Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Culture of Seed Solution of Bacillus LFB112
2.2. Preparation of Bacterial Pellets
2.3. Determination of Acetyl-CoA in Bacteria by High-Performance Liquid Chromatography (HPLC)
2.4. Detection of Short-Chain Fatty Acids (SCFA) Content in Culture Medium by Gas Chromatography (GC)
2.5. Detection of Medium-Chain Fatty Acids (MCFA) and Long-Chain Fatty Acids (LCFA) Acid Content in Culture Medium and Bacteria by GC
2.6. Detection of mRNA Levels of Genes in Bacillus LFB112 by qPCR
2.7. Statistical Analysis
3. Results
3.1. The Fatty Acid Profile of Bacillus LFB112 in the Supernatant of BPY Medium
3.2. The Fatty Acid Profile of Bacillus LFB112 Pellets
3.3. Different Inducers on the Acetic Acid Production of Bacillus LFB112
3.4. Effect of SSO on the Glycolysis Pathway of Bacillus LFB112
3.5. Effect of SSO on Type II FAs Pathway of Bacillus LFB112
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upadhaya, S.D.; Rudeaux, F.; Kim, I.H. Effects of inclusion of Bacillus subtilis (Gallipro) to energy- and protein-reduced diet on growth performance, nutrient digestibility, and meat quality and gas emission in broilers. Poult. Sci. 2019, 98, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Jeni, R.E.; Dittoe, D.K.; Olson, E.G.; Lourenco, J.; Corcionivoschi, N.; Ricke, S.C.; Callaway, T.R. Probiotics and potential applications for alternative poultry production systems. Poult. Sci. 2021, 100, 101156. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.; Zaki, R.S.; Negm, E.A.; Mahmoud, M.A.; Cheng, H.W. Effects of dietary supplementation of a probiotiC(Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poult. Sci. 2021, 100, 100906. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Liu, X.; Liu, H. Effects of Dietary ProbiotiC(Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef]
- Khajeh Bami, M.; Afsharmanesh, M.; Ebrahimnejad, H. Effect of Dietary Bacillus coagulans and Different Forms of Zinc on Performance, Intestinal Microbiota, Carcass and Meat Quality of Broiler Chickens. Probiotics Antimicrob. Proteins 2020, 12, 461–472. [Google Scholar] [CrossRef]
- Rehman, A.; Arif, M.; Sajjad, N.; Al-Ghadi, M.Q.; Alagawany, M.; Abd El-Hack, M.E.; Alhimaidi, A.R.; Elnesr, S.S.; Almutairi, B.O.; Amran, R.A.; et al. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult. Sci. 2020, 99, 6946–6953. [Google Scholar] [CrossRef]
- Ren, H.; Vahjen, W.; Dadi, T.; Saliu, E.M.; Boroojeni, F.G.; Zentek, J. Synergistic Effects of Probiotics and Phytobiotics on the Intestinal Microbiota in Young Broiler Chicken. Microorganisms 2019, 7, 684. [Google Scholar] [CrossRef] [Green Version]
- Al-Khalaifa, H.; Al-Nasser, A.; Al-Surayee, T.; Al-Kandari, S.; Al-Enzi, N.; Al-Sharrah, T.; Ragheb, G.; Al-Qalaf, S.; Mohammed, A. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poult. Sci. 2019, 98, 4465–4479. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef]
- Kanaan, J.; Murray, J.; Higgins, R.; Nana, M.; DeMarco, A.M.; Korza, G.; Setlow, P. Resistance properties and the role of the inner membrane and coat of Bacillus subtilis spores with extreme wet heat resistance. J. Appl. Microbiol. 2022, 132, 2157–2166. [Google Scholar] [CrossRef]
