Autochthonous Cultures to Improve Safety and Standardize Quality of Traditional Dry Fermented Meats
Abstract
:1. Introduction
2. Technologically Relevant Microorganisms in Dry Fermented Meats
2.1. LAB Occurring in Dry Fermented Meats
2.2. Coagulase Negative Staphylococci in Fermented Dry Meats
2.3. Yeasts and Molds in Fermented Dry Sausages
2.4. Diversity of Naturally Occurring Technologically Relevant Microorganisms in Dry Fermented Meats
3. Safety Concerns in Traditional Fermented Dry Meats
3.1. Microbial Pathogens
3.2. Nitrosoamines
3.3. Biogenic Amines
3.4. Mycotoxins
3.5. Polycyclic Aromatic Hydrocarbons
4. Effect of Autochthonous Microbial Cultures on Safety and Quality of Dry Fermented Sausages
4.1. Effects of Autochthonous Cultures on Safety of Dry Fermented Sausages
4.2. Effects of Autochthonous Cultures on Sensory Attributes of Dry Fermented Sausages
4.3. Autochthonous Probiotics in Dry Fermented Sausages
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, P.M.; Vicente, A.F. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and Human Health—Current Knowledge and Research Gaps. Foods 2021, 10, 1556. [Google Scholar]
- International Agency for Research on Cancer (IARC). Monographs Volume 114: Evaluation of Consumption of Red Meat and Processed Meat. Available online: https://www.iarc.who.int/wp-content/uploads/2018/11/Monographs-QA_Vol114.pdf (accessed on 25 February 2023).
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, D.; Chen, Z.; Chen, B.; Li, J.; Guo, J.; Dong, Q.; Liu, L.; Wei, Q. Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chem. 2021, 356, 129697. [Google Scholar] [CrossRef] [PubMed]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B.; et al. Health effects associated with consumption of unprocessed red meat: A Burden of Proof study. Nat. Med. 2022, 10, 2075–2082. [Google Scholar] [CrossRef]
- Nouri-Majd, S.; Salari-Moghaddam, A.; Aminianfar, A.; Larijani, B.; Esmaillzadeh, A. Association Between Red and Processed Meat Consumption and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 801722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, S.; Chen, X.; Yang, J.; Zhou, Y.; Du, L.; Li, K. Red/processed meat consumption and non-cancer-related outcomes in humans: Umbrella review. Br. J. Nut. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) No 1151/2012 of the European Parliament and of the Council of 21 November 2012 on quality schemes for agricultural products and foodstuffs. Off. J. Eur. Union 2012, L 343, 1–29. [Google Scholar]
- Amadoro, C.; Rossi, F.; Poltronieri, P.; Marino, L.; Colavita, G. Diversity and Safety Aspects of Coagulase-Negative Staphylococci in Ventricina del Vastese Italian Dry Fermented Sausage. Appl. Sci. 2022, 12, 13042. [Google Scholar] [CrossRef]
- Ministero Dell’agricoltura, Della Sovranità Alimentare e Delle Foreste (MASAF). Elenco dei Prodotti DOP, IGP e STG. Available online: https://www.dopitalianfood.com/it/marchi-dop-italian-food/insaccati-dop-igp (accessed on 18 February 2023).
- European Union. Commission implementing Regulation (EU) No 186/2013 of 5 March 2013. Entering a name in the register of protected designations of origin and protected geographical indications. Off. J. Eur. Union 2013, 62, 4–9. [Google Scholar]
- Ministero Dell’agricoltura, Della Sovranità Alimentare e Delle Foreste (MASAF). Lista Prodotti Tradizionali (MASAF). Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2769 (accessed on 25 February 2023).
- Ministero Delle Politiche Agricole Alimentari e Forestali. Disposizioni per L’indicazione Obbligatoria Del Luogo di Provenienza Nell’etichetta Delle Carni Suine Trasformate. GU Serie Generale n.230 del 16-09-2020, 6 August 2020. Available online: https://www.gazzettaufficiale.it/eli/id/2020/09/16/20A04874/sg (accessed on 18 February 2023).
