Prevalence of mecA and Panton-Valentine Leukocidin Genes in Staphylococcus aureus Clinical Isolates from Gaza Strip Hospitals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection and Phenotypic Detection of S. aureus
2.3. DNA Extraction and Molecular Detection of mecA Gene and lukS/F-PV Gene by PCR
2.4. Antimicrobial Susceptibility Testing
2.5. Statistical Analysis
3. Results
3.1. Molecular Analysis
3.2. Antimicrobial Susceptibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle-Vavra, S.; Daum, R.S. Community-acquired methicillin-resistant Staphylococcus aureus: The role of Panton-Valentine leukocidin. Lab. Investig. 2007, 87, 3–9. [Google Scholar] [CrossRef]
- Breurec, S.; Fall, C.; Pouillot, R.; Boisier, P.; Brisse, S.; Diene-Sarr, F.; Djibo, S.; Etienne, J.; Fonkoua, M.C.; Perrier-Gros-Claude, J.D.; et al. Epidemiology of methicillin-susceptible Staphylococcus aureus lineages in five major African towns: High prevalence of Panton-Valentine leukocidin genes. Clin. Microbiol. Infect. 2011, 17, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Darboe, S.; Dobreniecki, S.; Jarju, S.; Jallow, M.; Mohammed, N.I.; Wathuo, M.; Ceesay, B.; Tweed, S.; Basu Roy, R.; Okomo, U.; et al. Prevalence of Panton-Valentine Leukocidin (PVL) and Antimicrobial Resistance in Community-Acquired Clinical Staphylococcus aureus in an Urban Gambian Hospital: A 11-Year Period Retrospective Pilot Study. Front. Cell Infect. Microbiol. 2019, 9, 170. [Google Scholar] [CrossRef]
- Özekinci, T.; Dal, T.; Yanık, K.; Özcan, N.; Can, Ş.; Tekin, A.; Yıldırım, H.; Kandemir, İ. Panton-Valentine leukocidin in community and hospital-acquired Staphylococcus aureus strains. J. Biotechnol. Biotechnol. Equip. 2014, 28, 1089–1094. [Google Scholar] [CrossRef]
- Eed, E.M.; Ghonaim, M.M.; Hussein, Y.M.; Saber, T.M.; Khalifa, A.S. Phenotypic and molecular characterization of HA-MRSA in Taif hospitals, Saudi Arabia. J. Infect. Dev. Ctries. 2015, 9, 298–303. [Google Scholar] [CrossRef]
- Hartman, B.; Tomasz, A. Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 1981, 19, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Sila, J.; Sauer, P.; Kolar, M. Comparison of the prevalence of genes coding for enterotoxins, exfoliatins, panton-valentine leukocidin and tsst-1 between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus at the university hospital in Olomouc. Biomed. Pap. 2009, 153, 215–218. [Google Scholar] [CrossRef]
- Neela, V.; Ehsanollah, G.R.; Zamberi, S.; Van Belkum, A.; Mariana, N.S. Prevalence of Panton-Valentine leukocidin genes among carriage and invasive Staphylococcus aureus isolates in Malaysia. Int. J. Infect. Dis. 2009, 13, e131–e132. [Google Scholar] [CrossRef] [PubMed]
- Prévost, G.; Cribier, B.; Couppié, P.; Petiau, P.; Supersac, G.; Finck-Barbançon, V.; Monteil, H.; Piemont, Y. Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect. Immun. 1995, 63, 4121–4129. [Google Scholar] [CrossRef] [PubMed]
- Nhan, T.X.; Leclercq, R.; Cattoir, V. Prevalence of toxin genes in consecutive clinical isolates of Staphylococcus aureus and clinical impact. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 719–725. [Google Scholar] [CrossRef]
