. General Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Otlewska, A.; Migliore, M.; Dybka-Stępień, K.; Manfredini, A.; Struszczyk-Świta, K.; Napoli, R.; Białkowska, A.; Canfora, L.; Pinzari, F. When Salt Meddles between Plant, Soil, and Microorganisms. Front. Plant Sci. 2020, 11, 553087. [Google Scholar] [CrossRef]
- El Sebai, W.B.T.; Abdallah, M. Role of Microorganisms in Alleviating the Abiotic Stress Conditions Affecting Plant Growth; IntechOpen Limited: London, UK, 2022. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; McGrath, S.P.; Hirsch, P.R.; Clark, I.M.; Storkey, J.; Wu, L.; Zhou, J.; Liang, Y. Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microb. Biotechnol. 2019, 12, 1464–1475. [Google Scholar] [CrossRef]
- Vassileva, M.; Mendes, G.D.O.; Deriu, M.A.; di Benedetto, G.; Flor-Peregrin, E.; Mocali, S.; Martos, V.; Vassilev, N. Fungi, P-Solubilization, and Plant Nutrition. Microorganisms 2022, 10, 1716. [Google Scholar] [CrossRef]
- Kour, D.; Yadav, A.N. Stress Adaptive Phosphorus Solubilizing Microbiomes for Agricultural Sustainability. J. Appl. Biol. Biotechnol. 2022, 10, i–iii. [Google Scholar] [CrossRef]
- Al-Busaidi, A.S.; Cookson, P. Salinity-pH relationships in calcareous soils. Agric. Mar. Sci. 2003, 8, 41–46. [Google Scholar] [CrossRef]
- Kumar, A.; Teja, E.S.; Mathur, V.; Kumari, R. Phosphate-Solubilizing Fungi: Current Perspective, Mechanisms and Potential Agricultural Applications. In Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology; Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Vassilev, N.; Eichler-Löbermann, B.; Vassileva, M. Stress-tolerant P-solubilizing microorganisms. Appl. Microbiol. Biotechnol. 2012, 95, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Vassileva, M.; Malusà, E.; Sas-Paszt, L.; Trzcinski, P.; Galvez, A.; Flor-Peregrin, E.; Shilev, S.; Canfora, L.; Mocali, S.; Vassilev, N. Fermentation Strategies to Improve Soil Bio-Inoculant Production and Quality. Microorganisms 2021, 9, 1254. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, N.; Vassileva, M.; Martos, V.; Del Moral, L.F.G.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Daliakopoulos, I.; Tsanis, I.; Koutroulis, A.; Kourgialas, N.; Varouchakis, A.; Karatzas, G.; Ritsema, C. The threat of soil salinity: A European scale review. Sci. Total. Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Hu, T.; Qiu, D.; Francis, F.; Wang, S.; Wang, S. Root-Associated Microbiota Response to Ecological Factors: Role of Soil Acidity in Enhancing Citrus Tolerance to Huanglongbing. Front. Plant Sci. 2022, 13, 937414. [Google Scholar] [CrossRef]