- Ferrer-Pérez, H.; Guadarrama, O.; Gil, J.M. PGI Mallorca Sausage in Spain. In Sustainability of European Food Quality Schemes; Arfini, F., Bellassen, V., Eds.; Springer: Cham, Switzerland, 2019; pp. 377–401. [Google Scholar]
- Mariani, M.; Casabianca, F.; Cerdan, C.; Peri, I. Protecting Food Cultural Biodiversity: From Theory to Practice. Challenging the Geographical Indications and the Slow Food Models. Sustainability 2021, 13, 5265. [Google Scholar] [CrossRef]
- Bader, R.; Becila, S.; Ruiz, P.; Djeghim, F.; Sanah, I.; Boudjellal, A.; Gatellier, P.; Portanguen, S.; Talon, R.; Leroy, S. Physicochemical and microbiological characteristics of El-Guedid from meat of different animal species. Meat Sci. 2021, 171, 108277. [Google Scholar] [CrossRef]
- Mahdjoub Bessam, H.; Missouri, M.; Kridech, S. Bacterial Ecology of the ‘‘Kaddid’’, Typical Dried Meat of the North Africa, During Its Traditional Fermentation. J. Food Nutr. Sci. 2016, 4, 70–77. [Google Scholar] [CrossRef]
- Wen, R.; Sun, F.; Wang, Y.; Chen, Q.; Kong, B. Evaluation the potential of lactic acid bacteria isolates from traditional beef jerky as starter cultures and their effects on flavor formation during fermentation. LWT 2021, 142, 110982. [Google Scholar] [CrossRef]
- Karolenko, C.; DeSilva, U.; Muriana, P.M. Microbial Profiling of Biltong Processing Using Culture-Dependent and Culture-Independent Microbiome Analysis. Foods 2023, 12, 844. [Google Scholar] [CrossRef]
- Inusa, S.K.; Said, I.S. Evaluation of the Chemical and Microbiological Properties of Kilishi Sold in Kano Metropolis. J. Dryland Agric. 2017, 3, 59–69. [Google Scholar]
- Fonkem, D.N.; Tanya, V.N.; Ebangi, A.L. Effects of Season on the Microbiological Quality of Kilishi, a Traditional Cameroonian Dried Beef Product. Tropicultura 2010, 28, 10–15. [Google Scholar]
- Ratsimba, A.; Rakoto, D.; Jeannoda, V.; Andriamampianina, H.; Talon, R.; Leroy, S.; Grabulos, J.; Arnaud, E. Physicochemical and microbiological characteristics of kitoza, a traditional salted/dried/smoked meat product of Madagascar. Food Sci. Nutr. 2019, 7, 2666–2673. [Google Scholar] [CrossRef]
- Lima, T.T.M.; Hosken, B.D.; Venturim, B.C.; Lopes, I.L.; Prado Martin, J.G. Traditional Brazilian fermented foods: Cultural and technological aspects. J. Ethn. Food 2022, 9, 35. [Google Scholar] [CrossRef]
- Ayala Vargas, C.; Pilco, S.; Condor, G.; Layme, V.; Cochi, N.; Quispe, J.L. Characterization of traditional and new preservation process of camel meat (charqui). Rev. Acadêmica Ciência Anim. 2019, 17 (Suppl. 1), 18–28. [Google Scholar]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fernandes, M.H.; et al. Characterisation of “Catalão” and “Salsichão” Portuguese traditional sausages with salt reduction. Meat Sci. 2016, 116, 34–42. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Plaza, J.; Ávila-Zarza, C.; Vivar-Quintana, A.M.; Revilla, I. The Characterization of Dry Fermented Sausages under the “Chorizo Zamorano” Quality Label: The Application of an Alternative Statistical Approach. Foods 2023, 12, 483. [Google Scholar] [CrossRef] [PubMed]
- Gazzetta Ufficiale Della Repubblica Italiana. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.progressivo=0&art.idArticolo=1&art.versione=1&art.codiceRedazionale=04A07061&art.dataPubblicazioneGazzetta=2004-07-&art.idGruppo=0&art.idSottoArticolo1=10&art.idSottoArticolo=1&art.flagTipoArticolo=1 (accessed on 18 February 2023).
- Gonzalez-Fandos, E.; Vazquez de Castro, M.; Martinez-Laorden, A. Behaviour of Listeria monocytogenes and Natural Microflora during the Manufacture of Riojano Chorizo (Spanish Dry Cured Sausage). Microorganisms 2021, 9, 1963. [Google Scholar] [CrossRef]
- Franciosa, I.; Ferrocino, I.; Corvaglia, M.R.; Giordano, M.; Coton, M.; Mounier, J.; Rantsiou, K.; Cocolin, L. Autochthonous starter culture selection for Salame Piemonte PGI production. Food Res. Int. 2022, 162, 112007. [Google Scholar] [CrossRef] [PubMed]
- Amadoro, C.; Rossi, F.; Piccirilli, M.; Berardino, L.; Colavita, G. Studio della flora microbica pro-tecnologica nella ventricina. Ing. Aliment. Le Carni 2013, 50, 51–54. [Google Scholar]
