Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis
Abstract
:1. Introduction
2. Life Cycle of EBV
3. Latency Proteins
3.1. EBNA1
3.1.1. Higher Anti-EBNA1 IgG Levels in MS Patients Than in Healthy Individuals
3.1.2. Modification of Anti-EBNA1 IgG Levels to Predict Outcome in MS Patients
3.1.3. Changes in Anti-EBNA1 IgG Levels Associated with Other MS Risk Factors
3.1.4. Higher Anti-EBNA1 IgG Correlates with Presence of Oligoclonal Bands in the CNS
3.1.5. Cross-Reaction
3.2. EBNA2
3.3. LMP1, LMP2a and LMP2b
3.3.1. Presence of LMP1 and LMP2 in the CNS of MS Patients
3.3.2. Presence of LMP1 and LMP2a in Exosomes Derived from EBV-Infected Cells
3.3.3. Variations and Cross-Reaction
4. Lytic Cycle Proteins
4.1. Presence of Lytic Cycle Proteins in the CNS of MS Patients
4.2. Weakened T-Cell Response against Lytic Cycle Proteins in MS Patients
5. Epstein-Barr Virus miRNAs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Current ICTV Taxonomy Release. Available online: https://ictv.global/taxonomy (accessed on 3 May 2023).
- Nowalk, A.; Green, M. Epstein-Barr Virus. Microbiol. Spectr. 2016, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Soldan, S.S.; Lieberman, P.M. Epstein–Barr Virus and Multiple Sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Epstein, A. Why and How Epstein-Barr Virus Was Discovered 50 Years Ago. In Epstein Barr Virus Volume 1; Münz, C., Ed.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2015; Volume 390, pp. 3–15. ISBN 978-3-319-22821-1. [Google Scholar]
- Hammerschmidt, W. The Epigenetic Life Cycle of Epstein–Barr Virus. In Epstein Barr Virus Volume 1: One Herpes Virus: Many Diseases; Münz, C., Ed.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–117. ISBN 978-3-319-22822-8. [Google Scholar]
- Dollery, S.J.; Santiago-Crespo, R.J.; Chatterjee, D.; Berger, E.A. Glycoprotein K8.1A of Kaposi’s Sarcoma-Associated Herpesvirus Is a Critical B Cell Tropism Determinant Independent of Its Heparan Sulfate Binding Activity. J. Virol. 2019, 93, e01876-18. [Google Scholar] [CrossRef] [PubMed]
- Laksono, B.M.; Grosserichter-Wagener, C.; de Vries, R.D.; Langeveld, S.A.G.; Brem, M.D.; van Dongen, J.J.M.; Katsikis, P.D.; Koopmans, M.P.G.; van Zelm, M.C.; de Swart, R.L. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of Both Naive and Memory B Cells. J. Virol. 2018, 92, e00131-18. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Kutok, J.L.; Wang, F. Spectrum of Epstein-Barr Virus–Associated Diseases. Annu. Rev. Pathol. Mech. Dis. 2006, 1, 375–404. [Google Scholar] [CrossRef]
- Jog, N.R.; James, J.A. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Front. Immunol. 2021, 11, 623944. [Google Scholar] [CrossRef]
- Balandraud, N.; Roudier, J. Epstein-Barr Virus and Rheumatoid Arthritis. Jt. Bone Spine 2018, 85, 165–170. [Google Scholar] [CrossRef]
- Maslinska, M. The Role of Epstein–Barr Virus Infection in Primary Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2019, 31, 475. [Google Scholar] [CrossRef]
- Rodriguez-Calvo, T.; Sabouri, S.; Anquetil, F.; von Herrath, M.G. The Viral Paradigm in Type 1 Diabetes: Who Are the Main Suspects? Autoimmun. Rev. 2016, 15, 964–969. [Google Scholar] [CrossRef]
- Houen, G.; Trier, N.H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front. Immunol. 2021, 11, 3334. [Google Scholar] [CrossRef]
- Sollid, L.M. Epstein-Barr Virus as a Driver of Multiple Sclerosis. Sci. Immunol. 2022, 7, eabo7799. [Google Scholar] [CrossRef]
- Robinson, W.H.; Steinman, L. Epstein-Barr Virus and Multiple Sclerosis. Science 2022, 375, 264–265. [Google Scholar] [CrossRef]
- Bar-Or, A.; Banwell, B.; Berger, J.R.; Lieberman, P.M. Guilty by Association: Epstein–Barr Virus in Multiple Sclerosis. Nat. Med. 2022, 28, 904–906. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Dunmire, S.K.; Verghese, P.S.; Balfour, H.H. Primary Epstein-Barr Virus Infection. J. Clin. Virol. 2018, 102, 84–92. [Google Scholar] [CrossRef]