- Lopez-Aguilar, C.; Perez-Roth, E.; Moreno, A.; Duran, M.C.; Casanova, C.; Aguirre-Jaime, A.; Mendez-Alvarez, S. Association between the presence of the Panton-Valentine leukocidin-encoding gene and a lower rate of survival among hospitalized pulmonary patients with staphylococcal disease. J. Clin. Microbiol. 2007, 45, 274–276. [Google Scholar] [CrossRef]
- Monecke, S.; Coombs, G.; Shore, A.C.; Coleman, D.C.; Akpaka, P.; Borg, M.; Chow, H.; Ip, M.; Jatzwauk, L.; Jonas, D.; et al. A field guide to pandemic, epidemic, and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE 2011, 6, e17936. [Google Scholar] [CrossRef]
- Chambers, H.F. Community-associated MRSA—Resistance and virulence converge. N. Engl. J. Med. 2005, 352, 1485–1487. [Google Scholar] [CrossRef] [PubMed]
- Gillet, Y.; Issartel, B.; Vanhems, P.; Fournet, J.C.; Lina, G.; Bes, M.; Vandenesch, F.; Piémont, Y.; Brousse, N.; Floret, D.; et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 2002, 359, 753–759. [Google Scholar] [CrossRef]
- Chiu, Y.K.; Lo, W.T.; Wang, C.C. Risk factors and molecular analysis of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus colonization and infection in children. J. Microbiol. Immunol. Infect. 2012, 45, 208–213. [Google Scholar] [CrossRef]
- Gijón, M.; Bellusci, M.; Petraitiene, B.; Noguera-Julian, A.; Zilinskaite, V.; Sanchez Moreno, P.; Saavedra-Lozano, J.; Glikman, D.; Daskalaki, M.; Kaiser-Labusch, P.; et al. Factors associated with severity in invasive community-acquired Staphylococcus aureus infections in children: A prospective European multicentre study. Clin. Microbiol. Infect. 2016, 22, e641–e646. [Google Scholar] [CrossRef]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Hu, Q.; Cheng, H.; Yuan, W.; Zeng, F.; Shang, W.; Tang, D.; Xue, W.; Fu, J.; Zhou, R.; Zhu, J.; et al. Panton-Valentine leukocidin (PVL)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages. J. Clin. Microbiol. 2015, 53, 67–72. [Google Scholar] [CrossRef]
- Adwan, G.; Abu Jaber, A. Frequency and molecular characterization of β-lactamases producing Escherichia coli isolated from North of Palestine. Br. Microbiol. Res. J. 2016, 11, 1–13. [Google Scholar] [CrossRef]
- Al Laham, N.; Mediavilla, J.R.; Chen, L.; Abdelateef, N.; Elamreen, F.A.; Ginocchio, C.C.; Pierard, D.; Becker, K.; Kreiswirth, B.N. MRSA clonal complex 22 strains harboring toxic shock syndrome toxin (TSST-1) are endemic in the primary hospital in Gaza, Palestine. PLoS ONE 2015, 10, e0120008. [Google Scholar] [CrossRef]
- Biber, A.; Abuelaish, I.; Rahav, G.; Raz, M.; Cohen, L.; Valinsky, L.; Taran, D.; Goral, A.; Elhamdany, A.; Regev-Yochay, G. A typical hospital-acquired methicillin-resistant Staphylococcus aureus clone is widespread in the community in the Gaza strip. PLoS ONE 2012, 7, e42864. [Google Scholar] [CrossRef]
- El Aila, N.A.; Al Laham, N.A.; Ayesh, B.M. Nasal carriage of methicillin resistant Staphylococcus aureus among health care workers at Al Shifa hospital in Gaza Strip. BMC Infect. Dis. 2017, 17, 28. [Google Scholar] [CrossRef]
- Hadyeh, E.; Azmi, K.; Seir, R.A.; Abdellatief, I.; Abdeen, Z. Molecular Characterization of Methicillin Resistant Staphylococcus aureus in West Bank-Palestine. Front. Public Health 2019, 7, 130. [Google Scholar] [CrossRef]
- Wikipedia Contributors. Demographics of the Palestinian Territories. Wikipedia, The Free Encyclopedia. 2022. Available online: http://en.wikipedia.org/wiki/Demographics_of_the_Palestinian_territories (accessed on 7 November 2022).
