Identification of a New Pathogenic fungi Causing Sorghum Leaf Spot Disease and Its Management Using Natural Product and Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogens, Antagonistic Strains, and Natural Products
2.2. Pathogenicity Assays
2.3. Pathogen Identification
2.4. Antagonistic Bacteria Screening
2.5. Antifungal Activity of Aseptic Filtrate from Antagonistic Bacteria against GY 1021
2.6. Antimicrobial Activity of Natural Products on Mycelial Growth
2.7. Effects of Aseptic Filtrate and Natural Products on Controlling Sorghum Leaf Spot Disease
2.8. Statistical Analyses
3. Results
3.1. Isolation of the Pathogen and Pathogenicity Assays
3.2. Morphological Identification and Molecular Identification of the Pathogen
3.3. Screening of Antagonistic Strains
3.4. Effects of Aseptic Filtrate on the Mycelial Growth of F. thapsinum
3.5. Antifungal Activity of Natural Products on Mycelium
3.6. Effects of Aseptic Filtrate and Natural Products on Controlling Sorghum Leaf Spot Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerrano, A.S.; Labuschagne, M.T.; van Biljon, A.; Shargie, N.G. Quantification of Mineral Composition and Total Protein Content in Sorghum [Sorghum Bicolor (L.) Moench] Genotypes. Cereal Res. Commun. 2016, 44, 272–285. [Google Scholar] [CrossRef]
- Prasad, V.B.R.; Govindaraj, M.; Djanaguiraman, M.; Djalovic, I.; Shailani, A.; Rawat, N.; Singla-Pareek, S.L.; Pareek, A.; Prasad, P.V.V. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. Int. J. Mol. Sci. 2021, 22, 9826. [Google Scholar] [CrossRef]
- Fan, J.; Qiu, H.B.; Long, H.J.; Zhao, W.; Hu, A.L. First report of leaf spot on sorghum caused by pestalotiopsis trachycarpicola in china. Plant Pathol. 2021, 103, 1043–1044. [Google Scholar] [CrossRef]
- Yang, S.Y.; Feng, M.C.; Lu, J.; Zhang, H.Z.; Fan, J.; Zhao, W.; Hu, A. Bioactivity of 8 natural productagainst pathogen of sorghum leaf spot. World J. Agric. Med. 2021, 43, 53–57. [Google Scholar]
- Zhao, Y.Q.; Yu, H.R.; Shi, K.; Zhang, D.M.; Zhu, P.T.; Cai, C.; Jia, A.M. Pathogen identification of sorghum Alternaria alternaria leaf spot disease. Chin. J. Plant Pathol. 2017, 47, 282–285. [Google Scholar]
- Wang, C.L. The occurrence and prevention of major diseases of sorghum in Heilongjiang Province. Chin. Mod. Agricl. Sci Technol. 2018, 17, 119–123. [Google Scholar]
- Xue, Y.; Yang, Z.R.; Huang, X.B.; Xu, J.G. Properly handle the "3R" problem to ensure the quality and safety of agricultural products. Hubei Prov. Plant Prot. 2017, 6, 60–62. [Google Scholar]
- Halko, R.; Sanz, C.P.; Ferrera, Z.S.; Rodríguez, J.J.S. Determination of benzimidazole fungicides in soil samples using microwave-assisted micellar extraction and liquid chromatography with fluorescence detection. J. AOAC Int. 2006, 89, 1403–1409. [Google Scholar] [CrossRef]
- Lim, J.; Miller, M.G. The role of the benomyl metabolite carbendazim in benomyl-induced testicular toxicity. Toxicol. Appl. Pharmacol. 1997, 142, 401–410. [Google Scholar] [CrossRef]
- Younghae, C.; Boknam, J.; Li, T.; Jungkwan, L. Identification of genes related to fungicide resistance in fusarium fujikuroi. Mycobiology 2017, 45, 101–104. [Google Scholar]
- Azaiez, S.; Slimene, I.B.; Karkouch, I.; Essid, R.; Jallouli, S.; Djebali, N.; Elkahoui, S.; Limam, F.; Tabbene, O. Biological Control of the Soft Rot Bacterium Pectobacterium carotovorum by B. amyloliquefaciens Strain Ar10 Producing Glycolipid-like Compounds. Microbiol. Res. 2018, 217, 23–33. [Google Scholar] [CrossRef]