- Tu, Z.; Setlow, P.; Brul, S.; Kramer, G. Molecular Physiological Characterization of a High Heat Resistant Spore Forming Bacillus subtilis Food Isolate. Microorganisms 2021, 9, 667. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Nguyen, D.V.; Tran, M.T.; Nguyen, L.T.; Nguyen, A.H.; Phan, T.N. Isolation and characterization of Bacillus subtilis CH16 strain from chicken gastrointestinal tracts for use as a feed supplement to promote weight gain in broilers. Lett. Appl. Microbiol. 2015, 60, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Bader, J.; Albin, A.; Stahl, U. Spore-forming bacteria and their utilisation as probiotics. Benef. Microbes 2012, 3, 67–75. [Google Scholar] [CrossRef]
- Elisashvili, V.; Kachlishvili, E.; Chikindas, M.L. Recent Advances in the Physiology of Spore Formation for Bacillus Probiotic Production. Probiotics Antimicrob. Proteins 2019, 11, 731–747. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.; Bae, K.S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 2000, 78, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Reva, O.N.; Dixelius, C.; Meijer, J.; Priest, F.G. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 2004, 48, 249–259. [Google Scholar] [CrossRef]
- Xie, J.H.; Zhang, R.J.; Shang, C.J.; Guo, Y.Q. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 2009, 8, 5611–5619. [Google Scholar]
- Ahmat, M.; Cheng, J.; Abbas, Z.; Cheng, Q.; Fan, Z.; Ahmad, B.; Hou, M.; Osman, G.; Guo, H.; Wang, J.; et al. Effects of Bacillus amyloliquefaciens LFB112 on Growth Performance, Carcass Traits, Immune, and Serum Biochemical Response in Broiler Chickens. Antibiotics 2021, 10, 1427. [Google Scholar] [CrossRef]
- Wei, X.B.; Liao, X.D.; Cai, J.; Zheng, Z.J.; Zhang, L.L.; Shang, T.T.; Fu, Y.; Hu, C.; Ma, L.; Zhang, R.J. Effects of Bacillus amyloliquefaciens LFB112 in the diet on growth of broilers and on the quality and fatty acid composition of broiler meat. Anim. Prod. Sci. 2017, 57, 1899–1905. [Google Scholar] [CrossRef]
- Diomande, S.E.; Nguyen-The, C.; Guinebretiere, M.H.; Broussolle, V.; Brillard, J. Role of fatty acids in Bacillus environmental adaptation. Front. Microbiol. 2015, 6, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siroli, L.; Braschi, G.; Rossi, S.; Gottardi, D.; Patrignani, F.; Lanciotti, R. Lactobacillus paracasei A13 and High-Pressure Homogenization Stress Response. Microorganisms 2020, 8, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podkovyrov, S.M.; Larson, T.J. Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli. Nucleic Acids Res. 1996, 24, 1747–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, S.W.; Zheng, J.; Zhang, Y.M.; Rock. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 2005, 74, 791–831. [Google Scholar] [CrossRef] [PubMed]
- Oku, H.; Futamori, N.; Masuda, K.; Shimabukuro, Y.; Omine, T.; Iwasaki, H. Biosynthesis of branched-chain fatty acid in bacilli: FabD (malonyl-CoA:ACP transacylase) is not essential for in vitro biosynthesis of branched-chain fatty acids. Biosci. Biotechnol. Biochem. 2003, 67, 2106–2114. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Jeon, E.; Jung, Y.; Lee, J. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli. Appl. Biochem. Biotechnol. 2012, 167, 24–38. [Google Scholar] [CrossRef]
- Zhang, X.; Agrawal, A.; San, K.Y. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase. Biotechnol. Prog. 2012, 28, 60–65. [Google Scholar] [CrossRef]