- Speck, P.; Haan, K.M.; Longnecker, R. Epstein–Barr Virus Entry into Cells. Virology 2000, 277, 1–5. [Google Scholar] [CrossRef]
- Thorley-Lawson, D.A.; Hawkins, J.B.; Tracy, S.I.; Shapiro, M. The Pathogenesis of Epstein–Barr Virus Persistent Infection. Curr. Opin. Virol. 2013, 3, 227–232. [Google Scholar] [CrossRef]
- Kempkes, B.; Robertson, E.S. Epstein-Barr Virus Latency: Current and Future Perspectives. Curr. Opin. Virol. 2015, 14, 138–144. [Google Scholar] [CrossRef]
- Küppers, R. B Cells under Influence: Transformation of B Cells by Epstein–Barr Virus. Nat. Rev. Immunol. 2003, 3, 801–812. [Google Scholar] [CrossRef]
- Kang, M.-S.; Kieff, E. Epstein–Barr Virus Latent Genes. Exp. Mol. Med. 2015, 47, e131. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T. EBV-Encoded Latent Genes. In Human Herpesviruses; Kawaguchi, Y., Mori, Y., Kimura, H., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; pp. 377–394. ISBN 978-981-10-7230-7. [Google Scholar]
- Serafini, B.; Rosicarelli, B.; Franciotta, D.; Magliozzi, R.; Reynolds, R.; Cinque, P.; Andreoni, L.; Trivedi, P.; Salvetti, M.; Faggioni, A.; et al. Dysregulated Epstein-Barr Virus Infection in the Multiple Sclerosis Brain. J. Exp. Med. 2007, 204, 2899–2912. [Google Scholar] [CrossRef] [PubMed]
- Thorley-Lawson, D.A. Epstein-Barr Virus: Exploiting the Immune System. Nat. Rev. Immunol. 2001, 1, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, S.; Hu, J.; Luo, X.; Li, N.; Bode, A.M.; Cao, Y. Epstein-Barr Virus Lytic Reactivation Regulation and Its Pathogenic Role in Carcinogenesis. Int. J. Biol. Sci. 2016, 12, 1309–1318. [Google Scholar] [CrossRef]
- Murata, T.; Tsurumi, T. Switching of EBV Cycles between Latent and Lytic States: Regulation of EBV Reactivation. Rev. Med. Virol. 2014, 24, 142–153. [Google Scholar] [CrossRef]
- Humme, S.; Reisbach, G.; Feederle, R.; Delecluse, H.-J.; Bousset, K.; Hammerschmidt, W.; Schepers, A. The EBV Nuclear Antigen 1 (EBNA1) Enhances B Cell Immortalization Several Thousandfold. Proc. Natl. Acad. Sci. USA 2003, 100, 10989–10994. [Google Scholar] [CrossRef]
- Frappier, L. The Epstein-Barr Virus EBNA1 Protein. Scientifica 2012, 2012, 438204. [Google Scholar] [CrossRef]
- Larsen, P.D.; Bloomer, L.C.; Bray, P.F. Epstein-Barr Nuclear Antigen and Viral Capsid Antigen Antibody Titers in Multiple Sclerosis. Neurology 1985, 35, 435. [Google Scholar] [CrossRef]
- Shirodaria, P.V.; Haire, M.; Fleming, E.; Merrett, J.D.; Hawkins, S.A.; Roberts, S.D. Viral Antibody Titers. Comparison in Patients with Multiple Sclerosis and Rheumatoid Arthritis. Arch. Neurol. 1987, 44, 1237–1241. [Google Scholar] [CrossRef]
- Lünemann, J.D.; Huppke, P.; Roberts, S.; Brück, W.; Gärtner, J.; Münz, C. Broadened and Elevated Humoral Immune Response to Ebna1 in Pediatric Multiple Sclerosis. Neurology 2008, 71, 1033–1035. [Google Scholar] [CrossRef]
- Abrahamyan, S.; Eberspächer, B.; Hoshi, M.-M.; Aly, L.; Luessi, F.; Groppa, S.; Klotz, L.; Meuth, S.G.; Schroeder, C.; Grüter, T.; et al. Complete Epstein-Barr Virus Seropositivity in a Large Cohort of Patients with Early Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 681–686. [Google Scholar] [CrossRef]
- Munger, K.; Levin, L.; O’Reilly, E.; Falk, K.; Ascherio, A. Anti-Epstein–Barr Virus Antibodies as Serological Markers of Multiple Sclerosis: A Prospective Study among United States Military Personnel. Mult. Scler. J. 2011, 17, 1185–1193. [Google Scholar] [CrossRef]
- Mameli, G.; Cossu, D.; Cocco, E.; Masala, S.; Frau, J.; Marrosu, M.G.; Sechi, L.A. EBNA-1 IgG Titers in Sardinian Multiple Sclerosis Patients and Controls. J. Neuroimmunol. 2013, 264, 120–122. [Google Scholar] [CrossRef]
- Levin, L.I.; Munger, K.L.; Rubertone, M.V.; Peck, C.A.; Lennette, E.T.; Spiegelman, D.; Ascherio, A. Temporal Relationship Between Elevation of Epstein-Barr Virus Antibody Titers and Initial Onset of Neurological Symptoms in Multiple Sclerosis. JAMA 2005, 293, 2496–2500. [Google Scholar] [CrossRef]