- Siddi, G.; Piras, F.; Spanu, V.; Meloni, M.P.; Sanna, R.; Carta, N.; Errico, M.; Cuccu, M.; De Santis, E.P.L.; Scarano, C. Selection of commercial protective cultures to be added in Sardinian fermented sausage to control Listeria monocytogenes. Ital. J. Food Saf. 2022, 11, 10368. [Google Scholar] [CrossRef] [PubMed]
- Bratulić, M.; Mikuš, T.; Cvrtila, Ž.; Cenci-Goga, B.T.; Grispoldi, L.; Leboš Pavunc, A.; Novak, J.; Kos, B.; Šušković, J.; Zadravec, M.; et al. Quality of traditionally produced Istrian sausage and identification of autochthonous lactic acid bacteria strains as potential functional starter cultures. Eur. Food Res. Technol. 2021, 247, 2847–2860. [Google Scholar] [CrossRef]
- Zagorec, M.; Champomier-Vergès, M.C. Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products. Microorganisms 2017, 5, 56. [Google Scholar] [CrossRef]
- Amadoro, C.; Rossi, F.; Piccirilli, M.; Colavita, G. Features of Lactobacillus sakei Isolated from Italian Sausages: Focus on Strains from Ventricina del Vastese. Ital. J. Food Saf. 2015, 4, 5449. [Google Scholar] [CrossRef]
- Dos Santos Cruxen, C.E.; Funck, G.D.; Haubert, L.; Dannenberg, G.; da Silva Marques, J.; de Lima Chaves, F.C.; Padilha da Silva, W.; Fiorentini, A.M. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res. Int. 2019, 122, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Lozano, J.C.; Reguera-Useros, J.I.; Peláez-Martínez, M.P.; Gonzalo Sacristán-Pérez-Minayo, G.; Gutiérrez-Fernández, A.J.; Hardisson de la Torre, A. The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 2010, 21, 679–685. [Google Scholar] [CrossRef]
- Albano, H.; Todorov, S.D.; Reenen, C.A.; Hogg, T.; Dicks, L.M.T.; Teixeira, P. Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. Int. J. Food Microbiol. 2007, 116, 239–247. [Google Scholar] [CrossRef]
- Rossi, F.; Pallotta, M. Bacteriocin producing cultures: A sustainable way for food safety improvement and probiotics with additional health promoting effects. Encycl. Bacteriol. Res. Dev. 2021, 11, 1151–1183. [Google Scholar]
- Leroy, S.; Giammarinaro, P.; Chacornac, J.-P.; Lebert, I.; Talon, R. Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units. Food Microbiol. 2010, 27, 294–301. [Google Scholar] [CrossRef]
- Ras, G.; Leroy, S.; Talon, R. Nitric oxide synthase: What is its potential role in the physiology of staphylococci in meat products? Int. J. Food Microbiol. 2018, 282, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Cruxen, C.E.; Funck, G.D.; da Silva Dannenberg, G.; Haubert, L.; de Lima Marques, J.; Schneid Kroning, I.; Clasen Chaves, F.; Padilha da Silva, W.; Fiorentini, Â.M. Characterization of Staphylococcus xylosus LQ3 and its application in dried cured sausage. LWT 2017, 86, 538–543. [Google Scholar] [CrossRef]
- Corbière Morot-Bizot, S.; Leroy, S.; Talon, R. Staphylococcal community of a small unit manufacturing traditional dry fermented sausages. Int. J. Food Microbiol. 2006, 108, 210–217. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA) BIOHAZ Panel. Updated List of QPS-Recommended Biological Agents for Safety Risk Assessments Carried Out by EFSA. Available online: https://zenodo.org/record/6902983#.Y_o2wR_MLIV (accessed on 23 February 2023).
- Li, H.; Zhu, Q.; Chen, X.; Zhou, J.; Wu, J. Isolation and characterization of coagulase negative staphylococci with high proteolytic activity from dry fermented sausages as a potential starter culture. Food Res. Int. 2022, 162, 111957. [Google Scholar] [CrossRef]
- Sun, J.; Cao, C.C.; Feng, M.Q.; Xu, X.L.; Zhou, G.H. Technological and safety characterization of coagulase-negative staphylococci with high protease activity isolated from Traditional Chinese fermented sausages. LWT-Food Sci. Technol. 2019, 114, 108371. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain. EFSA J. 2021, 19, 6506. [Google Scholar]
- Cano-García, L.; Belloch, C.; Flores, M. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages. Meat Sci. 2014, 96, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- García-Béjar, B.; Sánchez-Carabias, D.; Alarcon, M.; Arévalo-Villena, M.; Briones, A. Autochthonous Yeast from Pork and Game Meat Fermented Sausages for Application in Meat Protection and Aroma Developing. Animals 2020, 10, 2340. [Google Scholar] [CrossRef]