- Sanjuán, J.; Nápoles, M.C.; Pérez-Mendoza, D.; Lorite, M.J.; Rodríguez-Navarro, D.N. Microbials for Agriculture: Why Do They Call Them Biostimulants When They Mean Probiotics? Microorganisms 2023, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Raymond, N.S.; Stover, D.M.; Peltre, C.; Nielsen, H.H.; Jensen, L.S. Use of Penicillium bilaiae to improve P-bioavailability of thermally treated sewage sludge—A potential novel biofertiliser. Proc. Biochem. 2018, 69, 169–177. [Google Scholar] [CrossRef]
- European Commission. Study on the Eu’s List of Critical Raw Materials (2020), Critical Raw Materials Factsheets; European Commission: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- Bhujbal, S.V.; Paredes-Juarez, G.A.; Niclou, S.P.; de Vos, P. Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. J. Mech. Behav. Biomed. Mater. 2014, 37, 196–208. [Google Scholar] [CrossRef] [PubMed]
- de Vos, P.; Bucko, M.; Gemeiner, P.; Navrátil, M.; Svitel, J.; Faas, M.; Strand, B.L.; Skjak-Braek, G.; Morch, Y.A.; Vikartovská, A.; et al. Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 2009, 30, 2559–2570. [Google Scholar] [CrossRef]
- Oriol, E.; Schettino, B.; Viniegra-Gonzales, G.; Raimbault, M. Solid-state culture of Aspergillus niger on support. J. Ferment. Technol. 1988, 66, 57–62. [Google Scholar] [CrossRef]
- Samapundo, S.; Deschuyffeleer, N.; Van Laere, D.; De Leyn, I.; Devlieghere, F. Effect of NaCl reduction and replacement on the growth of fungi important to the spoilage of bread. Food Microbiol. 2010, 27, 749–756. [Google Scholar] [CrossRef]
- Rai, A.K.; Singh, S.P.; Pandey, A.; Larroche, C.; Soccol, C.R. Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Lu, L.-P.; Xu, G.-R. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. J. Biotechnol. 2015, 206, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, N.; Eichler-Löbermann, B.; Flor-Peregrin, E.; Martos, V.; Reyes, A.; Vassileva, M. Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express 2017, 7, 106. [Google Scholar] [CrossRef]
- Vassileva, M.; Flor-Peregrin, E.; Malusa, E.; Vassilev, N. Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. Front. Plant Sci. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Muthukumar, T.; Priyadharsini, P.; Uma, E.; Jaison, S.; Pandey, R.R. Role of Arbuscular Mycorrhizal Fungi in Alleviation of Acidity Stress on Plant Growth; Springer: New York, NY, USA, 2013; pp. 43–71. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.-J.; Banerjee, S.; Zhou, N.; Zhao, Z.-Y.; Zhang, K.; Tian, C.-Y. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Sci. Rep. 2018, 8, 4550. [Google Scholar] [CrossRef] [PubMed]
- Nouh, F.A.; Abu-Elsaoud, A.; Abdel-Azeem, A. The role of endophytic fungi in combating abiotic stress on tomato. Microb. Biosyst. 2021, 6, 35–48. [Google Scholar] [CrossRef]