- DeLorenze, G.N.; Munger, K.L.; Lennette, E.T.; Orentreich, N.; Vogelman, J.H.; Ascherio, A. Epstein-Barr Virus and Multiple Sclerosis: Evidence of Association from a Prospective Study with Long-Term Follow-Up. Arch. Neurol. 2006, 63, 839–844. [Google Scholar] [CrossRef]
- Lünemann, J.D.; Tintoré, M.; Messmer, B.; Strowig, T.; Rovira, Á.; Perkal, H.; Caballero, E.; Münz, C.; Montalban, X.; Comabella, M. Elevated Epstein–Barr Virus-Encoded Nuclear Antigen-1 Immune Responses Predict Conversion to Multiple Sclerosis. Ann. Neurol. 2010, 67, 159–169. [Google Scholar] [CrossRef]
- Hedström, A.K.; Huang, J.; Michel, A.; Butt, J.; Brenner, N.; Hillert, J.; Waterboer, T.; Kockum, I.; Olsson, T.; Alfredsson, L. High Levels of Epstein–Barr Virus Nuclear Antigen-1-Specific Antibodies and Infectious Mononucleosis Act Both Independently and Synergistically to Increase Multiple Sclerosis Risk. Front. Neurol. 2020, 10, 1368. [Google Scholar] [CrossRef]
- Endriz, J.; Ho, P.P.; Steinman, L. Time Correlation between Mononucleosis and Initial Symptoms of MS. Neurol. Neuroimmunol. Neuroinflammation 2017, 4, e308. [Google Scholar] [CrossRef]
- Giovannoni, G.; Hawkes, C.H.; Lechner-Scott, J.; Levy, M.; Yeh, E.A. What Are T-Cells Telling Us about How EBV Causes MS? Mult. Scler. Relat. Disord. 2022, 68, 104434. [Google Scholar] [CrossRef]
- Pender, M.P.; Csurhes, P.A.; Burrows, J.M.; Burrows, S.R. Defective T-Cell Control of Epstein–Barr Virus Infection in Multiple Sclerosis. Clin. Transl. Immunol. 2017, 6, e126. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating Neurologic Impairment in Multiple Sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444. [Google Scholar] [CrossRef]
- Kvistad, S.; Myhr, K.-M.; Holmøy, T.; Bakke, S.; Beiske, A.G.; Bjerve, K.S.; Hovdal, H.; Løken-Amsrud, K.I.; Lilleås, F.; Midgard, R.; et al. Antibodies to Epstein-Barr Virus and MRI Disease Activity in Multiple Sclerosis. Mult. Scler. J. 2014, 20, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Castellazzi, M.; Contini, C.; Tamborino, C.; Fasolo, F.; Roversi, G.; Seraceni, S.; Rizzo, R.; Baldi, E.; Tola, M.R.; Bellini, T.; et al. Epstein-Barr Virus-Specific Intrathecal Oligoclonal IgG Production in Relapsing-Remitting Multiple Sclerosis Is Limited to a Subset of Patients and Is Composed of Low-Affinity Antibodies. J. Neuroinflamm. 2014, 11, 188. [Google Scholar] [CrossRef] [PubMed]
- Olmez, O.; Baba, C.; Abasiyanik, Z.; Ozakbas, S. Epstein-Barr Virus Antibody in Newly Diagnosed Multiple Sclerosis Patients and Its Association with Relapse Severity and Lesion Location. Mult. Scler. Relat. Disord. 2022, 68, 104149. [Google Scholar] [CrossRef] [PubMed]
- Gieß, R.M.; Pfuhl, C.; Behrens, J.R.; Rasche, L.; Freitag, E.; Khalighy, N.; Otto, C.; Wuerfel, J.; Brandt, A.U.; Hofmann, J.; et al. Epstein-Barr Virus Antibodies in Serum and DNA Load in Saliva Are Not Associated with Radiological or Clinical Disease Activity in Patients with Early Multiple Sclerosis. PLoS ONE 2017, 12, e0175279. [Google Scholar] [CrossRef]
- Fleischer, M.; Schuh, H.; Bickmann, N.M.; Hagenacker, T.; Krüger, K.; Skripuletz, T.; Fiedler, M.; Kleinschnitz, C.; Pul, R.; Skuljec, J. Anti-EBNA1 IgG Titre Is Not Associated with Fatigue in Multiple Sclerosis Patients. Neurol. Neurochir. Pol. 2022, 56, 236–245. [Google Scholar] [CrossRef]
- Munger, K.L.; Fitzgerald, K.C.; Freedman, M.S.; Hartung, H.-P.; Miller, D.H.; Montalbán, X.; Edan, G.; Barkhof, F.; Suarez, G.; Radue, E.-W.; et al. No Association of Multiple Sclerosis Activity and Progression with EBV or Tobacco Use in BENEFIT. Neurology 2015, 85, 1694–1701. [Google Scholar] [CrossRef]
- Ingram, G.; Bugert, J.J.; Loveless, S.; Robertson, N.P. Anti-EBNA-1 IgG Is Not a Reliable Marker of Multiple Sclerosis Clinical Disease Activity. Eur. J. Neurol. 2010, 17, 1386–1389. [Google Scholar] [CrossRef]