- Corral, S.; Salvador, A.; Belloch, C.; Flores, M. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control 2015, 47, 526–535. [Google Scholar] [CrossRef]
- Bernáldez, V.; Córdoba, J.J.; Rodríguez, M.; Cordero, M.; Polo, L.; Rodríguez, A. Effect of Penicillium nalgiovense as protective culture in processing of dry-fermented sausage “salchichón”. Food Control 2013, 32, 69–76. [Google Scholar] [CrossRef]
- Magistà, D.; Susca, A.; Ferrara, M.; Logrieco, A.F.; Perrone, G. Penicillium species: Crossroad between quality and safety of cured meat production. Curr. Opin. Food Sci. 2017, 17, 36–40. [Google Scholar] [CrossRef]
- Stumpe-Vīksna, I.; Bartkevičs, V.; Kukāre, A.; Morozovs, A. Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chem. 2008, 110, 794–797. [Google Scholar] [CrossRef]
- Belleggia, L.; Milanović, V.; Ferrocino, I.; Cocolin, L.; Haouet, M.N.; Scuota, S.; Maoloni, A.; Garofalo, C.; Cardinali, F.; Aquilanti, L.; et al. Is there any still undisclosed biodiversity in Ciauscolo salami? A new glance into the microbiota of an artisan production as revealed by high-throughput sequencing. Meat Sci. 2020, 165, 108128. [Google Scholar] [CrossRef] [PubMed]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Clementi, F. Ecology of lactic acid bacteria and coagulase-negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. Int. Food Res. J. 2016, 23, 429–445. [Google Scholar]
- Amadoro, C.; Rossi, F.; Piccirilli, M.; Colavita, G. Tetragenococcus koreensis is part of the microbiota in a traditional Italian raw fermented sausage. Food Microbiol. 2015, 50, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, T.D.; Axelsson, L.; Naterstad, K.; Elsser, D.; Budde, B.B. Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. Int. J. Food Microbiol. 2005, 105, 419–431. [Google Scholar] [CrossRef]
- Van Reckem, E.; Charmpi, C.; Van der Veken, D.; Borremans, W.; De Vuyst, L.; Weckx, S.; Leroy, F. Application of a High-Throughput Amplicon Sequencing Method to Chart the Bacterial Communities that Are Associated with European Fermented Meats from Different Origins. Foods 2020, 9, 1247. [Google Scholar] [CrossRef]
- Rebecchi, A.; Miragoli, F.; Lopez, C.; Bassi, D.; Fontana, C. Exploring Coagulase-Negative Staphylococci Diversity from Artisanal Llama Sausages: Assessment of Technological and Safety Traits. Microorganisms 2020, 8, 629. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). The European Union One Health 2021 Zoonoses Report. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/7666 (accessed on 22 February 2023).
- Mudadu, A.G.; Piras, G.; Melillo, R.; Salza, S.; Cau, S.; Virgilio, S.; Meloni, D.; Mele, P. Survival of Naturally Contaminating Listeria monocytogenes in Commercial Mediterranean-Style Dry Fermented Sausages during Storage. J. Food Prot. 2022, 85, 1576–1583. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- Bošković, M.; Tadić, V.; Dordević, J.; Glišić, M.; Lakićević, B.; Dimitrijević, M.; Baltić, M.Ž. Effect of starter cultures on survival of Listeria monocytogenes in Čajna sausage. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012074. [Google Scholar] [CrossRef]
- Todorov, S.D.; Vaz-Velho, M.; de Melo Franco, B.D.G.; Holzapfel, W.H. Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control 2013, 30, 111–121. [Google Scholar] [CrossRef]
- Flores, M.; Mora, L.; Reig, M.; Toldrá, F. Risk assessment of chemical substances of safety concern generated in processed meats. Food Sci. Hum. Wellness 2019, 8, 244–251. [Google Scholar] [CrossRef]
- European Commission. Directive of the European Parliament and of the Council of 5 July 2006 amending Directive 95/2/EC on food additives other than colours and sweeteners and Directive 95/35/EC on sweeteners for use in foodstuffs. Off. J. Eur. Union 2006, L 204, 1–22. [Google Scholar]
- Fernández-López, J.; Sendra, E.; Sayas-Barberá, E.; Navarro, C.; Pérez-Alvarez, J.A. Physico-chemical and microbiological profiles of “salchichón” (Spanish dry-fermented sausage) enriched with orange fiber. Meat Sci. 2008, 80, 410–417. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). EFSA Confirms Safe Levels for Nitrites and Nitrates Added to Food. 15 June 2017. Available online: https://www.efsa.europa.eu/en/press/news/170615 (accessed on 22 February 2023).
