Human-Biting Ixodes scapularis Submissions to a Crowd-Funded Tick Testing Program Correlate with the Incidence of Rare Tick-Borne Disease: A Seven-Year Retrospective Study of Anaplasmosis and Babesiosis in Massachusetts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Institutional Review Board Statement
2.2. Tick Testing Data
2.3. Human Disease Data
2.4. Spatial Mapping
2.5. Correlating Human-Biting Tick Submissions and Human Disease
3. Results
3.1. Descriptive Information of Tick Submissions
3.2. Pathogen Presence in Tick Submissions
3.3. Spatial Dynamics of Tick Submissions
3.4. Human Disease Reporting
3.5. Seasonality of Human Disease and Tick Submissions
3.6. Quantifying the Correlation between Tick Submissions and Human Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisen, R.J.; Eisen, L. The blacklegged tick: Ixodes scapularis: An increasing public health concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 618–619. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Kugeler, K.J.; Eisen, L.; Beard, C.B.; Paddock, C.D. Tick-brone zoonoses in the United States: Persistent and emerging threats to human health. ILAR J. 2017, 58, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Russel, A.; Prusinski, M.; Sommer, J.; O’Connor, C.; White, J.; Falco, R.; Kokas, J.; Vinci, V.; Gall, W.; Tober, K.; et al. epidemiology and spatial emergence of anaplasmosis, New York, USA, 2010–2018. Emerg. Infect. Dis. 2021, 27, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; O’Bryan, J.; Krause, P.J. The global emergence of human babesiosis. Pathogens 2021, 10, 1447. [Google Scholar] [CrossRef]
- Swanson, M.; Pickrel, A.; Williamson, J.; Montgomery, S. Trends in reported babesiosis cases—United States, 2011–2019. Am. J. Transplant. 2023, 72, 273–277. [Google Scholar] [CrossRef]
- Osinki, T.; Osborne, M. Babesiosis Surveillance in Massachusetts; Bureau of Infectious Disease and Laboratory Sciences, Massachusetts Department of Health. 2018. Available online: https://archives.lib.state.ma.us/bitstream/handle/2452/832559/ocn969337414-2018.pdf?sequence=1&isAllowed=y (accessed on 18 November 2022).
- MacQueen, D.; Centellas, F. Human granulocytic anaplasmosis. Infect. Dis. Clin. North Am. 2022, 36, 639–654. [Google Scholar] [CrossRef]
- Osinki, T.; Osborne, M. Human Granulocytic Anaplasmosis Surveillance in Massachusetts; Bureau of Infectious Disease and Laboratory Sciences, Massachusetts Department of Health. 2018. Available online: https://archives.lib.state.ma.us/bitstream/handle/2452/832558/ocn969337318-2018.pdf?sequence=1&isAllowed=y (accessed on 18 November 2022).
- Berghoff, W. Chronic Lyme disease and co-infections: Differential diagnosis. Open Neurol. J. 2012, 6, 158–178. [Google Scholar] [CrossRef]
- Krause, P.J.; Telford, S.R.; Spielman, A.; Sikand, V.; Ryan, R.; Christianson, D.; Burke, G.; Brassard, P.; Pollack, R.; Peck, J.; et al. Concurrent Lyme disease and babesiosis: Evidence for increased severity and duration of illness. JAMA 1996, 275, 1657–1660. [Google Scholar] [CrossRef]
- Rutz, H.; Hogan, B.; Hook, S.; Hinckley, A.; Feldman, K. Impacts of misclassification on Lyme disease surveillance. Zoonoses Public Health 2019, 66, 174–178. [Google Scholar] [CrossRef]
- Mader, E.M.; Ganser, C.; Geiger, A.; Harrington, L.C.; Foley, J.; Smith, R.L.; Mateus-Pinilla, N.; Teel, P.D.; Eisen, R.J. A survey of tick surveillance and control practices in the United States. J. Med. Entomol. 2021, 58, 1503–1512. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Randolph, S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Kung, F.; Anguita, J.; Pal, U. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol. 2013, 8, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E. Dynamics of tick-borne disease systems: Minor role of recent climate change. Rev. Sci. Tech. Off. Int. Epiz. 2008, 27, 367–381. [Google Scholar] [CrossRef]