- Kateete, D.P.; Kimani, C.N.; Katabazi, F.A.; Okeng Okee, M.S.; Nanteza, A.; Joloba, M.L.; Najjuka, F.C. Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 23–29. [Google Scholar] [CrossRef]
- El Aila, N.A.; Tency, I.; Claeys, G.; Saerens, B.; De Backer, E.; Temmerman, M.; Verhelst, R.; Vaneechoutte, M. Genotyping of Streptococcus agalactiae (group B streptococci) isolated from vaginal and rectal swabs of women at 35–37 weeks of pregnancy. BMC Infect. Dis. 2009, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Valle, D.L., Jr.; Paclibare, P.A.; Cabrera, E.C.; Rivera, W.L. Molecular and phenotypic characterization of methicillin-resistant Staphylococcus aureus isolates from a tertiary hospital in the Philippines. Trop. Med. Health 2016, 44, 3. [Google Scholar] [CrossRef]
- Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2021.
- Gillet, Y.; Etienne, J.; Lina, G.; Vandenesch, F. Association of necrotizing pneumonia with Panton-Valentine leukocidin-producing Staphylococcus aureus, regardless of methicillin resistance. Clin. Infect. Dis. 2008, 47, 985–986. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Boakes, E.; Kearns, A.M.; Badiou, C.; Lina, G.; Hill, R.L.; Ellington, M.J. Do differences in Panton-Valentine leukocidin production among international methicillin-resistant Staphylococcus aureus clones affect disease presentation and severity? J. Clin. Microbiol. 2012, 50, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- Tong, A.; Tong, S.Y.C.; Zhang, Y.; Lamlertthon, S.; Sharma-Kuinkel, B.K.; Rude, T.; Ahn, S.H.; Ruffin, F.; Llorens, L.; Tamarana, G.; et al. Panton-Valentine Leukocidin Is Not the Primary Determinant of Outcome for Staphylococcus aureus Skin Infections: Evaluation from the CANVAS Studies. PLoS ONE 2012, 7, e37212. [Google Scholar] [CrossRef]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Wehrhahn, M.C.; Robinson, J.O.; Pearson, J.C.; O’Brien, F.G.; Tan, H.L.; Coombs, G.W.; Pascoe, E.M.; Lee, R.; Salvaris, P.; Salvaris, R.; et al. Clinical and laboratory features of invasive community-onset methicillin-resistant Staphylococcus aureus infection: A prospective case-control study. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, O.; Badiou, C.; Bes, M.; Reverdy, M.E.; Vandenesch, F.; Etienne, J.; Lina, G. Effect of antibiotics, alone and in combination, on Panton-Valentine leukocidin production by a Staphylococcus aureus reference strain. Clin. Microbiol. Infect. 2008, 14, 384–388. [Google Scholar] [CrossRef]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.E.; et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: Worldwide emergence. Emerg. Infect. Dis. 2003, 9, 978–984. [Google Scholar] [CrossRef]
- Adwan, G.; Shaheen, H.; Adwan, K.; Barakat, A. Molecular characterization of methicillin resistant Staphylococcus aureus isolated from hospitals environments and patients in Northern Palestine. J. Epidemiol. Biostat. Public Health 2015, 12, e11183. [Google Scholar] [CrossRef]
- Borg, M.A.; de Kraker, M.; Scicluna, E.; van de Sande-Bruinsma, N.; Tiemersma, E.; Monen, J.; Grundmann, H. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in invasive isolates from southern and eastern Mediterranean countries. J. Antimicrob. Chemother. 2007, 60, 1310–1315. [Google Scholar] [CrossRef]