- Raffel, J.; Dobson, R.; Gafson, A.; Mattoscio, M.; Muraro, P.; Giovannoni, G. Multiple Sclerosis Therapy and Epstein–Barr Virus Antibody Titres. Mult. Scler. Relat. Disord. 2014, 3, 372–374. [Google Scholar] [CrossRef]
- Miclea, A.; Bagnoud, M.; Chan, A.; Hoepner, R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front. Immunol. 2020, 11, 781. [Google Scholar] [CrossRef]
- Hedström, A.K.; Huang, J.; Brenner, N.; Butt, J.; Kockum, I.; Waterboer, T.; Olsson, T.; Alfredsson, L. Low Sun Exposure Acts Synergistically with High Epstein−Barr Nuclear Antigen 1 (EBNA-1) Antibody Levels in Multiple Sclerosis Etiology. Eur. J. Neurol. 2021, 28, 4146–4152. [Google Scholar] [CrossRef]
- Décard, B.F.; von Ahsen, N.; Grunwald, T.; Streit, F.; Stroet, A.; Niggemeier, P.; Schottstedt, V.; Riggert, J.; Gold, R.; Chan, A. Low Vitamin D and Elevated Immunoreactivity against Epstein–Barr Virus before First Clinical Manifestation of Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1170–1173. [Google Scholar] [CrossRef]
- Wergeland, S.; Myhr, K.-M.; Løken-Amsrud, K.I.; Beiske, A.G.; Bjerve, K.S.; Hovdal, H.; Midgard, R.; Kvistad, S.S.; Holmøy, T.; Riise, T.; et al. Vitamin D, HLA-DRB1 and Epstein–Barr Virus Antibody Levels in a Prospective Cohort of Multiple Sclerosis Patients. Eur. J. Neurol. 2016, 23, 1064–1070. [Google Scholar] [CrossRef]
- Kreft, K.L.; Nierop, G.P.V.; Scherbeijn, S.M.J.; Janssen, M.; Verjans, G.M.G.M.; Hintzen, R.Q. Elevated EBNA-1 IgG in MS Is Associated with Genetic MS Risk Variants. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e406. [Google Scholar] [CrossRef]
- Mescheriakova, J.Y.; van Nierop, G.P.; van der Eijk, A.A.; Kreft, K.L.; Hintzen, R.Q. EBNA-1 Titer Gradient in Families with Multiple Sclerosis Indicates a Genetic Contribution. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e872. [Google Scholar] [CrossRef]
- Røsjø, E.; Lossius, A.; Abdelmagid, N.; Lindstrøm, J.C.; Kampman, M.T.; Jørgensen, L.; Sundström, P.; Olsson, T.; Steffensen, L.H.; Torkildsen, Ø.; et al. Effect of High-Dose Vitamin D3 Supplementation on Antibody Responses against Epstein–Barr Virus in Relapsing-Remitting Multiple Sclerosis. Mult. Scler. J. 2017, 23, 395–402. [Google Scholar] [CrossRef]
- Rolf, L.; Muris, A.-H.; Mathias, A.; Du Pasquier, R.; Koneczny, I.; Disanto, G.; Kuhle, J.; Ramagopalan, S.; Damoiseaux, J.; Smolders, J.; et al. Exploring the Effect of Vitamin D3 Supplementation on the Anti-EBV Antibody Response in Relapsing-Remitting Multiple Sclerosis. Mult. Scler. J. 2018, 24, 1280–1287. [Google Scholar] [CrossRef]
- Najafipoor, A.; Roghanian, R.; Zarkesh-Esfahani, S.H.; Bouzari, M.; Etemadifar, M. The Beneficial Effects of Vitamin D3 on Reducing Antibody Titers against Epstein–Barr Virus in Multiple Sclerosis Patients. Cell. Immunol. 2015, 294, 9–12. [Google Scholar] [CrossRef]
- Marcucci, S.B.; Obeidat, A.Z. EBNA1, EBNA2, and EBNA3 Link Epstein-Barr Virus and Hypovitaminosis D in Multiple Sclerosis Pathogenesis. J. Neuroimmunol. 2020, 339, 577116. [Google Scholar] [CrossRef] [PubMed]
- Ramien, C.; Pachnio, A.; Sisay, S.; Begum, J.; Leese, A.; Disanto, G.; Kuhle, J.; Giovannoni, G.; Rickinson, A.; Ramagopalan, S.V.; et al. Hypovitaminosis-D and EBV: No Interdependence between Two MS Risk Factors in a Healthy Young UK Autumn Cohort. Mult. Scler. Houndmills Basingstoke Engl. 2014, 20, 751–753. [Google Scholar] [CrossRef]
- Mostafa, A.; Jalilvand, S.; Shoja, Z.; Nejati, A.; Shahmahmoodi, S.; Sahraian, M.A.; Marashi, S.M. Multiple Sclerosis-Associated Retrovirus, Epstein-Barr Virus, and Vitamin D Status in Patients with Relapsing Remitting Multiple Sclerosis. J. Med. Virol. 2017, 89, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Disanto, G.; Dobson, R.; Adiutori, R.; Bianchi, L.; Topping, J.; Bestwick, J.; Meier, U.-C.; Marta, M.; Costa, G.D.; et al. Conversion from Clinically Isolated Syndrome to Multiple Sclerosis: A Large Multicentre Study. Mult. Scler. J. 2015, 21, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Pfuhl, C.; Oechtering, J.; Rasche, L.; Gieß, R.M.; Behrens, J.R.; Wakonig, K.; Freitag, E.; Pache, F.C.; Otto, C.; Hofmann, J.; et al. Association of Serum Epstein–Barr Nuclear Antigen-1 Antibodies and Intrathecal Immunoglobulin Synthesis in Early Multiple Sclerosis. J. Neuroimmunol. 2015, 285, 156–160. [Google Scholar] [CrossRef]