- McMahon, B.J.; Morand, S.; Gray, J.S. Ecosystem change and zoonoses in the Anthropocene. Zoonoses Public Health 2018, 65, 755–765. [Google Scholar] [CrossRef]
- Salomon, J.; Hamer, S.A.; Swei, A. A beginner’s guide to collecting questing hard ticks (Acari: Ixodidae): A standardized tick dragging protocol. J. Insect. Sci. 2020, 20, 11. [Google Scholar] [CrossRef]
- Kim, C.-M.; Yi, Y.-H.; Yu, D.-H.; Lee, M.-J.; Cho, M.-R.; Desai, A.R.; Shringi, S.; Klein, T.A.; Kim, H.-C.; Song, J.-W.; et al. Tick-borne Rickettsial pathogens in ticks and small mammals in Korea. Appl. Environ. Microbiol. 2006, 72, 5766–57776. [Google Scholar] [CrossRef]
- Burrows, H.; Talbot, B.; McKay, R.; Slatculescu, A.; Logan, J.; Thickstun, C.; Lindsay, L.R.; Dibernardo, A.; Koffi, J.K.; Ogden, N.H.; et al. A multi-year assessment of blacklegged tick (Ixodes scapularis) population establishment and Lyme disease risk areas in Ottawa, Canada, 2017–2019. PLoS ONE 2021, 16, e0246484. [Google Scholar] [CrossRef]
- Dewage, B.G.; Little, S.; Payton, M.; Beall, M.; Braff, J.; Szlosek, D.; Buch, J.; Knupp, A. Trends in canine seroprevalence to Borrelia burgdorferi and Anaplasma spp. In the eastern USA, 2010–2017. Parasites Vectors 2019, 12, 476. [Google Scholar] [CrossRef]
- Cao, J.; Yang, Q.; Zhang, J.; Zhou, Y.; Zhang, H.; Gong, H.; Zhou, J. Seroprevalence of Babesia gibsoni infection and tick species in dogs in East China. Vet. Parasitol. 2015, 214, 12–15. [Google Scholar] [CrossRef]
- Porter, W.T.; Motyka, P.J.; Wachara, J.; Barrand, Z.A.; Hmood, Z.; McLaughlin, M.; Pemberton, K.; Nieto, N.C. Citizen science informs human-tick exposure in the Northeastern United States. Int. J. Health Geogr. 2019, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nieto, N.C.; Porter, W.T.; Wachara, J.C.; Lowrey, T.J.; Martin, L.; Motyka, P.J.; Salkeld, D.J. Using citizen science to describe the prevalence and distribution of tick bite and exposure to tick-borne diseases in the United States. PLoS ONE 2018, 13, e0199644. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Boudreau, C.R.; Patterson, J.W.; Bradet-Legris, J.; Lloyd, V.K. Citizen science and community engagement in tick surveillance—A Canadian case study. Healthcare 2018, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Little, E.A.H.; Anderson, J.F.; Stafford, K.C.; Eisen, L.; Eisen, R.J.; Molaei, G. Predicting spatiotemporal patterns of Lyme disease incidence from passively collected surveillance data for Borrelia burgdorferi sensu lato- infected Ixodes scapularis ticks. Ticks Tick Borne Dis. 2019, 10, 970–980. [Google Scholar] [CrossRef] [PubMed]
- Jordan, R.A.; Egizi, A. The growing importance of lone star ticks in a Lyme disease endemic county: Passive tick surveillance in Monmouth County, NJ, 2006–2016. PLoS ONE 2019, 14, e021178. [Google Scholar] [CrossRef]
- Hammond-Collins, K.; Tremblay, M.; Milord, F.; Baron, G.; Bouchard, C.; Kotchi, S.O.; Lambert, L.; Leighton, P.; Ogden, N.H.; Rees, E.E. An ecological approach to predict areas with established populations of Ixodes scapularis in Quebec, Canada. Ticks Tick Borne Dis. 2022, 13, 102040. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Pearson, P.; Dykstra, E.; Andrews, E.S.; Rich, S.M. Human-biting Ixodes scapularis ticks and pathogen prevalence from California, Oregon, and Washington. Vector-Borne Zoonotic Dis. 2019, 19, 106–114. [Google Scholar] [CrossRef]
- Xu, G.; Mather, T.N.; Hollingsworth, C.S.; Rich, S.M. Passive surveillance of Ixodes scapularis (Say), their biting activity and associated pathogens in Massachusetts. Vector-Borne Zoonotic Dis. 2016, 16, 520–526. [Google Scholar] [CrossRef]