- Yuan, H.; Yuan, M.; Shi, B.; Wang, Z.; Huang, T.; Qin, G.; Hou, H.; Wang, L.; Tu, H. Biocontrol activity and action mechanism of PaeniB. polymyxa strain Nl4 against pear Valsa canker caused by Valsa pyri. Front. Microbiol. 2022, 13, 950742. [Google Scholar] [CrossRef]
- Ali, M.A.; Lou, Y.; Rahila, H.; Li, X.Q.; Afsana, H.; Xie, T.; Lin, L.; Li, B.; Yin, Y.N.; Yan, J.L.; et al. Functional Analysis and Genome Mining Reveal High Potential of Biocontrol and Plant Growth Promotion in Nodule-Inhabiting Bacteria Within Paenibacillus polymyxa Complex. Front. Microbiol. 2021, 11, 618601. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Wang, J.; Guo, L.; Huang, J. Synergistic Effect between Trichoderma virens and Bacillus velezensis on the Control of Tomato Bacterial Wilt Disease. Horticulturae 2021, 7, 439. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Won, S.-J.; Moon, J.-H.; Lee, U.; Park, Y.-S.; Maung, C.E.H.; Ajuna, H.B.; Ahn, Y.S. Bacillus licheniformis PR2 Controls Fungal Diseases and Increases Production of Jujube Fruit under Field Conditions. Horticulturae 2021, 7, 49. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, K.; Zhang, S. Potential of a Small Molecule Carvacrol in Management of Vegetable Diseases. Molecules 2019, 20, 1932. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.; Gao, S.; Li, J.; Hao, J.J.; Ji, P. Synthesis and antifungal activity of 2-allylphenol derivatives against fungal plant pathogens. Pestic. Biochem. Physiol. 2017, 135, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Oufensou, S.; Scherm, B.; Pani, G.; Balmas, V.; Fabbri, D.; Dettori, M.A.; Carta, P.; Malbrán, I.; Migheli, Q.; Delogu, G. Honokiol, magnolol and its monoacetyl derivative show strong anti-fungal effect on Fusarium isolates of clinical relevance. PLoS ONE 2019, 14, e0221249. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Bi, Y.; Xue, H.; Wang, Y.; Zong, Y.; Prusky, D. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis. J. Appl. Microbiol. 2020, 129, 256–265. [Google Scholar] [CrossRef]
- Mo, F.; Hu, X.; Ding, Y.; Li, R.; Li, M. Naturally produced magnolol can significantly damage the plasma membrane of Rhizoctonia solani. Pestic. Biochem. Physiol. 2021, 178, 104942. [Google Scholar] [CrossRef]
- Cristina, M.; António, P. Water to wine in wineries in Portugal Douro Region: Comparativestudy between wineries with different sizes. Sci. Total Environ. 2020, 732, 139332. [Google Scholar]
- Li, H.H.; Tang, W.; Liu, K.; Zhang, L.; Tang, X.F.; Miao, M.; Liu, Y.S. First Report of Fusarium fujikuroi Causing Brown Leaf Spot on Kiwifruit. Plant Dis. 2020, 104, 1560–1561. [Google Scholar] [CrossRef]
- Xu, H.; Yan, L.; Zhang, M.; Chang, X.; Zhu, D.; Wei, D.; Naeem, M.; Song, C.; Wu, X.; Liu, T.; et al. Changes in the Density and Composition of Rhizosphere Pathogenic Fusarium and Beneficial Trichoderma Contributing to Reduced Root Rot of Intercropped Soybean. Pathogens 2022, 11, 478. [Google Scholar] [CrossRef]
- Watanabe, M.; Yonezawa, T.; Lee, K.; Kumagai, S.; Sugita-Konishi, Y.; Goto, K.; Hara-Kudo, Y. Molecular Phylogeny of the Higher and Lower Taxonomy of the Fusarium Genus and Differences in the Evolutionary Histories of Multiple Genes. BMC Evol. Biol. 2011, 11, 322. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Sun, B.; Sun, L. The Involvement of Thiamine Uptake in the Virulence of Edwardsiella piscicida. Pathogens 2022, 11, 464. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Zhao, J.; Chen, C.; Lin, J.; Jayawardena, R.S.; Xiang, M.; Manawasinghe, I.S.; You, C. Fusarium elaeidis causes stem and root rot on Alocasia longiloba in south China. Pathogens 2021, 10, 1395. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, C.; Ye, X.; Lian, Y.; Wu, Y.; Wang, X. Antifungal Activity of Lipopeptides from B. amyloliquefaciens MG3 against Colletotrichum gloeosporioides in Loquat Fruits. Biol. Control. 2020, 146, 104281. [Google Scholar] [CrossRef]