- Dobson, R.; Kuhle, J.; Middeldorp, J.; Giovannoni, G. Epstein-Barr–Negative MS: A True Phenomenon? Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e318. [Google Scholar] [CrossRef]
- Wang, Z.; Kennedy, P.G.; Dupree, C.; Wang, M.; Lee, C.; Pointon, T.; Langford, T.D.; Graner, M.W.; Yu, X. Antibodies from Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes Which Are Recognized by Oligoclonal Bands. J. Neuroimmune Pharmacol. 2021, 16, 567–580. [Google Scholar] [CrossRef]
- Tomescu-Baciu, A.; Johansen, J.N.; Holmøy, T.; Greiff, V.; Stensland, M.; de Souza, G.A.; Vartdal, F.; Lossius, A. Persistence of Intrathecal Oligoclonal B Cells and IgG in Multiple Sclerosis. J. Neuroimmunol. 2019, 333, 576966. [Google Scholar] [CrossRef]
- Jafari, N.; van Nierop, G.P.; Verjans, G.M.G.M.; Osterhaus, A.D.M.E.; Middeldorp, J.M.; Hintzen, R.Q. No Evidence for Intrathecal IgG Synthesis to Epstein Barr Virus Nuclear Antigen-1 in Multiple Sclerosis. J. Clin. Virol. 2010, 49, 26–31. [Google Scholar] [CrossRef]
- Castellazzi, M.; Tamborino, C.; Cani, A.; Negri, E.; Baldi, E.; Seraceni, S.; Tola, M.R.; Granieri, E.; Contini, C.; Fainardi, E. Epstein-Barr Virus-Specific Antibody Response in Cerebrospinal Fluid and Serum of Patients with Multiple Sclerosis. Mult. Scler. J. 2010, 16, 883–887. [Google Scholar] [CrossRef]
- Graner, M.; Pointon, T.; Manton, S.; Green, M.; Dennison, K.; Davis, M.; Braiotta, G.; Craft, J.; Edwards, T.; Polonsky, B.; et al. Oligoclonal IgG Antibodies in Multiple Sclerosis Target Patient-Specific Peptides. PLoS ONE 2020, 15, e0228883. [Google Scholar] [CrossRef]
- Brändle, S.M.; Obermeier, B.; Senel, M.; Bruder, J.; Mentele, R.; Khademi, M.; Olsson, T.; Tumani, H.; Kristoferitsch, W.; Lottspeich, F.; et al. Distinct Oligoclonal Band Antibodies in Multiple Sclerosis Recognize Ubiquitous Self-Proteins. Proc. Natl. Acad. Sci. USA 2016, 113, 7864–7869. [Google Scholar] [CrossRef]
- Lanz, T.V.; Brewer, R.C.; Ho, P.P.; Moon, J.-S.; Jude, K.M.; Fernandez, D.; Fernandes, R.A.; Gomez, A.M.; Nadj, G.-S.; Bartley, C.M.; et al. Clonally Expanded B Cells in Multiple Sclerosis Bind EBV EBNA1 and GlialCAM. Nature 2022, 603, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Barrallo-Gimeno, A.; Estévez, R. GLIALCAM, A Glial Cell Adhesion Molecule Implicated in Neurological Disease. In Cell Adhesion Molecules: Implications in Neurological Diseases; Berezin, V., Walmod, P.S., Eds.; Advances in Neurobiology; Springer: New York, NY, USA, 2014; pp. 47–59. ISBN 978-1-4614-8090-7. [Google Scholar]
- Jog, N.R.; McClain, M.T.; Heinlen, L.D.; Gross, T.; Towner, R.; Guthridge, J.M.; Axtell, R.C.; Pardo, G.; Harley, J.B.; James, J.A. Epstein Barr Virus Nuclear Antigen 1 (EBNA-1) Peptides Recognized by Adult Multiple Sclerosis Patient Sera Induce Neurologic Symptoms in a Murine Model. J. Autoimmun. 2020, 106, 102332. [Google Scholar] [CrossRef] [PubMed]
- Ayoglu, B.; Mitsios, N.; Kockum, I.; Khademi, M.; Zandian, A.; Sjöberg, R.; Forsström, B.; Bredenberg, J.; Lima Bomfim, I.; Holmgren, E.; et al. Anoctamin 2 Identified as an Autoimmune Target in Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 2016, 113, 2188–2193. [Google Scholar] [CrossRef]
- Tengvall, K.; Huang, J.; Hellström, C.; Kammer, P.; Biström, M.; Ayoglu, B.; Lima Bomfim, I.; Stridh, P.; Butt, J.; Brenner, N.; et al. Molecular Mimicry between Anoctamin 2 and Epstein-Barr Virus Nuclear Antigen 1 Associates with Multiple Sclerosis Risk. Proc. Natl. Acad. Sci. USA 2019, 116, 16955–16960. [Google Scholar] [CrossRef]