- Rand, P.W.; Lacombe, E.H.; Dearborn, R.; Cahill, B.; Elias, S.; Lubelczyk, C.B.; Beckett, G.A.; Smith, R.P. Passive surveillance in Maine, an area emergent for tick-borne diseases. J. Med. Entomol. 2007, 44, 1118–1129. [Google Scholar] [CrossRef]
- Little, E.A.H.; Molaei, G. Passive tick surveillance: Exploring spatiotemporal associations of Borrelia burgdorferi (Spirochatetales: Spirochaetaceae), Babesia microti (Piroplasmida: Babesiidae), and Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) infection in Ixodes scapularis (Acari: Ixodidae). Vector-Borne Zoonotic Dis. 2020, 20, 177–186. [Google Scholar] [CrossRef]
- DeWinter, S.; Bauman, C.; Peregrine, A.; Weese, J.S.; Clow, K.M. Assessing the spatial and temporal patterns and risk factors for acquisition of Ixodes spp. By companion animals across Canada. Ticks Tick-Borne Dis. 2023, 14, 102089. [Google Scholar] [CrossRef] [PubMed]
- Ripoche, M.; Gasmi, S.; Adam-Poupart, A.; Koffi, J.K.; Lindsay, L.R.; Ludwig, A.; Milord, F.; Ogden, N.H.; Thivierge, K.; Leighton, P.A. Passive tick surveillance provides an accurate early signal of emerging Lyme disease risk and human cases in Southern Canada. J. Med. Entomol. 2018, 55, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Tick Removal and Testing. Centers for Disease Control and Prevention. 2022. Available online: https://www.cdc.gov/lyme/removal/index.html (accessed on 27 October 2022).
- Tick-Borne Diseases Passive Surveillance Database; MedZu, Inc.: Amherst, MA, USA, 2023; Available online: https://www.tickreport.com/stats (accessed on 29 October 2022).
- Kierans, J.E.; Hutcheson, H.J.; Durden, L.A.; Klompen, J.S.H. Ixodes (Ixodes) scapularis (Acari: Ixodidae): Redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance. J. Med. Entomol. 1996, 33, 297–318. [Google Scholar] [CrossRef] [PubMed]
- Kierans, J.E.; Clifford, C.M. The genus Ixodes in the United States: A scanning electron microscope study and key to the adults. J. Med. Entomol. Suppl. 1978, 15 (Suppl. S2), 1–38. [Google Scholar] [CrossRef] [PubMed]
- Kierans, J.E.; Litwak, T.R. Pictoral key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodidea), east of the Mississippi River. J. Med. Entomol. 1989, 26, 435–448. [Google Scholar] [CrossRef]
- Danie, W.W.; Cross, C.L. Biostatistics: A Foundation for Analysis in the Health Sciences, 10th ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Babesiosis 2011 Case Definition. Centers for Disease Control and Prevention National Notifiable Diseases Surveillance System; 2021. Available online: https://ndc.services.cdc.gov/case-definitions/babesiosis-2011/ (accessed on 19 October 2022).
- Ehrlichiosis and Anaplasmosis 2008 Case Definition. Centers for Disease Control and Prevention National Notifiable Diseases Surveillance System; 2021. Available online: https://ndc.services.cdc.gov/case-definitions/ehrlichiosis-and-anaplasmosis-2008/ (accessed on 19 October 2022).
- MassGIS (Bureau of Geographic Information). Commonwealth of Massachusetts Executive Office of Technology Services and Security; MassGIS Data: Municipalities. April 2022. Available online: https://www.mass.gov/info-details/massgis-data-municipalities (accessed on 19 October 2022).
- Massachusetts Population Estimates Program; UMass Donahue Institute. Available online: https://donahue.umass.edu/business-groups/economic-public-policy-research/massachusetts-population-estimates-program (accessed on 23 October 2022).
- Oden, N. Adjusting Moran’s I for population density. Stat. Med. 1995, 14, 17–26. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- ArcGIS Pro, Version 18.0; Esri, Inc. Available online: www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 8 November 2022).