- Tabaja, H.; Hindy, J.R.; Kanj, S.S. Epidemiology of Methicillin-Resistant Staphylococcus aureus in Arab Countries of the Middle East and North African (MENA) Region. Med. J. Hematol. Infect. Dis. 2021, 13, 2021050. [Google Scholar] [CrossRef]
- Jarajreh, D.; Aqel, A.; Alzoubi, H.; Al-Zereini, W. Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: The first study in Jordan. J. Infect. Dev. Count. 2017, 11, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Alfeky, A.E.; Tawfick, M.M.; Ashour, M.S.; El-Moghazy, A.A. High Prevalence of Multi-drug Resistant Methicillin-Resistant Staphylococcus aureus in Tertiary Egyptian Hospitals. J. Infect. Dev. Count. 2022, 16, 795–806. [Google Scholar] [CrossRef]
- Senok, A.; Ehricht, R.; Monecke, S.; Al-Saedan, R.; Somily, A. Molecular characterization of methicillin resistant Staphylococcus aureus in nosocomial infections in a tertiary care facility: Emergence of new clonal complexes in Saudi Arabia. New Microbes New Infect. 2016, 14, 13–18. [Google Scholar] [CrossRef]
- Monecke, S.; Bedewy, A.K.; Müller, E.; Braun, S.D.; Diezel, C.; Elsheredy, A.; Kader, O.; Reinicke, M.; Ghazal, A.; Rezk, S.; et al. Characterization of Methicillin Resistant Staphylococcus aureus from Alexandria, Egypt. Antibiotics 2023, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Udo, E.E.; Boswihi, S.S.; Al-Sweih, N. High prevalence of toxic shock syndrome toxin-producing epidemic methicillin-resistant Staphylococcus aureus 15 (EMRSA-15) strains in Kuwait hospitals. New Microbes New Infect. 2016, 12, 24–30. [Google Scholar] [CrossRef]
- Udo, E.E.; Al-Lawati, B.A.-H.; Al-Muharmi, Z.; Thukral, S.S. Genotyping of methicillin-resistant Staphylococcus aureus in the Sultan Qaboos University Hospital, Oman reveals the dominance of Panton–Valentine leucocidin-negative ST6-IV/t304 clone. New Microbe New Infect. 2014, 2, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Chini, V.; Petinaki, E.; Foka, A.; Paratiras, S.; Dimitracopoulos, G.; Spiliopoulou, I. Spread of Staphylococcus aureus clinical isolates carrying Panton-Valentine leukocidin genes during a 3-year period in Greece. Clin. Microbiol. Infect. 2006, 12, 29–34. [Google Scholar] [CrossRef]
- Omuse, G.; Shivachi, P.; Kariuki, S.; Revathi, G. Prevalence of panton valentine leukocidin in carriage and infective strains of Staphylococcus aureus at a referral hospital in Kenya. Open J. Med. Microbiol. 2013, 3, 5–11. [Google Scholar] [CrossRef]
- Shariati, L.; Validi, M.; Hasheminia, A.M.; Ghasemikhah, R.; Kianpour, F.; Karimi, A.; Nafisi, M.R.; Tabatabaiefar, M.A. Staphylococcus aureus Isolates Carrying Panton-Valentine Leucocidin Genes: Their Frequency, Antimicrobial Patterns, and Association With Infectious Disease in Shahrekord City, Southwest Iran. Jundishapur J. Microbiol. 2016, 9, e28291. [Google Scholar] [CrossRef]
- Kaur, H.; Purwar, S.; Saini, A.; Kaur, H.; Karadesai, S.; Kholkute, S.; Roy, S.J.J. Status of methicillin-resistant Staphylococcus aureus infections and evaluation of PVL producing strains in Belgaum, South India. J. Krishna Inst. Med. Sci. Univ. 2012, 1, 43–51. [Google Scholar]