- Hecker, M.; Fitzner, B.; Wendt, M.; Lorenz, P.; Flechtner, K.; Steinbeck, F.; Schröder, I.; Thiesen, H.-J.; Zettl, U.K. High-Density Peptide Microarray Analysis of IgG Autoantibody Reactivities in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Mol. Cell. Proteom. 2016, 15, 1360–1380. [Google Scholar] [CrossRef]
- Lindsey, J.W. Antibodies to the Epstein-Barr Virus Proteins BFRF3 and BRRF2 Cross-React with Human Proteins. J. Neuroimmunol. 2017, 310, 131–134. [Google Scholar] [CrossRef]
- Yadav, P.; Tran, H.; Ebegbe, R.; Gottlieb, P.; Wei, H.; Lewis, R.H.; Mumbey-Wafula, A.; Kaplan, A.; Kholdarova, E.; Spatz, L. Antibodies Elicited in Response to EBNA-1 May Cross-React with DsDNA. PLoS ONE 2011, 6, e14488. [Google Scholar] [CrossRef]
- Yadav, P.; Carr, M.T.; Yu, R.; Mumbey-Wafula, A.; Spatz, L.A. Mapping an Epitope in EBNA-1 That Is Recognized by Monoclonal Antibodies to EBNA-1 That Cross-React with DsDNA. Immun. Inflamm. Dis. 2016, 4, 362–375. [Google Scholar] [CrossRef]
- McClain, M.T.; Heinlen, L.D.; Dennis, G.J.; Roebuck, J.; Harley, J.B.; James, J.A. Early Events in Lupus Humoral Autoimmunity Suggest Initiation through Molecular Mimicry. Nat. Med. 2005, 11, 85–89. [Google Scholar] [CrossRef]
- Palermo, R.D.; Webb, H.M.; Gunnell, A.; West, M.J. Regulation of Transcription by the Epstein–Barr Virus Nuclear Antigen EBNA 2. Biochem. Soc. Trans. 2008, 36, 625–628. [Google Scholar] [CrossRef]
- The Interaction of Epstein-Barr Virus Encoded Transcription Factor EBNA2 with Multiple Sclerosis Risk Loci Is Dependent on the Risk Genotype. Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S2352396421003650?token=942EE1C3308ED781364ED3E7FDADD08311DCC86DEAE07587E206A4B78FD0CD19A9956F716507E12BF322FAE73ED68B0A&originRegion=eu-west-1&originCreation=20230228152501 (accessed on 28 February 2023).
- Maier, S.; Staffler, G.; Hartmann, A.; Höck, J.; Henning, K.; Grabusic, K.; Mailhammer, R.; Hoffmann, R.; Wilmanns, M.; Lang, R.; et al. Cellular Target Genes of Epstein-Barr Virus Nuclear Antigen 2. J. Virol. 2006, 80, 9761–9771. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Munger, K.L.; Lennette, E.T.; Spiegelman, D.; Hernán, M.A.; Olek, M.J.; Hankinson, S.E.; Hunter, D.J. Epstein-Barr Virus Antibodies and Risk of Multiple SclerosisA Prospective Study. JAMA 2001, 286, 3083–3088. [Google Scholar] [CrossRef] [PubMed]
- Serafini, B.; Severa, M.; Columba-Cabezas, S.; Rosicarelli, B.; Veroni, C.; Chiappetta, G.; Magliozzi, R.; Reynolds, R.; Coccia, E.M.; Aloisi, F. Epstein-Barr Virus Latent Infection and BAFF Expression in B Cells in the Multiple Sclerosis Brain: Implications for Viral Persistence and Intrathecal B-Cell Activation. J. Neuropathol. Exp. Neurol. 2010, 69, 677–693. [Google Scholar] [CrossRef]
- Moreno, M.A.; Or-Geva, N.; Aftab, B.T.; Khanna, R.; Croze, E.; Steinman, L.; Han, M.H. Molecular Signature of Epstein-Barr Virus Infection in MS Brain Lesions. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e466. [Google Scholar] [CrossRef]
- Veroni, C.; Serafini, B.; Rosicarelli, B.; Fagnani, C.; Aloisi, F. Transcriptional Profile and Epstein-Barr Virus Infection Status of Laser-Cut Immune Infiltrates from the Brain of Patients with Progressive Multiple Sclerosis. J. Neuroinflamm. 2018, 15, 18. [Google Scholar] [CrossRef]
- Fatima, N.; Toscano, M.P.; Hunter, S.B.; Cohen, C. Controversial Role of Epstein-Barr Virus in Multiple Sclerosis. Appl. Immunohistochem. Mol. Morphol. 2011, 19, 246. [Google Scholar] [CrossRef]
- Willis, S.N.; Stadelmann, C.; Rodig, S.J.; Caron, T.; Gattenloehner, S.; Mallozzi, S.S.; Roughan, J.E.; Almendinger, S.E.; Blewett, M.M.; Brück, W.; et al. Epstein–Barr Virus Infection Is Not a Characteristic Feature of Multiple Sclerosis Brain. Brain 2009, 132, 3318–3328. [Google Scholar] [CrossRef]
- Serafini, B.; Rosicarelli, B.; Veroni, C.; Mazzola, G.A.; Aloisi, F. Epstein-Barr Virus-Specific CD8 T Cells Selectively Infiltrate the Brain in Multiple Sclerosis and Interact Locally with Virus-Infected Cells: Clue for a Virus-Driven Immunopathological Mechanism. J. Virol. 2019, 93, e00980-19. [Google Scholar] [CrossRef]