- Sonenshine, D.E. Range expansion of tick disease vectors in North America: Implications for spread of tick-borne disease. Int. J. Environ. Res. Public Health 2018, 15, 478. [Google Scholar] [CrossRef]
- Hutcheson, H.J.; Lindsay, L.R.; Dergousoff, S.J. Haemaphysalis longicornis: A tick of considerable veterinary importance, now established in North America. Can. Vet. J. 2019, 60, 27–28. [Google Scholar] [CrossRef]
- Elliot, P.; Wartenberg, D. Spatial epidemiology: Current approaches and future challenges. Environ. Health Persp. 2004, 112, 998–1006. [Google Scholar] [CrossRef]
- Zhang, Z.; Manjourides, J.; Cohen, T.; Hu, Y.; Jiang, Q. Spatial measurement errors in the field of spatial epidemiology. Int. J. Health Geogr. 2016, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Winters, A.M.; Eisen, R.J.; Delorey, M.J.; Fischer, M.; Nasci, R.S.; Zielinski-Gutierrez, E.; Moore, C.G.; Pape, W.J.; Eisen, L. Spatial risk assessments based on vector-borne disease epidemiologic data: Importance of scale for West Nile Virus disease in Colorado. Am. J. Trop. Med. Hyg. 2010, 82, 945–953. [Google Scholar] [CrossRef]
- Eisen, R.J.; Lane, R.S.; Fritz, C.L.; Eisen, L. Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. Am. J. Trop. Med. Hyg. 2006, 75, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Lehane, A.; Maes, S.E.; Graham, C.B.; Jones, E.; Delorey, M.; Eisen, R.J. Prevalence of single and coinfections of human pathogens in Ixodes ticks from five geographical regions in the United States, 2013–2019. Ticks Tick-borne Dis. 2021, 21, 101637. [Google Scholar] [CrossRef]
- The State of Connecticut Active Tick Surveillance Program. Available online: https://portal.ct.gov/CAES/Tick-Office/Tick-Office/Active-Tick-Surveillance-Program/CT-ATSP (accessed on 10 December 2022).
- Koffi, J.K.; Leighton, P.A.; Pelcat, Y.; Trudel, L.; Lindsay, L.R.; Milord, F.; Ogden, N.H. Passive surveillance for I. scapularis ticks: Enhanced analysis for early detection of emerging Lyme disease risk. J. Med. Entomol. 2012, 49, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E.; Roe, R.M. Biology of Ticks, 2nd ed.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Eisen, L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks Tick-borne Dis. 2018, 9, 535–542. [Google Scholar] [CrossRef]
- des Vignes, F.; Piesman, J.; Heffernan, R.; Schulze, T.L.; Stafford, K.C.; Fish, D. Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. J. Infect. Dis. 2001, 183, 773–778. [Google Scholar] [CrossRef]
- Levin, M.L.; Troughton, D.R.; Loftis, A.D. Duration of tick attachment necessary for transmission of Anaplasma phagocytophilum by Ixodes scapularis (Acari: Ixodidae) nymphs. Ticks Tick-borne Dis. 2021, 12, 101819. [Google Scholar] [CrossRef]
- Fourie, J.J.; Evans, A.; Labuschagne, M.; Crafford, D.; Madder, M.; Pollmeier, M.; Schunack, B. Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes. Parasit. Vectors 2019, 12, 136. [Google Scholar] [CrossRef]
- Piesman, J.; Spielman, A. Human Babesiosis on Nantucket Island: Prevalence of Babesia microti in ticks. Am. J. Trop. Med. Hyg. 1980, 29, 742–746. [Google Scholar] [CrossRef]