- Etebarian, H.-R.; Sholberg, P.L.; Eastwell, K.C.; Sayler, R.J. Biological Control of Apple Blue Mold with Pseudomonas fluorescens. Can. J. Microbiol. 2005, 51, 591–598. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, L.; Nie, Q.; Hsiang, T.; Sun, Z.; Zhou, Y. Isolation, Identification and Biocontrol Mechanisms of Endophytic Bacterium D61-A from Fraxinus hupehensis against Rhizoctonia solani. Biol. Control. 2021, 158, 104621. [Google Scholar] [CrossRef]
- Li, W.; Long, Y.; Mo, F.; Shu, R.; Yin, X.; Wu, X.; Zhang, R.; Zhang, Z.; He, L.; Chen, T.; et al. Antifungal Activity and Biocontrol Mechanism of Fusicolla violacea J-1 against Soft Rot in Kiwifruit Caused by Alternaria alternata. J. Fungi. 2021, 7, 937. [Google Scholar] [CrossRef]
- Xin, W.; Mao, W.; Lu, F.; Li, T.; Wang, J.; Duan, Y.; Zhou, M. In vitro fungicidal activity and in planta control efficacy of coumoxystrobin against Magnaporthe oryzae. Pestic. Biochem. Physiol. 2020, 162, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; O’Quinn, T.N.; Everman, W.; Mehl, H.L. Effectiveness of fungicides and their application timing for the management of sorghum foliar anthracnose in the mid-atlantic u.s. Plant Dis. 2019, 103, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Mazurier, S.; Corberand, T.; Lemanceau, P.; Raaijmakers, J.M. Phenazine Antibiotics Produced by Fluorescent pseudomonads Contribute to Natural Soil Suppressiveness to Fusarium wilt. ISME J. 2009, 3, 977–991. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, S.; Marefat, A.; Naseri, B.; Hemmati, R. Improvement of Bean Yield and Fusarium Root Rot Biocontrol Using Mixtures of Bacillus, Pseudomonas and Rhizobium. Trop. Plant. Pathol. 2018, 43, 499–505. [Google Scholar] [CrossRef]
- Chen, T.; Wu, X.; Dai, Y.; Yin, X.; Zhao, Z.; Zhang, Z.; Li, W.; He, L.; Long, Y. Sensitivity Testing of Natural products on Fusarium fujikuroi to Investigate the Potential for Sustainable Control of Kiwifruit Leaf Spot Disease. J. Fungi 2022, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis. 2016, 100, 10–24. [Google Scholar] [CrossRef]
Place | Time | Longitude and Latitude |
---|---|---|
Huaxi City, Guizhou Province, China | August 2021 | 26°4′ N, 106°6′ E |
Target Sequence | Primer | Primer Sequence (5′–3′) |
---|---|---|
ITS | ITS1 | TCCGTAGGTGAACCTGCGG |
ITS4 | TCCTCCGCTTATTGATATGC | |
TEF [26] | EF1 | ATGGGTAAGGAGGACAAGAC |
EF2 | GGAGGTACCAGTGATCATGTT | |
TUB2 [26] | Bt2a | GGTAACCAAATCGGTGCTGCTTTC |
Bt2b | ACCCTCAGTGTAGTGACCCTTGGC |
Species | Strain Accession | GenBank Accession | ||
---|---|---|---|---|
ITS | TEF-1α | β-TUB | ||
F. thapsinum | CBS00313 | - | MW401962 | MW402163 |
F. thapsinum | CBS130176 | KR071692 | MW402022 | MW402222 |
F. thapsinum | XCCG-3-A-1 | - | MT997082 | - |
F. verticillioides | E52 | KJ467098 | KJ555083 | KJ544181 |
F. oxysporum | B2 | MZ060273 | MN754062 | MN754078 |
F. proliferatum | M259 | KJ467095 | KJ555080 | KJ544176 |
F. musae | CBS 115135 | KR071632 | KR071710 | - |
F. fujikuroi | CBS 257.52 | MH857023 | MW402119 | KU603885 |
F. subglutinans | CBS 136481 | KR071625 | KU711692 | KU603893 |
F. odoratissimum | CBS 130310 | - | MH485013 | MH485104 |
F. virguliforme | NRRL 22825 | GU170655 | EF408437 | EF408472 |
F. circinatum | CBS 405.97 | MH862654 | KM231943 | KM232080 |