- Mrad, M.F.; Saba, E.S.; Nakib, L.; Khoury, S.J. Exosomes from Subjects with Multiple Sclerosis Express EBV-Derived Proteins and Activate Monocyte-Derived Macrophages. Neurol. Neuroimmunol. Neuroinflammation 2021, 8, e1004. [Google Scholar] [CrossRef]
- Simon, K.C.; Yang, X.; Munger, K.L.; Ascherio, A. EBNA1 and LMP1 Variants in Multiple Sclerosis Cases and Controls. Acta Neurol. Scand. 2011, 124, 53–58. [Google Scholar] [CrossRef]
- Gabibov, A.G.; Belogurov, A.A., Jr.; Lomakin, Y.A.; Zakharova, M.Y.; Avakyan, M.E.; Dubrovskaya, V.V.; Smirnov, I.V.; Ivanov, A.S.; Molnar, A.A.; Gurtsevitch, V.E.; et al. Combinatorial Antibody Library from Multiple Sclerosis Patients Reveals Antibodies That Cross-React with Myelin Basic Protein and EBV Antigen. FASEB J. 2011, 25, 4211–4221. [Google Scholar] [CrossRef] [PubMed]
- Murata, T. Encyclopedia of EBV-Encoded Lytic Genes: An Update. In Human Herpesviruses; Kawaguchi, Y., Mori, Y., Kimura, H., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; pp. 395–412. ISBN 978-981-10-7230-7. [Google Scholar]
- Angelini, D.F.; Serafini, B.; Piras, E.; Severa, M.; Coccia, E.M.; Rosicarelli, B.; Ruggieri, S.; Gasperini, C.; Buttari, F.; Centonze, D.; et al. Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis. PLoS Pathog. 2013, 9, e1003220. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, R.; Serafini, B.; Rosicarelli, B.; Chiappetta, G.; Veroni, C.; Reynolds, R.; Aloisi, F. B-Cell Enrichment and Epstein-Barr Virus Infection in Inflammatory Cortical Lesions in Secondary Progressive Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2013, 72, 29–41. [Google Scholar] [CrossRef]
- Pender, M.P. Preventing and Curing Multiple Sclerosis by Controlling Epstein–Barr Virus Infection. Autoimmun. Rev. 2009, 8, 563–568. [Google Scholar] [CrossRef]
- Serafini, B.; Scorsi, E.; Rosicarelli, B.; Rigau, V.; Thouvenot, E.; Aloisi, F. Massive Intracerebral Epstein-Barr Virus Reactivation in Lethal Multiple Sclerosis Relapse after Natalizumab Withdrawal. J. Neuroimmunol. 2017, 307, 14–17. [Google Scholar] [CrossRef]
- Serafini, B.; Zandee, S.; Rosicarelli, B.; Scorsi, E.; Veroni, C.; Larochelle, C.; D’Alfonso, S.; Prat, A.; Aloisi, F. Epstein-Barr Virus-Associated Immune Reconstitution Inflammatory Syndrome as Possible Cause of Fulminant Multiple Sclerosis Relapse after Natalizumab Interruption. J. Neuroimmunol. 2018, 319, 9–12. [Google Scholar] [CrossRef]
- Hassani, A.; Corboy, J.R.; Al-Salam, S.; Khan, G. Epstein-Barr Virus Is Present in the Brain of Most Cases of Multiple Sclerosis and May Engage More than Just B Cells. PLoS ONE 2018, 13, e0192109. [Google Scholar] [CrossRef]
- Peferoen, L.A.N.; Lamers, F.; Lodder, L.N.R.; Gerritsen, W.H.; Huitinga, I.; Melief, J.; Giovannoni, G.; Meier, U.; Hintzen, R.Q.; Verjans, G.M.G.M.; et al. Epstein Barr Virus Is Not a Characteristic Feature in the Central Nervous System in Established Multiple Sclerosis. Brain J. Neurol. 2010, 133, e137. [Google Scholar] [CrossRef]
- Torkildsen, Ø.; Stansberg, C.; Angelskår, S.M.; Kooi, E.-J.; Geurts, J.J.G.; Van Der Valk, P.; Myhr, K.-M.; Steen, V.M.; Bø, L. Upregulation of Immunoglobulin-Related Genes in Cortical Sections from Multiple Sclerosis Patients. Brain Pathol. 2010, 20, 720–729. [Google Scholar] [CrossRef]
- Sargsyan, S.A.; Shearer, A.J.; Ritchie, A.M.; Burgoon, M.P.; Anderson, S.; Hemmer, B.; Stadelmann, C.; Gattenlöhner, S.; Owens, G.P.; Gilden, D.; et al. Absence of Epstein-Barr Virus in the Brain and CSF of Patients with Multiple Sclerosis(e-Pub Ahead of Print). Neurology 2010, 74, 1127–1135. [Google Scholar] [CrossRef]
- Aloisi, F.; Serafini, B.; Magliozzi, R.; Howell, O.W.; Reynolds, R. Detection of Epstein-Barr Virus and B-Cell Follicles in the Multiple Sclerosis Brain: What You Find Depends on How and Where You Look. Brain J. Neurol. 2010, 133, e157. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, A.; Pender, M.P.; Khanna, R.; Steinman, L.; Hartung, H.-P.; Maniar, T.; Croze, E.; Aftab, B.T.; Giovannoni, G.; Joshi, M.A. Epstein–Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol. Med. 2020, 26, 296–310. [Google Scholar] [CrossRef]