- Mustafa, Z.O.; Gogus, F.; Yagci, S.; Hamilton, J.F.; Lewis, A.C. Determination of volatile nitrosamines in various meat products using comprehensive gas chromatography–nitrogen chemiluminescence detection. Food Chem. Toxicol. 2010, 48, 3268–3273. [Google Scholar]
- Kim, S.H.; Kang, K.H.; Kim, S.H.; Lee, S.; Lee, S.H.; Ha, E.S.; Sung, N.J.; Kim, J.G.; Chung, M.J. Lactic acid bacteria directly degrade N-nitrosodimethylamine and increase the nitrite-scavenging ability in kimchi. Food Control 2017, 71, 101–109. [Google Scholar] [CrossRef]
- Colavita, G.; Piccirilli, M.; Iafigliola, L.; Amadoro, C. Levels of Nitrates and Nitrites in Chilli Pepper and Ventricina Salami. Ital. J. Food Saf. 2014, 3, 1637. [Google Scholar] [PubMed]
- Pessione, E.; Pessione, A.; Lamberti, C.; Coïsson, D.J.; Riedel, K.; Mazzoli, R.; Bonetta, S.; Eberl, L.; Giunta, C. First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: A two-dimensional electrophoresis proteomic study. Proteomics 2009, 9, 2695–2710. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Gouveia, I.M.; Fernandes, M.H.; Fernandes, M.J.; Semedo-Lemsaddek, T.; Barreto, A.S.; Fraqueza, M.J. Assessment of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Portuguese Dry Fermented Sausages as Potential Starters Based on Their Biogenic Amine Profile. J. Food Sci. 2018, 83, 2544–2549. [Google Scholar] [CrossRef]
- Rossi, F.; Rizzotti, L.; Felis, G.E.; Torriani, S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol. 2014, 42, 232–243. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA) BIOHAZ panel. Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef]
- Dong, C.; Du, X.; Zhong, Q.; Wang, J.; Hu, Y.; Kong, B.; Xia, X. Effects of tyrosine decarboxylase negative strains from Harbin dry sausage on the growth and tyramine production of foodborne pathogens. Food Control 2021, 121, 107600. [Google Scholar] [CrossRef]
- Coton, M.; Deniel, F.; Mounier, J.; Joubrel, R.; Robieu, E.; Pawtowski, A.; Jeuge, S.; Taminiau, B.; Daube, G.; Coton, E.; et al. Microbial Ecology of French Dry Fermented Sausages and Mycotoxin Risk Evaluation During Storage. Front. Microbiol. 2021, 12, 737140. [Google Scholar] [CrossRef]
- Delgado, J.; Peromingo, B.; Rodríguez, A.; Rodríguez, M. Biocontrol of Penicillium griseofulvum to reduce cyclopiazonic acid contamination in dry-fermented sausages. Int. J. Food Microbiol. 2019, 293, 1–6. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, 215, 4–8. [Google Scholar]
- Hamad, G.M.; Omar, S.A.; Mostafa, A.G.M.; Cacciotti, I.; Saleh, S.M.; Allam, M.G.; El-Nogoumy, B.; Abou-Alella, S.A.; Mehany, T. Binding and removal of polycyclic aromatic hydrocarbons in cold smoked sausage and beef using probiotic strains. Food Res. Int. 2022, 161, 111793. [Google Scholar] [CrossRef] [PubMed]
- Baka, A.M.; Papavergou, E.J.; Pragalaki, T.; Bloukas, J.G.; Kotzekidou, P. Effect of selected autochthonous starter cultures on processing and quality characteristics of Greek fermented sausages. LWT 2011, 44, 54–61. [Google Scholar] [CrossRef]
- Casaburi, A.; Di Martino, V.; Ferranti, P.; Picariello, L.; Villani, F. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control 2016, 59, 31–45. [Google Scholar] [CrossRef]
- Dias, I.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Ricardo-Rodrigues, S.; Fialho, A.R.; Véstia, J.; Fraqueza, M.J.; Oliveira, M.; Elias, M. Autochthonous Starter Cultures Are Able to Reduce Biogenic Amines in a Traditional Portuguese Smoked Fermented Sausage. Microorganisms 2020, 8, 686. [Google Scholar] [CrossRef]
- Dias, I.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Ricardo-Rodrigues, S.; Fialho, A.R.; Véstia, J.; Fraqueza, M.J.; Oliveira, M.; Elias, M. Co-inoculation with Staphylococcus equorum and Lactobacillus sakei reduces vasoactive biogenic amines in traditional dry-cured sausages. Int. J. Environ. Res. Public Health 2021, 18, 7100. [Google Scholar] [CrossRef]
- Dias, I.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Ricardo-Rodrigues, S.; Fraqueza, M.J.; Oliveira, M.; Elias, M. Staphylococcus spp. and Lactobacillus sakei Starters with High Level of Inoculation and an Extended Fermentation Step Improve Safety of Fermented Sausages. Fermentation 2022, 8, 49. [Google Scholar] [CrossRef]
