Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates
Abstract
:1. Introduction
2. β-Lactams
3. Metronidazole
4. Clindamycin
5. Fluoroquinolones
6. Chloramphenicol
7. Tetracyclines
8. Other Agents
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagy, E.; Boyanova, L.; Justesen, U.S.; ESCMID Study Group of Anaerobic Infections. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin. Microbiol. Infect. 2018, 24, 1139–1148. [Google Scholar] [CrossRef]
- Umemura, T.; Hamada, Y.; Yamagishi, Y.; Suematsu, H.; Mikamo, H. Clinical characteristics associated with mortality of patients with anaerobic bacteremia. Anaerobe 2016, 39, 45–50. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Park, Y.; Kim, M.; Choi, J.Y.; Yong, D.; Jeong, S.H.; Lee, K. Anaerobic Bacteremia: Impact of Inappropriate Therapy on Mortality. Infect. Chemother. 2016, 48, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Spengler, G.; Urbán, E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics 2017, 6, 25. [Google Scholar] [CrossRef]
- Achermann, Y.; Goldstein, E.J.C.; Coenye, T.; Shirtliff, M.E. Propionibacterium acnes: From Commensal to Opportunistic Biofilm-Associated Implant Pathogen. Clin. Microbiol. Rev. 2014, 27, 419–440. [Google Scholar] [CrossRef] [PubMed]
- Barberis, C.; Budia, M.; Palombarani, S.; Rodriguez, C.H.; Ramírez, M.S.; Arias, B.; Bonofiglio, L.; Famiglietti, A.; Mollerach, M.; Almuzara, M.; et al. Antimicrobial susceptibility of clinical isolates of Actinomyces and related genera reveals an unusual clindamycin resistance among Actinomyces urogenitalis strains. J. Glob. Antimicrob. Resist. 2017, 8, 115–120. [Google Scholar] [CrossRef]
- Sárvári, K.P.; Rácz, N.B.; Burián, K. Epidemiology and antibiotic susceptibility in anaerobic bacteraemia: A 15-year retrospective study in South-Eastern Hungary. Infect. Dis. 2022, 54, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, A.N. Antimicrobial Resistance and Susceptibility Testing of Anaerobic Bacteria. Clin. Infect. Dis. 2014, 59, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Cooley, L.; Teng, J. Anaerobic resistance: Should we be worried? Curr. Opin. Infect. Dis. 2019, 32, 523–530. [Google Scholar] [CrossRef]
- Tunér, K.; Nord, C.E. Antibiotic Susceptibility of Anaerobic Bacteria in Europe. Clin. Infect. Dis. 1993, 16 (Suppl. S4), S387–S389. [Google Scholar] [CrossRef]
- Nagy, E.; Urbán, E.; Nord, C.E.; ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin. Microbiol. Infect. 2011, 17, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Walkty, A.J.; Adam, H.J.; Baxter, M.R.; Hoban, D.J.; Zhanel, G.G. Prevalence of Antimicrobial Resistance among Clinical Isolates of Bacteroides fragilis Group in Canada in 2010–2011: CANWARD Surveillance Study. Antimicrob. Agents Chemother. 2012, 56, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Wybo, I.; Van den Bossche, D.; Soetens, O.; Vekens, E.; Vandoorslaer, K.; Claeys, G.; Glupczynski, Y.; Ieven, M.; Melin, P.; Nonhoff, C.; et al. Fourth Belgian multicentre survey of antibiotic susceptibility of anaerobic bacteria. J. Antimicrob. Chemother. 2014, 69, 155–161. [Google Scholar] [CrossRef]
- Hastey, C.J.; Boyd, H.; Schuetz, A.N.; Anderson, K.; Citron, D.M.; Dzink-Fox, J.; Hackel, M.; Hecht, D.W.; Jacobus, N.V.; Jenkins, S.G.; et al. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007–2009 to 2010–2012 based on the CLSI methodology. Anaerobe 2016, 42, 27–30. [Google Scholar] [CrossRef]
- Kierzkowska, M.; Majewska, A.; Mlynarczyk, G. Trends and Impact in Antimicrobial Resistance Among Bacteroides and Parabacteroides Species in 2007–2012 Compared to 2013–2017. Microb. Drug Resist. 2020, 26, 1452–1457. [Google Scholar] [CrossRef]
- Ueda, T.; Takesue, Y.; Matsumoto, T.; Tateda, K.; Kusachi, S.; Mikamo, H.; Sato, J.; Hanaki, H.; Mizuguchi, T.; Morikane, K.; et al. Change in antimicrobial susceptibility of pathogens isolated from surgical site infections over the past decade in Japanese nation-wide surveillance study. J. Infect. Chemother. 2021, 27, 931–939. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Kasimati, A. Surveillance of antimicrobial resistance in recent clinical isolates of Gram-negative anaerobic bacteria in a Greek University Hospital. Anaerobe 2020, 62, 102173. [Google Scholar] [CrossRef]
- König, E.; Ziegler, H.P.; Tribus, J.; Grisold, A.J.; Feierl, G.; Leitner, E. Surveillance of Antimicrobial Susceptibility of Anaerobe Clinical Isolates in Southeast Austria: Bacteroides fragilis Group Is on the Fast Track to Resistance. Antibiotics 2021, 10, 479. [Google Scholar] [CrossRef]