- Höllsberg, P.; Hansen, H.J.; Haahr, S. Altered CD8+ T Cell Responses to Selected Epstein–Barr Virus Immunodominant Epitopes in Patients with Multiple Sclerosis. Clin. Exp. Immunol. 2003, 132, 137–143. [Google Scholar] [CrossRef]
- Van Nierop, G.P.; Mautner, J.; Mitterreiter, J.G.; Hintzen, R.Q.; Verjans, G.M.G.M. Intrathecal CD8 T-Cells of Multiple Sclerosis Patients Recognize Lytic Epstein-Barr Virus Proteins. Mult. Scler. Houndmills Basingstoke Engl. 2016, 22, 279–291. [Google Scholar] [CrossRef]
- Iwakiri, D.; Takada, K. Role of EBERs in the Pathogenesis of EBV Infection. Adv. Cancer Res. 2010, 107, 119–136. [Google Scholar] [CrossRef]
- Hassani, A.; Khan, G. Epstein-Barr Virus and MiRNAs: Partners in Crime in the Pathogenesis of Multiple Sclerosis? Front. Immunol. 2019, 10, 695. [Google Scholar] [CrossRef]
- Klinke, O.; Feederle, R.; Delecluse, H.-J. Genetics of Epstein–Barr Virus MicroRNAs. Semin. Cancer Biol. 2014, 26, 52–59. [Google Scholar] [CrossRef]
- Grey, F. Role of MicroRNAs in Herpesvirus Latency and Persistence. J. Gen. Virol. 2015, 96, 739–751. [Google Scholar] [CrossRef]
- Lassmann, H.; Niedobitek, G.; Aloisi, F.; Middeldorp, J.M.; the NeuroproMiSe EBV Working Group. Epstein–Barr Virus in the Multiple Sclerosis Brain: A Controversial Issue—Report on a Focused Workshop Held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011, 134, 2772–2786. [Google Scholar] [CrossRef]
- Cai, X.; Schäfer, A.; Lu, S.; Bilello, J.P.; Desrosiers, R.C.; Edwards, R.; Raab-Traub, N.; Cullen, B.R. Epstein–Barr Virus M croRNAs Are Evolutionarily Conserved and Differentially Expressed. PLoS Pathog. 2006, 2, e23. [Google Scholar] [CrossRef]
- Amoroso, R.; Fitzsimmons, L.; Thomas, W.A.; Kelly, G.L.; Rowe, M.; Bell, A.I. Quantitative Studies of Epstein-Barr Virus Encoded MicroRNAs Provide Novel Insights into Their Regulation. J. Virol. 2011, 85, 996–1010. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Cahir-McFarland, E.; Zhao, B.; Kieff, E. Virus and Cell RNAs Expressed during Epstein-Barr Virus Replication. J. Virol. 2006, 80, 2548–2565. [Google Scholar] [CrossRef] [PubMed]
- Serafini, B.; Muzio, L.; Rosicarelli, B.; Aloisi, F. Radioactive in Situ Hybridization for Epstein–Barr Virus–Encoded Small RNA Supports Presence of Epstein–Barr Virus in the Multiple Sclerosis Brain. Brain 2013, 136, e233. [Google Scholar] [CrossRef]
- Serafini, B.; Rosicarelli, B.; Aloisi, F.; Stigliano, E. Epstein-Barr Virus in the Central Nervous System and Cervical Lymph Node of a Patient with Primary Progressive Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2014, 73, 729–731. [Google Scholar] [CrossRef]
Marker | Expression | Observations in Patients with Multiple Sclerosis |
---|---|---|
EBNA1 | Latency III Latency II Latency I |
|
EBNA2 | Latency III |
|
LMP1, LMP2a LMP2b | Latency III Latency II |
|
Lytic cycle proteins | Lytic cycle |
|
miRNA | Latency III Latency II Latency I Latency 0 Lytic cycle |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debuysschere, C.; Nekoua, M.P.; Hober, D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023, 11, 1262. https://doi.org/10.3390/microorganisms11051262
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms. 2023; 11(5):1262. https://doi.org/10.3390/microorganisms11051262
Chicago/Turabian StyleDebuysschere, Cyril, Magloire Pandoua Nekoua, and Didier Hober. 2023. "Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis" Microorganisms 11, no. 5: 1262. https://doi.org/10.3390/microorganisms11051262
APA StyleDebuysschere, C., Nekoua, M. P., & Hober, D. (2023). Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms, 11(5), 1262. https://doi.org/10.3390/microorganisms11051262