- Marrakchi, H.; Zhang, Y.M.; Rock, C.O. Mechanistic diversity and regulation of Type II fatty acid synthesis. Biochem. Soc. T 2002, 30, 1050–1055. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, L.; Lu, Y.J.; Schujman, G.E.; de Mendoza, D.; Rock, C.O. Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J. Bacteriol. 2007, 189, 5816–5824. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Liu, F.; Liao, X.; Zhang, R. Complete genome sequence of Bacillus amyloliquefaciens LFB112 isolated from Chinese herbs, a strain of a broad inhibitory spectrum against domestic animal pathogens. J. Biotechnol. 2014, 175, 63–64. [Google Scholar] [CrossRef]
- Shurubor, Y.I.; D’Aurelio, M.; Clark-Matott, J.; Isakova, E.P.; Deryabina, Y.I.; Beal, M.F.; Cooper, A.J.L.; Krasnikov, B.F. Determination of Coenzyme A and Acetyl-Coenzyme A in Biological Samples Using HPLC with UV Detection. Molecules 2017, 22, 1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peizhao, L.; Chun, L.; Wanting, L.; Libo, L. Determination of intracellular Acetyl-CoA in L.bulgaricus by HPLC. Sci. Technol. Food Ind. 2013, 34, 58–61+65. [Google Scholar] [CrossRef]
- Tangerman, A.; Nagengast, F.M. A gas chromatographic analysis of fecal short-chain fatty acids, using the direct injection method. Anal. Biochem. 1996, 236, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Ishfaq, M.; Miao, Y.S.; Liu, Z.Y.; Hao, M.T.; Wang, C.Y.; Wang, J.Q.; Chen, X.P. Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poult. Sci. 2022, 101, 101693. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, H.; Shi, L.; Zhang, X.; Sheng, R.; Yin, F.; Gooneratne, R. Study of Bacillus subtilis on growth performance, nutrition metabolism and intestinal microflora of 1 to 42 d broiler chickens. Anim. Nutr. 2017, 3, 109–113. [Google Scholar] [CrossRef]
- Kogut, M.H. The effect of microbiome modulation on the intestinal health of poultry. Anim Feed Sci. Technol. 2019, 250, 32–40. [Google Scholar] [CrossRef]
- Yang, J.J.; Qian, K.; Zhang, W.; Xu, Y.Y.; Wu, Y.J. Effects of chromium-enriched Bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Lipids Health Dis. 2016, 15, 188. [Google Scholar] [CrossRef] [Green Version]
- Salma, U.; Miah, A.G.; Maki, T.; Nishimura, M.; Tsujii, H. Effect of dietary Rhodobacter capsulatus on cholesterol concentration and fatty acid composition in broiler meat. Poult. Sci. 2007, 86, 1920–1926. [Google Scholar] [CrossRef]
- Popova, T. Effect of probiotics in poultry for improving meat quality. Curr. Opin. Food Sci. 2017, 14, 72–77. [Google Scholar] [CrossRef]
- Nakano, M.M.; Dailly, Y.P.; Zuber, P.; Clark, D.P. Characterization of anaerobic fermentative growth of Bacillus subtilis: Identification of fermentation end products and genes required for growth. J. Bacteriol. 1997, 179, 6749–6755. [Google Scholar] [CrossRef] [Green Version]
- Ramos, H.C.; Hoffmann, T.; Marino, M.; Nedjari, H.; Presecan-Siedel, E.; Dreesen, O.; Glaser, P.; Jahn, D. Fermentative metabolism of Bacillus subtilis: Physiology and regulation of gene expression. J. Bacteriol. 2000, 182, 3072–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stulke, J.; Hillen, W. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 2000, 54, 849–880. [Google Scholar] [CrossRef] [PubMed]