- Giello, M.; La Storia, A.; De Filippis, F.; Ercolini, D.; Villani, F. Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiol. 2018, 72, 1–15. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Q.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Quality characteristics and flavor profile of Harbin dry sausages inoculated with lactic acid bacteria and Staphylococcus xylosus. LWT 2019, 114, 108392. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Liu, Q.; Wang, Y.; Ren, J.; Chen, Q.; Kong, B. Unraveling the difference in flavor characteristics of dry sausages inoculated with different autochthonous lactic acid bacteria. Food Biosci. 2022, 47, 101778. [Google Scholar] [CrossRef]
- Kamiloğlu, A.; Kaban, G.; Kaya, M. Effects of autochthonous Lactobacillus plantarum strains on Listeria monocytogenes in sucuk during ripening. J. Food Saf. 2019, 39, e12618. [Google Scholar] [CrossRef]
- Murgia, M.A.; Marongiu, A.; Aponte, M.; Blaiotta, G.; Deiana, P.; Mangia, N.P. Impact of a selected Debaryomyces hansenii strain’s inoculation on the quality of Sardinian fermented sausages. Food Res. Int. 2019, 121, 144–150. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Sánchez-Montero, L.; Padilla, P.; Córdoba, J.J. Effect of the Dry-Cured Fermented Sausage “Salchichón” Processing with a Selected Lactobacillus sakei in Listeria monocytogenes and Microbial Population. Foods 2021, 10, 856. [Google Scholar] [CrossRef] [PubMed]
- Peromingo, B.; Andrade, M.J.; Delgado, J.; Sánchez-Montero, L.; Núñez, F. Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol. 2019, 82, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Deng, Y.; Wang, X. Effect of a compound starter cultures inoculation on bacterial profile and biogenic amine accumulation in Chinese Sichuan sausages. Food Sci. Hum. Wellness 2022, 11, 341–348. [Google Scholar] [CrossRef]
- Rodríguez-González, M.; Fonseca, S.; Centeno, J.A.; Carballo, J. Biochemical Changes during the Manufacture of Galician Chorizo Sausage as Affected by the Addition of Autochthonous Starter Cultures. Foods 2020, 9, 1813. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Zhao, L.; Wang, Q.; Li, B.; Lu, S. The effects of amine oxidase-producing starter culture on biogenic amine accumulation in traditional Chinese smoked horsemeat sausages. J. Food Saf. 2019, 39, e12638. [Google Scholar]
- Chen, Q.; Kong, B.H.; Sun, Q.; Dong, F.; Liu, Q. Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage: In vitro and in a sausage model. Meat Sci. 2015, 110, 180–188. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Q.; Sun, Q.; Kong, B.; Xiong, Y. Flavour formation from hydrolysis of pork sarcoplasmic protein extract by a unique LAB culture isolated from Harbin dry sausage. Meat Sci. 2015, 100, 100–117. [Google Scholar] [CrossRef]
- Chen, X.; Mi, R.; Qi, B.; Xiong, S.; Li, J.; Qu, C.; Qiao, X.; Chen, W.; Wang, S. Effect of proteolytic starter culture isolated from Chinese Dong fermented pork (Nanx Wudl) on microbiological, biochemical and organoleptic attributes in dry fermented sausages. Food Sci. Hum. Wellness 2021, 10, 13–22. [Google Scholar] [CrossRef]
- Pavli, F.G.; Argyri, A.A.; Chorianopoulos, N.G.; Nychas, G.J.E.; Tassou, C.C. Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry-fermented sausages. LWT 2020, 118, 108810. [Google Scholar] [CrossRef]
- Wen, R.; Kong, B.; Yin, X.; Zhang, H.; Chen, Q. Characterisation of flavour profile of beef jerky inoculated with different autochthonous lactic acid bacteria using electronic nose and gas chromatography–ion mobility spectrometry. Meat Sci. 2022, 183, 108658. [Google Scholar] [CrossRef]
- Rossi, F.; Tofalo, R.; Torriani, S.; Suzzi, G. Identification by 16S-23S rDNA intergenic region amplification, genotypic and phenotypic clustering of Staphylococcus xylosus strains from dry sausages. J. Appl. Microbiol. 2001, 90, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Moratalla, M.L.; Comas-Basté, O.; Bover-Cid, S.; Vidal-Carou, M.C. Tyramine and histamine risk assessment related to consumption of dry fermented sausages by the Spanish population. Food Chem. Toxicol. 2017, 99, 78–85. [Google Scholar] [CrossRef]
- Serio, A.; Laika, J.; Maggio, F.; Sacchetti, G.; D’Alessandro, F.; Rossi, C.; Martuscelli, M.; Chaves-López, C.; Paparella, A. Casing contribution to proteolytic changes and biogenic amines content in the production of an artisanal naturally fermented dry sausage. Foods 2020, 9, 1286. [Google Scholar] [CrossRef]
- Tasić, T.; Ikonić, P.; Mandić, A.; Jokanović, M.; Tomović, V.; Savatić, S.; Petrović, L. Biogenic amines content in traditional dry fermented sausage Petrovská klobása as possible indicator of good manufacturing practice. Food Control 2012, 23, 107–112. [Google Scholar] [CrossRef]
- Flores, M.; Corral, S.; Cano-García, L.; Salvador, A.; Belloch, C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int. J. Food Microbiol. 2015, 212, 16–24. [Google Scholar] [CrossRef]