F. incarnatum | JS21 | MT889974 | MT895846 | MT895843 |
F. coffeatum | CBS 635.76 | MH861016 | MN120755 | - |
F. chlamydosporum | BCCM/IHEM:24710 | KJ125534 | KJ126126 | KJ125830 |
F. mangiferae | CBS 119853 | MH863065 | MN534016 | MN534140 |
F. equiseti | UP-PA002 | MH521295 | MH521297 | MH521296 |
F. solani | LC3717 | MW016736 | MW620197 | MW534074 |
F. solani | LC13843 | MW016729 | MW620190 | MW534069 |
F. oxysporum | LC13766 | MW024413 | MW594353 | MW533955 |
F. solani | MRC2565 | MH584200 | MH582420 | |
F. delphinoides | CBS 110140 | EU926235 | EU926302 | EU926368 |
Strain Name | Treatment (mL L−1) | Colony Diameter (mm) | Inhibition Rate (%) |
---|---|---|---|
Paenibacillus polymyxa | 100 | 32.1 ± 0.2 g | 61.7 ± 0.4 a |
50 | 43.0 ± 0.2 f | 46.1 ± 0.4 a | |
25 | 48.0 ± 0.2 f | 39.0 ± 0.4 b | |
Bacillus amyloliquefaciens | 100 | 34.6 ± 0.3 f | 57.9 ± 0.4 b |
50 | 43.2 ± 0.3 f | 45.6± 1.1 b | |
25 | 46.1 ± 0.3 g | 41.8 ± 0.7 a | |
Bacillusvelezensis | 100 | 40.3 ± 0.3 e | 49.9 ± 0.2 c |
50 | 49.1 ± 0.3 e | 37.3 ± 0.2 c | |
25 | 62.0 ± 0.2 c | 19.1 ± 0.4 e | |
Bacillus subtilis | 100 | 44.1 ± 0.3 d | 44.4 ± 0.2 d |
50 | 50.0 ± 0.3 d | 36.2 ± 0.4 d | |
25 | 54.0 ± 0.2 e | 29.3 ± 0.5 c | |
Bacillus licheniformis | 100 | 45.2 ± 0.3 c | 43.5 ± 0.8 e |
50 | 60.4 ± 0. 4 b | 21.3 ± 0.8 f | |
25 | 71.1 ± 0.3 b | 6.1 ± 0.2 f | |
Bacillusmegaterium | 100 | 46.0 ± 0.3 b | 41.6± 0.2 f |
50 | 55.8 ± 0.3 c | 27.9 ± 0.2 e | |
25 | 61.0 ± 0.2 d | 20.7 ± 0.4 d | |
Control | 0 | 75.5 ± 0.1 a | - |
Natural Products | Concentration (µg/mL) | Regression Equation | EC50 (µg/mL) | Coefficient of Determination (R2) | 95% Confidence Interval |
---|---|---|---|---|---|
Eugenol | 400, 200, 100, 50, 25 | y = 0.2825 + 2.4146x | 82.39 ± 0.17 | 0.9904 | 62.0668–108.4855 |
Magnolol | 400, 200, 100, 50, 25 | y = 1.7864 + 1.7121x | 75.78 ± 0.22 | 0.9823 | 46.5787–121.8670 |
Thymol | 500, 200, 100, 50, 25 | y = 2.3047 + 1.3692x | 92.84 ± 0.51 | 0.9217 | 48.6307–177.8879 |
Cinnamaldehyde | 300, 200, 100, 50, 25 | y = 2.0300 + 1.7289x | 52.81 ± 0.31 | 0.9665 | 36.2457–75.2648 |
Honokiol | 150, 100, 50, 20, 10 | y = 1.4328 + 2.1578x | 46.18 ± 0.81 | 0.9539 | 32.7995–61.7379 |
Carvacrol | 80, 40, 20, 10, 5 | y = 1.6919 + 2.4207x | 24.19 ± 0.49 | 0.9514 | 17.2451–31.3741 |
2-Allylphenol | 60, 30, 20, 10, 5 | y = 3.2586 + 2.4329x | 7.18 ± 0.02 | 0.9371 | 4.3971–11.7511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, G.; Zhao, W.; Hu, A.; Ren, M.; Huang, Y.; Xu, H. Identification of a New Pathogenic fungi Causing Sorghum Leaf Spot Disease and Its Management Using Natural Product and Microorganisms. Microorganisms 2023, 11, 1431. https://doi.org/10.3390/microorganisms11061431
Wei G, Zhao W, Hu A, Ren M, Huang Y, Xu H. Identification of a New Pathogenic fungi Causing Sorghum Leaf Spot Disease and Its Management Using Natural Product and Microorganisms. Microorganisms. 2023; 11(6):1431. https://doi.org/10.3390/microorganisms11061431
Chicago/Turabian StyleWei, Guoyu, Wei Zhao, Anlong Hu, Mingjian Ren, Yunxiao Huang, and Huayang Xu. 2023. "Identification of a New Pathogenic fungi Causing Sorghum Leaf Spot Disease and Its Management Using Natural Product and Microorganisms" Microorganisms 11, no. 6: 1431. https://doi.org/10.3390/microorganisms11061431
APA StyleWei, G., Zhao, W., Hu, A., Ren, M., Huang, Y., & Xu, H. (2023). Identification of a New Pathogenic fungi Causing Sorghum Leaf Spot Disease and Its Management Using Natural Product and Microorganisms. Microorganisms, 11(6), 1431. https://doi.org/10.3390/microorganisms11061431