- Karakashian, S.J.; Rudzinska, M.A.; Spielman, A.; Lewengrub, S.; Piesman, J.; Shoukrey, N. Ultrastructural studies on sporogony of Babesia microti in salivary gland cells of the tick Ixodes dammini. Cell Tissue Res. 1983, 231, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Piesman, J.; Karakashian, J.S.; Lewengrub, S.; Rudzinska, M.A.; Spielman, A. Development of Babesia microti sporozoites in adult Ixodes dammini. Int. J. Parasitol. 1986, 16, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Logar, J.; Petrovec, M.; Novak-Antolic, Z.; Premru-Srsen, T.; Cizman, M.; Arnez, M.; Kraut, A. Prevention of congenital toxoplasmosis in Slovenia by serological screening of pregnant women. Scand. J. Infect. Dis. 2002, 34, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, P.; Lindblom, P.; Fryland, L.; Nyman, D.; Jaenson, T.G.; Forsberg, P.; Lindgren, P.-E. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasit. Vectors 2013, 20, 362. [Google Scholar] [CrossRef]
- Gray, J.; Stanek, G.; Kundi, M.; Kocianova, E. Dimensions of engorging Ixodes ricinus as a measure of feeding duration. Int. J. Med. Microbiol. 2005, 295, 567–572. [Google Scholar] [CrossRef]
- Meiners, T.; Hammer, B.; Göbel, U.B.; Kahl, O. Determining the tick scutal index allows assessment of tick feeding duration and estimation of infection risk with Borrelia burgdorferi sensu lato in a person bitten by an Ixodes ricinus nymph. Int. J. Med. Microbiol. 2006, 296 (Suppl. S40), 103–107. [Google Scholar] [CrossRef]
- Cook, M.J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 2015, 8, 1–8. [Google Scholar] [CrossRef]
- Werden, L.; Lindsay, L.R.; Barker, I.K.; Bowman, J.; Gonzales, E.K.; Jardine, C.M. Prevalence of Anaplasma phagocytophilum and Babesia microti in Ixodes scapularis from a newly established Lyme disease endemic area, the Thousand Islands region of Ontario, Canada. Vector-Borne Zoonotic Dis. 2015, 15, 627–629. [Google Scholar] [CrossRef]
- Krakowetz, C.N.; Dibernardo, A.; Lindsay, L.R.; Chilton, N.B. Two Anaplasma phagocytophilum strains in Ixodes scapularis ticks, Canada. Emerg. Infect. Dis. 2014, 20, 2064–2067. [Google Scholar] [CrossRef]
- Nelder, M.P.; Russell, C.B.; Lindsay, L.R.; Dibernardo, A.; Brandon, N.C.; Pritchard, J.; Johnson, S.; Cronin, K.; Patel, S.N. Recent emergence of Anaplasma phagocytophilum in Ontario, Canada: Early serological and entomological indicators. Am. J. Trop. Med. Hyg. 2019, 101, 1249–1258. [Google Scholar] [CrossRef]
- Diuk-Wasser, M.A.; Liu, Y.; Steeves, T.K.; Folsom-O’Keefe, C.; Dardick, K.R.; Lepore, T.; Bent, S.J.; Usmani-Brown, S.; Telford, S.R.; Fish, D.; et al. Monitoring human babesiosis emergence through vector surveillance New England, USA. Emerg. Infect. Dis. 2014, 20, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Daniels, T.J.; Boccia, T.M.; Varde, S.; Marcus, J.; Le, J.; Bucher, D.J.; Falco, R.C.; Schwartz, I. Geographic risk for Lyme disease and human granulocytic ehrlichiosis in southern New York state. Appl. Environ. Microbiol. 1998, 64, 4663–4669. [Google Scholar] [CrossRef] [PubMed]
County | Nymphs Tested | NIP | Adults Tested | AIP | ||
---|---|---|---|---|---|---|
A. phag1 | B. microti | A. phag | B. microti | |||
Barnstable | 1041 | 3.46% | 9.41% | 3793 | 6.20% | 9.52% |
Berkshire | 104 | 7.69% | 0.01% | 594 | 13.80% | 8.08% |
Bristol | 192 | 5.21% | 8.85% | 359 | 5.57% | 5.29% |
Dukes | 270 | 6.30% | 7.78% | 147 | 8.16% | 6.80% |
Essex | 142 | 4.23% | 7.75% | 685 | 9.78% | 11.53% |
Franklin | 378 | 6.35% | 2.12% | 1512 | 8.27% | 6.22% |
Hamden | 76 | 6.58% | 3.95% | 388 | 3.87% | 6.70% |
Hampshire | 386 | 3.37% | 3.37% | 1636 | 7.03% | 6.00% |
Middlesex | 544 | 4.41% | 5.70% | 2319 | 8.80% | 8.58% |
Nantucket | 55 | 7.27% | 5.45% | 18 | 11.11% | 5.56% |
Norfolk | 190 | 4.21% | 6.84% | 671 | 6.70% | 7.00% |
Plymouth | 322 | 4.66% | 9.00% | 900 | 7.11% | 9.11% |
Suffolk | 19 | 5.26% | 0.00% | 66 | 3.00% | 1.52% |
Worcester | 256 | 4.30% | 2.35% | 1488 | 8.60% | 7.53% |