- Afroz, S.; Kobayashi, N.; Nagashima, S.; Alam, M.M.; Hossain, A.B.; Rahman, M.A.; Islam, M.R.; Lutfor, A.B.; Muazzam, N.; Khan, M.A.; et al. Genetic characterization of Staphylococcus aureus isolates carrying Panton-Valentine leukocidin genes in Bangladesh. Jpn. J. Infect. Dis. 2008, 61, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.; Ganner, M.; McGuane, S.; Pitt, T.L.; Cookson, B.D.; Kearns, A.M. Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales: Frequency, characterization, and association with clinical disease. J. Clin. Microbiol. 2005, 43, 2384–2390. [Google Scholar] [CrossRef]
- Moussa, I.; Hessan, A. Rapid detection of community acquired-methicillin resistance Staphylococcus aureus recovered from King Saudi Arabia. Afr. J. Microbiol. Res. 2010, 4, 2804–2810. [Google Scholar]
- Antri, K.; Rouzic, N.; Boubekri, I.; Dauwalder, O.; Beloufa, A.; Ziane, H.; Djennane, F.; Neggazi, M.; Benhabyles, B. High prevalence of community-and hospital-acquired infections of methicillin-resistant Staphylococcus aureus containing Panton-Valentine leukocidin gene in Algiers. J. Pathol. Biol. 2009, 58, e15–e20. [Google Scholar] [CrossRef]
- Monecke, S.; Müller, E.; Dorneanu, O.S.; Vremeră, T.; Ehricht, R. Molecular typing of MRSA and of clinical Staphylococcus aureus isolates from Iaşi, Romania. PLoS ONE 2014, 9, e97833. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Singh, W.; Raj, V.S.; Pokhrel, B.M.; Mohapatra, T.M. High prevalence of Panton-Valentine leukocidin (PVL) genes in nosocomial-acquired Staphylococcus aureus isolated from tertiary care hospitals in Nepal. BioMed Res. Internet 2014, 2014, 790350. [Google Scholar]
- Brown, M.L.; O’Hara, F.P.; Close, N.M.; Mera, R.M.; Miller, L.A.; Suaya, J.A.; Amrine-Madsen, H. Prevalence and sequence variation of panton-valentine leukocidin in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains in the United States. J. Clin. Microbiol. 2012, 50, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.N.; Ocampo, A.M.; Vanegas, J.M.; Rodríguez, E.A.; Garcés, C.G.; Patiño, L.A.; Ospina, S.; Corre, A.M.M. Characterisation of virulence genes in methicillin susceptible and resistant Staphylococcus aureus isolates from a paediatric population in a university hospital of Medellín, Colombia. Mem. Inst. Oswaldo Cruz 2011, 106, 980–985. [Google Scholar] [CrossRef]
- Vourli, S.; Vagiakou, H.; Ganteris, G.; Orfanidou, M.; Polemis, M.; Vatopoulos, A.; Malamou-Ladas, H. High rates of community-acquired, Panton-Valentine leukocidin (PVL)-positive methicillin-resistant S. aureus (MRSA) infections in adult outpatients in Greece. Euro Surveill. 2009, 14, 19089. [Google Scholar]
- Alli, O.; Ogbolu, D.O.; Shittu, A.O.; Okorie, A.N.; Akinola, J.O.; Daniel, J.B. Association of virulence genes with mecA gene in Staphylococcus aureus isolates from Tertiary Hospitals in Nigeria. Indian J. Pathol. Microbiol. 2015, 58, 464. [Google Scholar] [CrossRef]
- Khosravi, A.D.; Hoveizavi, H.; Farshadzadeh, Z. The prevalence of genes encoding leukocidins in Staphylococcus aureus strains resistant and sensitive to methicillin isolated from burn patients in Taleghani Hospital, Ahvaz, Iran. Burns 2012, 38, 247–251. [Google Scholar] [CrossRef]
- Kamarehei, F.; Ghaemi, E.A.; Dadgar, T. Prevalence of enterotoxin A and B genes in Staphylococcus aureus isolated from clinical samples and healthy carriers in Gorgan City, North of Iran. Indian J. Pathol. Microbiol. 2013, 56, 265–268. [Google Scholar]