- Whitelaw, M.A.; Harden, T.J.; Helyar, K.R. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 1999, 31, 655–665. [Google Scholar] [CrossRef]
Batch | pH Initial/Final | Dry Biomass (g/g carrier) | Titratable Acidity (mmol) | P sol (mg/L) |
---|---|---|---|---|
1 | 4.0/3.78 ± 0.04 | 0.411 ± 0.07 | 12.13 ± 0.30 | 126 ± 4.0 |
1 | 6.0/3.63 ± 0.1 | 0.343 ± 0.04 | 10.14 ± 0.23 | 114.9 ± 3.7 |
1 | 8.0/3.69 ± 0.1 | 0.306 ± 0.02 | 9.44 ± 0.32 | 103.6 ± 4.1 |
2 | 4.0/3.59 ± 0.14 | 0.458 ± 0.02 | 12.94 ± 0.30 | 128.3 ± 7.0 |
2 | 6.0/3.43 ± 0.1 | 0.432 ± 0.04 | 11.43 ± 0.38 | 121.9 ± 3.7 |
2 | 8.0/3.61 ± 0.1 | 0.352 ± 0.01 | 10.54 ± 0.18 | 110.9 ± 5.2 |
3 | 4.0/3.49 ± 0.20 | 0.478 ± 0.12 | 13.90 ± 0.34 | 130 ± 2.8 |
3 | 6.0/3.39 ± 0.18 | 0.430 ± 0.08 | 12.44 ± 0.29 | 128.1 ± 5.7 |
3 | 8.0/3.42 ± 0.10 | 0.400 ± 0.02 | 12.14 ± 0.42 | 120.6 ± 4.1 |
4 | 4.0/3.58 ± 0.04 | 0.475 ± 0.04 | 10.53 ± 0.80 | 114.0 ± 1.0 |
4 | 6.0/3.75 ± 0.15 | 0.425 ± 0.07 | 10.28 ± 0.30 | 111.0 ± 1.9 |
4 | 8.0/3.79 ± 0.1 | 0.411 ± 0.02 | 10.14 ± 0.22 | 92.6 ± 2.1 |
5 | 4.0/3.78 ± 0.04 | 0.476 ± 0.03 | 10.20 ± 0.60 | 91.3 ± 1.0 |
5 | 6.0/3.95 ± 0.15 | 0.429 ± 0.05 | 8.88 ± 0.20 | 83.0 ± 1.3 |
5 | 8.0/4.11 ± 0.1 | 0.406 ± 0.06 | 8.14 ± 0.23 | 79.6 ± 1.2 |
pHinit | NaCl (%) | Biomass * (mg/g) | Titratable Acidity (mmol) | pH Final | Psol (mg/L) |
---|---|---|---|---|---|
0 | 44 ± 1.1 a | 22.90 ± 0.26 a | 2.69 ± 0.01 | 134.0 ± 3.1 a | |
0.75 | 34 ± 1.3 ab | 14.09 ± 0.15 b | 2.97 ± 0.03 | 119.2 ± 9.3 b | |
2 | 1.5 | 32 ± 1.3 b | 12.17 ± 0.26 b | 2.92 ± 0.02 | 115.7 ± 6.8 b |
2.25 | 30 ± 0.9 bc | 10.61 ± 0.23 c | 3.00 ± 0.02 | 101.5 ± 0.7 c | |
3 | 28 ± 1.0 c | 9.91 ± 2.42 c | 3.17 ± 0.08 | 88.8 ± 7.5 d | |
0 | 59.9 ± 2.0 a | 48.94 ± 4.58 a | 2.81 ± 0.09 | 183.7 ± 10.0 a | |
0.75 | 50.4 ± 1.3 ab | 41.40 ± 0.46 b | 2.97 ± 0.01 | 152.4 ± 7.5 b | |
4 | 1.5 | 48.3 ± 1.1 b | 40.53 ± 0.53 b | 2.99 ± 0.02 | 146.9 ± 6.5 b |
2.25 | 43.1 ± 0.7 c | 38.47 ± 1.73 c | 3.01 ± 0.02 | 136.0 ± 8.6 c | |
3 | 39.9 ± 0.4 c | 35.20 ± 1.40 c | 3.12 ± 0.02 | 121.9 ± 4.5 d | |
0 | 64.1 ± 3.0 a | 48.64 ± 1.85 a | 2.86 ± 0.08 | 210.5 ± 13.7 a | |
0.75 | 60.9 ± 1.8 b | 47.00 ± 4.25 a | 2.92 ± 0.06 | 197.6 ± 2.8 b | |
6 | 1.5 | 55.7 ± 2.3 b | 51.31 ± 0.70 a | 3.05 ± 0.0 | 171.3 ± 7.5 c |
2.25 | 47.0 ± 2.1 c | 51.31 ± 3.21 a | 3.12 ± 0.02 | 155.0 ± 12.7 d | |
3 | 44.1 ± 1.3 c | 47.65 ± 1.61 a | 3.09 ± 0.03 | 136.3 ± 4.6 e | |
0 | 42 ± 0.6 a | 13.34 ± 0.46 a | 2.92 ± 0.03 | 124.95 ± 10.79 a | |
0.75 | 31 ± 1.1 b | 11.95 ±0.3 ab | 3.10 ± 0.03 | 112.16 ± 5.68 b | |
8 | 1.5 | 29 ± 0.3 bc | 10.59 ± 0.26 b | 3.05 ± 0.01 | 103.58 ± 4.84 c |
2.25 | 26 ± 1.0 bc | 10.75 ± 0.91 b | 3.15 ± 0.01 | 95.08 ± 11.92 c | |