- Dong, C.; Shi, S.; Pan, N.; Du, X.; Li, H.; Xia, X. Inhibitory mechanism of tyramine-degrading strains on reducing tyramine accumulation in Harbin dry sausage during fermentation. Food Control 2022, 137, 108952. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Alía, A.; Martínez, R.; Córdoba, J.J. Selection and characterization of lactic acid bacteria with activity against Listeria monocytogenes from traditional RTE ripened foods. LWT 2022, 163, 113579. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Sun, J.; Pan, P.; Liu, Y.; Tian, T. Effects of starter culture inoculation on microbial community diversity and food safety of Chinese Cantonese sausages by high-throughput sequencing. J. Food Sci. Technol. 2021, 58, 931–939. [Google Scholar] [CrossRef]
- Cebrián, E.; Núñez, F.; Álvarez, M.; Roncero, E.; Rodríguez, M. Biocontrol of ochratoxigenic Penicillium nordicum in dry-cured fermented sausages by Debaryomyces hansenii and Staphylococcus xylosus. Int. J. Food Microbiol. 2022, 375, 109744. [Google Scholar] [CrossRef] [PubMed]
- Kaban, G.; Sallan, S.; Çinar Topçu, K.; Sayın Börekçi, B.; Kaya, M. Assessment of technological attributes of autochthonous starter cultures in Turkish dry fermented sausage (sucuk). JFST 2022, 57, 4392–4399. [Google Scholar] [CrossRef]
- Chilton, S.N.; Burton, J.P.; Reid, G. Inclusion of fermented foods in food guides around the world. Nutrients 2015, 7, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Dincer, E.; Kivanc, M. Evaluation of metabolic activities and probiotic characteristics of two Latilactobacillus sakei strains isolated from pastırma. World J. Microbiol. Biotechnol. 2022, 38, 237. [Google Scholar] [CrossRef]
Microbial Strains | Product | Effect | Reference * |
---|---|---|---|
S. simulans QB7 | Qianwufu fermented sausage, Guizhou province, China | reduced growth of undesirable bacteria | Li et al. [44] |
L. curvatus 8427, L. plantarum 7423, L. sakei 8416, 4413 and 8426 | Greek fermented sausages | inhibition of undesirable microorganisms | Baka et al. [83] |
L. curvatus 54M16 | fermented sausages of Campania region, Italy | lower numbers of Enterobacteriaceae | Casaburi et al. [84] |
L. sakei CV3C2 and CECT7056, S. equorum S2M7, S. xylosus CECT7057, yeast strain 2RB4 | Painho da Beira Baixa, Portugal | decrease in pH, Enterobacteriaceae, L. monocytogenes and total Bas | Dias et al. [85] |
L. sakei CV3C2, S. equorum S2M7, yeast 2RB4 | Paio do Alentejo, Portugal | decrease in L. monocytogenes counts and vasoactive amines tryptamine and β-phenylethylamine content | Dias et al. [86] |
L. sakei CV3C2 and CECT7056, S. equorum S2M7, S. xylosus CECT7057, yeast strain 2RB4 | Paio do Alentejo, Portugal | decrease in pH, L. monocytogenes counts and total BA content | Dias et al. [87] |
L. sakei, S. epidermidis | Harbin sausage, China | decrease in tyramine content | Dong et al. [78] |
L. curvatus 54M16 | fermented sausages of Campania region, Italy | total inhibition of L. monocytogenes native from raw materials, inhibition of Brochothrix, Psychrobacter, Pseudomonas and Enterobacteriaceae | Giello et al. [88] |
L. curvatus, L. sakei, P. pentosaceus, S. xylosus | Harbin dry sausage, China | decrease in aw | Hu et al. [89] |
L. curvatus SYS29, L. lactis HRB0, L. plantarum MDJ2, L. sakei HRB10, W. hellenica HRB6 | traditional dry sausage, China | decrease in pH and aw, increase in LAB counts | Hu et al. [90] |
L. plantarum S50, S51, S72, S74, S85 | Sucuk, Turkey | Inhibition of L. monocytogenes, rapid decrease in pH | Kamiloglu et al. [91] |
D. hansenii | Salsiccia Sarda, Italy | Anti-mold effect | Murgia et al. [92] |
L. sakei 205 | Salchichón, Spain | decrease in L. monocytogenes counts | Martín et al. [93] |
D. hansenii | dry-cured meat products | decrease in aflatoxin formation by Aspergillus parasiticus | Peromingo et al. [94] |
L. sakei, P. pentosaceus, S. carnosus, S. xylosus | Sichuan sausage, China | decreased levels of histamine, putrescine, tyramine, cadaverine and residual nitrites | Ren et al. [95] |
L. sakei/S. equorum SA25 L. sakei LS131/S. saprophyticus SB12 | Galician Chorizo, Spain | pH decrease, increase in free amino acids and decrease of total BAs by approximately 20% | Rodríguez et al. [96] |
L. plantarum, L. salivarius | traditional smoked horsemeat sausage, China | decrease in all indigenous microorganisms, including Enterobacter cloacae, Enterococcus faecium, Pseudomonas spp. and Weissella and in total BAs and histamine | Zhang et al. [97] |
Microbial Strains | Product | Effect | Reference * |
---|---|---|---|