- Singh-Moodley, A.; Strasheim, W.; Mogokotleng, R.; Ismail, H.; Perovic, O. Unconventional SCCmec types and low prevalence of the Panton-Valentine Leukocidin exotoxin in South African blood culture Staphylococcus aureus surveillance isolates, 2013-2016. PLoS ONE 2019, 14, e0225726. [Google Scholar] [CrossRef]
- Demir, T.; Coplu, N.; Bayrak, H.; Turan, M.; Buyukguclu, T.; Aksu, N.; Eksioglu, M.; Yalcin, B.; Atakan, N.; Kilic, S.; et al. Panton-Valentine leucocidin gene carriage among Staphylococcus aureus strains recovered from skin and soft tissue infections in Turkey. J. Antimicrob. Chemother. 2012, 67, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Bazzi, A.M.; Rabaan, A.A.; Fawarah, M.M.; Al-Tawfiq, J.A. Prevalence of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus infections in a Saudi Arabian hospital. J. Infect. Public Health 2015, 8, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, R.; Najafi, N.; Makhlough, A.; Khademloo, M. Frequency of nasal carriage of Staphylococcus aureus and its antimicrobial resistance pattern in patients on hemodialysis. Iran. J. Kidney Dis. 2010, 4, 218–222. [Google Scholar] [PubMed]
- Hafeez, R.; Chughtai, A.; Aslam, M. Prevalence and antimicrobial susceptibility of methicillin resistant Staphylococcus aureus (MRSA). J. Int. Pathol. 2004, 2, 10–15. [Google Scholar]
- Orji, O.; Olayinka, B.; Afolabi, B.; Ejikeugwu, C. Molecular detection of panton-valentine leukocidin (PVL) toxins in clinical isolates of Staphylococcus aureus from Maitama district hospital, Abuja, Nigeria. J. Med. Microbiol. Diagn. 2016, 5, 240. [Google Scholar]
- Taj, Y.; Abdullah, F.E.; Kazmi, S.U. Current pattern of antibiotic resistance in Staphylococcus aureus clinical isolates and the emergence of vancomycin resistance. J. Coll. Phys. Surg. 2010, 20, 728–732. [Google Scholar]
- Harrison, E.M.; Paterson, J.K.; Holden, M.T.; Xiaoliang, B.; Ba, X.; Rolo, J.; Morgan, F.J.; Holmes, M.A. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. J. Antimicrob. Chemother. 2014, 69, 911–918. [Google Scholar] [CrossRef]
Primers | Gene Targeted | Sequence | Product Size (bp) |
---|---|---|---|
Staph756F | 16SRNA | 5-AACTCTGTTATTAGGGAAGAACA-3 | |
Staph750R | 16SRNA | 5-CCACCTTCCTCCGGTTTGTCACC-3 | 756 |
Leuk-PV-1 | lukS/F | 5-ATCATTAGGTAAAATGTCTGGACATGATCCA-3 | |
Leuk-PV-2 | lukS/F | 5-GCATCAAGTGTATTGGATAGCAAAA GC-3 | 433 |
Mec-A1 | mecA | 5-GTAGAAATGACTGAACGTCCGATAA-3 | |
Mec-A2 | mecA | 5-CCAATTCCACATTGT TTCGGTCTAA-3 | 310 |
MRSA | MSSA | PVL | MRSA PVL+ | MRSA PVL− | MSSA PVL+ | MSSA PVL− | |
---|---|---|---|---|---|---|---|
Al Shifa (72) | 55 (76.3%) | 17 (23.6%) | 21 (29.1%) | 15 (20.8%) | 40 (55.5%) | 6 (8.3%) | 11 (15.2%) |
Al Nasser (85) | 60 (70.5%) | 25 (29.4%) | 28 (32.9%) | 21 (24.7%) | 39 (45.8%) | 7 (8.2%) | 18 (21.1%) |
Al Aqsa (41) | 27 (65.8%) | 14 (34.1%) | 13 (31.7%) | 8 (19.5%) | 19 (46.3%) | 5 (12.1%) | 9 (21.9%) |
European (26) | 18 (69.2%) | 8 (30.8%) | 7 (26.9%) | 6 (23%) | 12 (46.1%) | 1 (3.8%) | 7 (26.9%) |
Naser (61) | 40 (65.6%) | 21 (52.5%) | 16 (26.2%) | 11 (18%) | 29 (47.5%) | 5 (8.1%) | 16 (26.2%) |
Total (285) | 200 (70.1%) | 85 (29.8%) | 85 (29.8%) | 61 (21.4%) | 139 (48.7%) | 24 (8.4%) | 61 (21.4%) |