3 | 24 ± 0.5 c | 9.55 ± 0.95 c | 3.17 ± 0.01 | 88.64 ± 11.62 bcd |
pHinit | NaCl (%) | Dry Biomass (g/flask) | pHfinal | Titratable Acidity (mmol) | Psol (mg/L) |
---|---|---|---|---|---|
2 | 0 | 0.259 ± 0.003 a | 2.48 ± 0.01 | 5.4 ± 0.09 a | 14.7 ± 2.4 a |
0.75 | 0.227 ± 0.003 a | 2.59 ± 0.01 | 1.8 ± 0.15 b | 4.7 ± 0.9 b | |
1.5 | 0.202 ± 0.011 a | 2.54 ± 0.02 | 0.58 ± 0.23 c | 2.2 ± 0.8 c | |
2.25 | 0.200 ± 0.010 a | 2.62 ± 0.01 | 0.43 ± 0.09 c | 2.7 ± 0.8 c | |
3 | 0.196 ± 0.012 b | 2.66 ± 0.02 | 0.0 ± 0.01 d | 1.1 ± 0.7 cd | |
4 | 0 | 0.397 ± 0.009 a | 3.18 ± 0.04 | 11.13 ± 0.3 a | 106 ± 4.0 a |
0.75 | 0.338 ± 0.005 a | 3.48 ± 0.05 | 7.68 ± 0.09 b | 62.8 ± 0.9 b | |
1.5 | 0.320 ± 0.021 a | 3.50 ± 0.01 | 7.70 ± 0.23 b | 55.1 ± 1.3 c | |
2.25 | 0.327 ± 0.014 a | 3.50 ± 0.02 | 7.83 ± 0.23 b | 56.3 ± 0.7 c | |
3 | 0.307 ± 0.004 b | 3.57 ± 0.04 | 6.90 ± 0.09 c | 52.9 ± 0.5 c | |
6 | 0 | 0.470 ± 0.005 a | 3.49 ± 0.01 | 10.14 ± 0.23 a | 84.9 ± 3.7 a |
0.75 | 0.406 ± 0.015 a | 4.06 ± 0.02 | 7.69 ± 0.44 b | 47.3 ± 1.9 b | |
1.5 | 0.399 ± 0.010 a | 3.95 ± 0.03 | 6.40 ± 0.09 bc | 42.6 ± 0.5 bc | |
2.25 | 0.330 ± 0.022 b | 3.94 ± 0.01 | 6.20 ± 0.09 bc | 41.4 ± 0.5 bc | |
3 | 0.318 ± 0.037 bc | 3.92 ± 0.02 | 5.89 ± 0.35 c | 40.8 ± 0.7 c | |
8 | 0 | 0.446 ± 0.009 a | 3.37 ± 0.03 | 10.28 ± 0.32 a | 71.2 ± 5.8 a |
0.75 | 0.385 ± 0.002 a | 3.66 ± 0.01 | 7.83 ± 0.32 b | 44.4 ± 0.7 b | |
1.5 | 0.377 ± 0.003 a | 3.65 ± 0.01 | 6.83 ± 0.18 b | 42.2 ± 0.4 b | |
2.25 | 0.333 ± 0.010 ab | 3.70 ± 0.01 | 5.17 ± 0.15 bc | 38.8 ± 1.0 b | |
3 | 0.321 ± 0.018 abc | 3.71 ± 0.01 | 4.74 ± 0.15 c | 38.1 ± 0.6 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassileva, M.; Martos, V.; del Moral, L.F.G.; Vassilev, N. Effect of the Mode of Fermentation on the Behavior of Penicillium bilaiae in Conditions of Abiotic Stress. Microorganisms 2023, 11, 1064. https://doi.org/10.3390/microorganisms11041064
Vassileva M, Martos V, del Moral LFG, Vassilev N. Effect of the Mode of Fermentation on the Behavior of Penicillium bilaiae in Conditions of Abiotic Stress. Microorganisms. 2023; 11(4):1064. https://doi.org/10.3390/microorganisms11041064
Chicago/Turabian StyleVassileva, María, Vanessa Martos, Luis F. García del Moral, and Nikolay Vassilev. 2023. "Effect of the Mode of Fermentation on the Behavior of Penicillium bilaiae in Conditions of Abiotic Stress" Microorganisms 11, no. 4: 1064. https://doi.org/10.3390/microorganisms11041064
APA StyleVassileva, M., Martos, V., del Moral, L. F. G., & Vassilev, N. (2023). Effect of the Mode of Fermentation on the Behavior of Penicillium bilaiae in Conditions of Abiotic Stress. Microorganisms, 11(4), 1064. https://doi.org/10.3390/microorganisms11041064