L. fermentum BL11, L. sakei BL6, P. acidilactici BP2 | Beef jerky, China | Lower pH and indicators of lipid and protein oxidation, higher VOC formation from carbohydrates for L. sakei; higher VOC formation from lipid β-oxidation and amino acid metabolism, esterase activity and acceptability score for P. acidilactici | Wen et al. [20] |
S. simulans QB7 | Qianwufu fermented sausage, Guizhou province, China | reduced growth of undesirable bacteria | Li et al. [44] |
D. hansenii M4 and P2 | dry-cured fermented sausages | strain P2 decreased lipid oxidation and increased acid compounds, strain M4 increased sulphur containing compounds, no differences in consumer acceptance | Cano-García et al. [50] |
L. sakei, P. pentosaceus, S. xylosus | Salame Piemonte, Italy | improvement of the sensory properties | Franciosa [32] |
L. plantarum MF1291 and MF 1298, L. pentosus MF1300 | Traditional Norwegian salami | 19 sensory parameters comparable to the commercial starter culture L. sakei HJ5 | Klingberg et al. [59] |
L. curvatus 8427, L. plantarum 7423, L. sakei 8416, 4413 and 8426 | Greek fermented sausages | prevention of lipid oxidation; higher scores for all sensory attributes | Baka et al. [83] |
L. curvatus 54M16 | fermented sausages of Campania region, Italy | more intense ripened flavor | Casaburi et al. [84] |
L. sakei CV3C2 and CECT7056, S. equorum S2M7, S. xylosus CECT7057, yeast strain 2RB4 | Painho da Beira Baixa, Portugal | higher scores in sensory attributes | Dias et al. [85] |
L. sakei CV3C2 and CECT7056, S. equorum S2M7, S. xylosus CECT7057, yeast strain 2RB4 | Paio do Alentejo, Portugal | negative effect on the sensory characteristics of fermented sausages | Dias et al. [86] |
L. curvatus, L. sakei, P. pentosaceus, S. xylosus | Harbin dry sausage, China | increase in hardness and springiness, higher percentages of aldehydes, ketones, alcohols, acids and esters | Hu et al. [89] |
L. curvatus SYS29, L. lactis HRB0, L. plantarum MDJ2, L. sakei HRB10, W. hellenica HRB6 | traditional dry sausage, China | increase in VOC content, decrease in total content of free amino acids, enrichment of pleasant odors for L. sakei and W. hellenica | Hu et al. [90] |
L. sakei, P. pentosaceus, S. carnosus, S. xylosus | Sichuan sausage, China | lower hardness and chewiness, increased springiness; improved color and sensory attributes | Ren et al. [95] |
L. sakei LS131/S. equorum SA25 or L. sakei LS131/S. saprophyticus SB12 | Galician Chorizo, Spain | increment in the α-amino acid nitrogen, total basic volatile nitrogen and free amino acids, improvement of color | Rodríguez et al. [96] |
L. brevis R4, L. curvatus R5, L. fermentum R6, P. pentosaceus R1 | Harbin dry sausage | P. pentosaceus hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, inhibition of lipid peroxidation, high SOD and glutathione peroxidase (GSH-Px) activities | Chen et al. [98] |
L. brevis R4, L. curvatus R5, L. fermentum R6, P. pentosaceus R1 | Harbin dry sausage | P. pentosaceus strongest proteolysis activity, highest formation of soluble peptides and free amino acids, VOCs from sarcoplasmic proteins | Chen et al. [99] |
S. xylosus SX16, L. plantarum CMRC6 | Chinese Dong fermented pork (Nanx Wudl) | acceleration of acidification and proteolysis, increase in total free amino acids and essential free amino acids Phe, Ile and Leu, increase in 3-methyl-1-butanol | Chen et al. [100] |
L. plantarum L125 | traditional Greek dry-fermented sausage | desiderable technological characteristics | Pavli et al. [101] |
L. fermentum BL11, L. sakei BL6, P. acidilactici BP2 | Beef jerky, China | decrease in lipid autoxidation-derived aldehydes; increment of esters for P. acidilactici; strain-specific flavour profiles | Wen et al. [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, F.; Tucci, P.; Del Matto, I.; Marino, L.; Amadoro, C.; Colavita, G. Autochthonous Cultures to Improve Safety and Standardize Quality of Traditional Dry Fermented Meats. Microorganisms 2023, 11, 1306. https://doi.org/10.3390/microorganisms11051306
Rossi F, Tucci P, Del Matto I, Marino L, Amadoro C, Colavita G. Autochthonous Cultures to Improve Safety and Standardize Quality of Traditional Dry Fermented Meats. Microorganisms. 2023; 11(5):1306. https://doi.org/10.3390/microorganisms11051306
Chicago/Turabian StyleRossi, Franca, Patrizia Tucci, Ilaria Del Matto, Lucio Marino, Carmela Amadoro, and Giampaolo Colavita. 2023. "Autochthonous Cultures to Improve Safety and Standardize Quality of Traditional Dry Fermented Meats" Microorganisms 11, no. 5: 1306. https://doi.org/10.3390/microorganisms11051306