MRSA | MSSA | PVL | MRSA/PVL+ | MRSA/PVL− | MSSA/PVL+ | MSSA/PVL− | Total/Sample Type | |
---|---|---|---|---|---|---|---|---|
Blood | 20 | 11 | 6 | 4 | 16 | 2 | 9 | 31 |
Sputum | 10 | 7 | 6 | 4 | 6 | 2 | 5 | 17 |
Pus | 150 | 58 | 70 | 51 | 99 | 19 | 39 | 208 |
Urine | 9 | 5 | 1 | 1 | 8 | 0 | 5 | 14 |
Others | 11 | 4 | 2 | 1 | 10 | 1 | 3 | 15 |
Total | 200 | 85 | 85 | 61 | 139 | 24 | 61 | 285 |
R $ | S $ | I $ | ||||
---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | |
Penicillin G | 274 | 96.1 | 11 | 3.9 | 0 | 0 |
Amoxicillin/ Clavulanic Acid * | 210 | 73.6 | 75 | 26.3 | 0 | 0 |
Cefoxitin | 198 | 69.5 | 87 | 30.5 | 0 | 0 |
Erythromycin | 136 | 47.7 | 132 | 46.3 | 17 | 6 |
Co-trimoxazole * | 92 | 32.3 | 185 | 64.9 | 8 | 2.8 |
Tetracycline | 79 | 27.2 | 206 | 72.3 | 0 | 0 |
Ciprofloxacin | 75 | 26.2 | 193 | 67.7 | 17 | 6 |
Chloramphenicol | 52 | 18.2 | 229 | 80.4 | 4 | 1.4 |
Vancomycin * | 32 | 11.2 | 253 | 88.7 | 0 | 0 |
Clindamycin | 31 | 10.9 | 241 | 84.6 | 13 | 4.5 |
Rifampicin | 23 | 8.1 | 260 | 91.2 | 2 | 0.7 |
MRSA (n = 200) | MSSA (n = 85) | MRSA/PVL+ (n = 61) | MRSA/PVL− (n = 139) | MSSA/ PVL+ (n = 24) | MSSA/ PVL− (n = 61) | |
---|---|---|---|---|---|---|
Penicillin G | 197 (98.5%) | 81 (95.2%) | 58 (95%) | 139 (100%) | 23 (95.5%) | 58 (95%) |
Amoxicillin/ Clavulanic Acid * | 160 (80%) | 53 (62%) | 51 (83.6%) | 108 (77.6%) | 13 (54.5%) | 40 (65.5%) |
Cefoxitin | 197 (98.5%) | 80 (32.9%) | 59 (96.7%) | 139 (100%) | 23 (95.5%) | 57 (93.4%) |
Erythromycin | 95 (47.5%) | 39 (45.8%) | 29 (47.5%) | 66 (47.5%) | 10 (41.6%) | 29 (47.5%) |
Co-trimoxazole * | 73 (36.5%) | 17 (20%) | 20 (32.7%) | 53 (38.1%) | 1 (4.1%) | 16 (26.2%) |
Tetracycline | 48 (24%) | 18 (21%) | 19 (31.1%) | 40 (28.7%) | 6 (25%) | 12 (18.7%) |
Ciprofloxacin | 60 (30%) | 15 (17.6%) | 17 (27.8%) | 38 (27.3%) | 1 (4.7%) | 13 (21.3%) |
Chloramphenicol | 34 (17%) | 18 (21.1%) | 8 (13.1%) | 26 (18.7%) | 5 (20.8%) | 13 (21.3%) |
Rifampicin | 21 (10.5%) | 2 (2.3%) | 5 (8.1%) | 16 (11.5%) | 1 (4.1%) | 1 (1.6%) |
Vancomycin * | 31 (15.5%) | 10 (5%) | 10 (16.3%) | 16 (11.5%) | 2 (8.3%) | 8 (13%) |
Clindamycin | 24 (12%) | 6 (7%) | 5 (8.1%) | 19 (13.6%) | 2 (8.3%) | 4 (6.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Aila, N.A.; Al Laham, N.A.; Naas, T. Prevalence of mecA and Panton-Valentine Leukocidin Genes in Staphylococcus aureus Clinical Isolates from Gaza Strip Hospitals. Microorganisms 2023, 11, 1155. https://doi.org/10.3390/microorganisms11051155
El Aila NA, Al Laham NA, Naas T. Prevalence of mecA and Panton-Valentine Leukocidin Genes in Staphylococcus aureus Clinical Isolates from Gaza Strip Hospitals. Microorganisms. 2023; 11(5):1155. https://doi.org/10.3390/microorganisms11051155
Chicago/Turabian StyleEl Aila, Nabil Abdullah, Nahed Ali Al Laham, and Thierry Naas. 2023. "Prevalence of mecA and Panton-Valentine Leukocidin Genes in Staphylococcus aureus Clinical Isolates from Gaza Strip Hospitals" Microorganisms 11, no. 5: 1155. https://doi.org/10.3390/microorganisms11051155
APA StyleEl Aila, N. A., Al Laham, N. A., & Naas, T. (2023). Prevalence of mecA and Panton-Valentine Leukocidin Genes in Staphylococcus aureus Clinical Isolates from Gaza Strip Hospitals. Microorganisms, 11(5), 1155. https://doi.org/10.3390/microorganisms11051155