- Takac, S.; Marul, B. Effects of lipidic carbon sources on the extracellular lipolytic activity of a newly isolated strain of Bacillus subtilis. J. Ind. Microbiol. Biot. 2008, 35, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Paavilainen, S.; Oinonen, S.; Korpela, T. Catabolic pathways of glucose in Bacillus Circ. Var. Alkalophilus. Extrem. 1999, 3, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shang, C.; Zhang, H.; Sun, C.; Zhang, G.; Liu, L.; Li, C.; Li, A.; Du, P. Effects of Alkali Stress on the Growth and Menaquinone-7 Metabolism of Bacillus subtilis natto. Front. Microbiol. 2022, 13, 899802. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Q.; Ma, X.; Lang, D.; Guo, Z.; Zhang, X. Physiological Biochemistry-Combined Transcriptomic Analysis Reveals Mechanism of Bacillus cereus G2 Improved Salt-Stress Tolerance of Glycyrrhiza uralensis Fisch. Seedlings by Balancing Carbohydrate Metabolism. Front. Plant Sci. 2021, 12, 712363. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeon, E.; Lee, S.; Lee, J.; Lee, T.; Won, J.I. An analysis of the concentration change of intermediate metabolites by gene manipulation in fatty acid biosynthesis. Enzym. Microb. Technol. 2012, 51, 95–99. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, M.; Liu, J.N.; Lu, L.J.; Peng, K.M.; Huang, X.F. Microbial conversion of mixed volatile fatty acids into microbial lipids by sequencing batch culture strategy. Bioresour. Technol. 2016, 222, 75–81. [Google Scholar] [CrossRef]
- Zhao, X.; Qiu, X. Analysis of the biosynthetic process of fatty acids in Thraustochytrium. Biochimie 2018, 144, 108–114. [Google Scholar] [CrossRef]
- Trcek, J.; Jernejc, K.; Matsushita, K. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 2007, 11, 627–635. [Google Scholar] [CrossRef]
- Ding, J.; Holzwarth, G.; Penner, M.H.; Patton-Vogt, J.; Bakalinsky, A.T. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Microbiol. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, J.L.; Lee, S.H.; Paul, K.S.; Englund, P.T. Mitochondrial fatty acid synthesis in Trypanosoma brucei. J. Biol. Chem. 2007, 282, 4427–4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time | Item | CON | SSO | p |
---|---|---|---|---|
12 h | Acetic acid | 0.261 ± 0.013 | 0.052 ± 0.008 | <0.001 |
Isobutyric acid | 0.024 ± 0.001 | 0.002 ± 0.001 | <0.001 | |
Isovaleric acid | 0.124 ± 0.006 | 0.006 ± 0.004 | <0.001 | |
24 h | Acetic acid | 0.991 ± 0.008 | 0.185 ± 0.003 | <0.001 |
Isobutyric acid | 0.094 ± 0.004 | 0.008 ± 0.001 | <0.001 | |
Isovaleric acid | 0.382 ± 0.016 | 0.025 ± 0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Li, Z.; Zhang, J.; Guo, H.; Ahmat, M.; Cheng, J.; Abbas, Z.; Hua, Z.; Wang, J.; Tong, Y.; et al. Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels. Microorganisms 2023, 11, 1164. https://doi.org/10.3390/microorganisms11051164
Cheng Q, Li Z, Zhang J, Guo H, Ahmat M, Cheng J, Abbas Z, Hua Z, Wang J, Tong Y, et al. Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels. Microorganisms. 2023; 11(5):1164. https://doi.org/10.3390/microorganisms11051164
Chicago/Turabian StyleCheng, Qiang, Zhongxuan Li, Jing Zhang, Henan Guo, Marhaba Ahmat, Junhao Cheng, Zaheer Abbas, Zhengchang Hua, Junyong Wang, Yucui Tong, and et al. 2023. "Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels" Microorganisms 11, no. 5: 1164. https://doi.org/10.3390/microorganisms11051164
APA StyleCheng, Q., Li, Z., Zhang, J., Guo, H., Ahmat, M., Cheng, J., Abbas, Z., Hua, Z., Wang, J., Tong, Y., Yang, T., Si, D., & Zhang, R. (2023). Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels. Microorganisms, 11(5), 1164. https://doi.org/10.3390/microorganisms11051164