Year | Anaplasmosis | Babesiosis | Tick Submissions |
---|---|---|---|
2015 | 221 (63%) | 164 (47%) | 244 (63%) |
2016 | 242 (69%) | 156 (44%) | 239 (69%) |
2017 | 289 (82%) | 198 (56%) | 284 (82%) |
2018 | 272 (77%) | 191 (54%) | 305 (77%) |
2019 | 271 (77%) | 206 (59%) | 306 (77%) |
2020 | 281 (80%) | 200 (57%) | 305 (80%) |
2021 | 299 (85%) | 233 (66%) | 268 (85%) |
Total Representation | 344 (98%) | 300 (85%) | 343 (98%) |
7-Year Change | +35% | +42% | +10% |
County | Anaplasmosis Rate | Babesiosis Rate | Adult Sub Rate | Nymphal Sub Rate |
---|---|---|---|---|
Barnstable | 252.87 | 333.23 | 1601.96 | 419.71 |
Berkshire | 820.91 | 104.07 | 379.78 | 65.24 |
Bristol | 160.55 | 177.36 | 55.14 | 28.75 |
Dukes | 461.59 | 685.09 | 660.80 | 1127.25 |
Essex | 52.64 | 31.88 | 76.98 | 15.82 |
Franklin | 421.19 | 40.85 | 1960.89 | 480.36 |
Hamden | 47.96 | 26.67 | 75.92 | 15.06 |
Hampshire | 223.98 | 41.34 | 945.30 | 233.99 |
Middlesex | 93.77 | 36.27 | 130.90 | 30.87 |
Nantucket | 540.57 | 1151.36 | 105.30 | 329.96 |
Norfolk | 66.80 | 48.20 | 81.67 | 21.62 |
Plymouth | 225.24 | 196.24 | 154.80 | 52.73 |
Suffolk | 11.44 | 10.18 | 7.04 | 1.89 |
Worcester | 112.01 | 37.37 | 157.29 | 26.58 |
Measure | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Aggregated |
---|---|---|---|---|---|---|---|---|
Anaplasmosis | ||||||||
All sub | 0.655 | 0.668 | 0.662 | 0.678 | 0.625 | 0.695 | 0.720 | 0.830 |
Inf sub | 0.541 | 0.672 | 0.590 | 0.683 | 0.722 | 0.707 | 0.650 | 0.732 |
Adult | 0.700 | 0.727 | 0.625 | 0.688 | 0.670 | 0.701 | 0.728 | 0.713 |
Nymph | 0.791 | 0.622 | 0.617 | 0.660 | 0.735 | 0.684 | 0.759 | 0.708 |
Babesiosis | ||||||||
All sub | 0.584 | 0.667 | 0.594 | 0.634 | 0.633 | 0.614 | 0.712 | 0.597 |
Inf sub | 0.773 | 0.407 | 0.642 | 0.722 | 0.517 | 0.609 | 0.710 | 0.584 |
Adult | 0.591 | 0.596 | 0.586 | 0.581 | 0.567 | 0.580 | 0.684 | 0.552 |
Nymph | 0.661 | 0.644 | 0.667 | 0.753 | 0.675 | 0.722 | 0.753 | 0.684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siegel, E.L.; Lavoie, N.; Xu, G.; Brown, C.M.; Ledizet, M.; Rich, S.M. Human-Biting Ixodes scapularis Submissions to a Crowd-Funded Tick Testing Program Correlate with the Incidence of Rare Tick-Borne Disease: A Seven-Year Retrospective Study of Anaplasmosis and Babesiosis in Massachusetts. Microorganisms 2023, 11, 1418. https://doi.org/10.3390/microorganisms11061418
Siegel EL, Lavoie N, Xu G, Brown CM, Ledizet M, Rich SM. Human-Biting Ixodes scapularis Submissions to a Crowd-Funded Tick Testing Program Correlate with the Incidence of Rare Tick-Borne Disease: A Seven-Year Retrospective Study of Anaplasmosis and Babesiosis in Massachusetts. Microorganisms. 2023; 11(6):1418. https://doi.org/10.3390/microorganisms11061418
Chicago/Turabian StyleSiegel, Eric L., Nathalie Lavoie, Guang Xu, Catherine M. Brown, Michel Ledizet, and Stephen M. Rich. 2023. "Human-Biting Ixodes scapularis Submissions to a Crowd-Funded Tick Testing Program Correlate with the Incidence of Rare Tick-Borne Disease: A Seven-Year Retrospective Study of Anaplasmosis and Babesiosis in Massachusetts" Microorganisms 11, no. 6: 1418. https://doi.org/10.3390/microorganisms11061418
APA StyleSiegel, E. L., Lavoie, N., Xu, G., Brown, C. M., Ledizet, M., & Rich, S. M. (2023). Human-Biting Ixodes scapularis Submissions to a Crowd-Funded Tick Testing Program Correlate with the Incidence of Rare Tick-Borne Disease: A Seven-Year Retrospective Study of Anaplasmosis and Babesiosis in Massachusetts. Microorganisms, 11(6), 1418. https://doi.org/10.3390/microorganisms11061418