- López-Pintor, J.M.; García-Fernández, S.; Ponce-Alonso, M.; Sánchez-Díaz, A.M.; Ruiz-Garbajosa, P.; Morosini, M.I.; Cantón, R. Etiology and antimicrobial susceptibility profiles of anaerobic bacteria isolated from clinical samples in a university hospital in Madrid, Spain. Anaerobe 2021, 72, 102446. [Google Scholar] [CrossRef] [PubMed]
- Jeverica, S.; Kolenc, U.; Mueller-Premru, M.; Papst, L. Evaluation of the routine antimicrobial susceptibility testing results of clinically significant anaerobic bacteria in a Slovenian tertiary-care hospital in 2015. Anaerobe 2017, 47, 64–69. [Google Scholar] [CrossRef]
- Byun, J.-H.; Kim, M.; Lee, Y.; Lee, K.; Chong, Y. Antimicrobial Susceptibility Patterns of Anaerobic Bacterial Clinical Isolates From 2014 to 2016, Including Recently Named or Renamed Species. Ann. Lab. Med. 2019, 39, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.D.; Kus, J.V.; Patel, S.N. Antimicrobial susceptibility profiles of invasive isolates of anaerobic bacteria from a large Canadian reference laboratory: 2012–2019. Anaerobe 2021, 70, 102386. [Google Scholar] [CrossRef] [PubMed]
- Shimura, S.; Watari, H.; Komatsu, M.; Kuchibiro, T.; Fukuda, S.; Nishio, H.; Kita, M.; Kida, K.; Oohama, M.; Toda, H.; et al. Antimicrobial susceptibility surveillance of obligate anaerobic bacteria in the Kinki area. J. Infect. Chemother. 2019, 25, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Eitel, Z.; Sóki, J.; Urbán, E.; Nagy, E.; ESCMID Study Group on Anaerobic Infection. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe 2013, 21, 43–49. [Google Scholar] [CrossRef]
- Boyanova, L.; Kolarov, R.; Mitov, I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 2015, 31, 4–10. [Google Scholar] [CrossRef]
- Wolf, L.J.; Stingu, C.-S. Antimicrobial Susceptibility Profile of Rare Anaerobic Bacteria. Antibiotics 2022, 12, 63. [Google Scholar] [CrossRef]
- Ali, S.; Dennehy, F.; Donoghue, O.; McNicholas, S. Antimicrobial susceptibility patterns of anaerobic bacteria at an Irish University Hospital over a ten-year period (2010–2020). Anaerobe 2022, 73, 102497. [Google Scholar] [CrossRef]
- Marchand-Austin, A.; Rawte, P.; Toye, B.; Jamieson, F.B.; Farrell, D.J.; Patel, S.N. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010–2011. Anaerobe 2014, 28, 120–125. [Google Scholar] [CrossRef]
- Guérin, F.; Dejoies, L.; Degand, N.; Guet-Revillet, H.; Janvier, F.; Corvec, S.; Barraud, O.; Guillard, T.; Walewski, V.; Gallois, E.; et al. In Vitro Antimicrobial Susceptibility Profiles of Gram-Positive Anaerobic Cocci Responsible for Human Invasive Infections. Microorganisms 2021, 9, 1665. [Google Scholar] [CrossRef]
- Cobo, F.; Rodríguez-Granger, J.; Pérez-Zapata, I.; Sampedro, A.; Aliaga, L.; Navarro-Marí, J.M. Antimicrobial susceptibility and clinical findings of significant anaerobic bacteria in southern Spain. Anaerobe 2019, 59, 49–53. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Kasimati, A. Antimicrobial susceptibility patterns of clinically significant Gram-positive anaerobic bacteria in a Greek tertiary-care hospital, 2017–2019. Anaerobe 2020, 64, 102245. [Google Scholar] [CrossRef] [PubMed]
- Ugarte-Torres, A.; Gillrie, M.R.; Griener, T.P.; Church, D.L. Eggerthella lenta Bloodstream Infections Are Associated With Increased Mortality Following Empiric Piperacillin-Tazobactam (TZP) Monotherapy: A Population-based Cohort Study. Clin. Infect. Dis. 2018, 67, 221–228. [Google Scholar] [CrossRef]
- Hashimoto, T.; Hashinaga, K.; Komiya, K.; Hiramatsu, K. Prevalence of antimicrobial resistant genes in Bacteroides spp. isolated in Oita Prefecture, Japan. J. Infect. Chemother. 2023, 29, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.M.; Baas, W.H.; Haan, F.J.; Coco, J.; Rossen, J.W. Prevalence of antimicrobial resistance genes in Bacteroides spp. and Prevotella spp. Dutch clinical isolates. Clin. Microbiol. Infect. 2019, 25, 1156.e9–1156.e13. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.B.; Bennett, T.K.; Payne, C.M.; Smith, C.J. Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates. J. Bacteriol. 1994, 176, 4376–4384. [Google Scholar] [CrossRef]
- García, N.; Gutiérrez, G.; Lorenzo, M.; García, J.E.; Píriz, S.; Quesada, A. Genetic determinants for cfxA expression in Bacteroides strains isolated from human infections. J. Antimicrob. Chemother. 2008, 62, 942–947. [Google Scholar] [CrossRef]
- Sóki, J.; Gonzalez, S.M.; Urbán, E.; Nagy, E.; Ayala, J.A. Molecular analysis of the effector mechanisms of cefoxitin resistance among Bacteroides strains. J. Antimicrob. Chemother. 2011, 66, 2492–2500. [Google Scholar] [CrossRef]
- Rong, S.M.M.; Rodloff, A.C.; Stingu, C.-S. Diversity of antimicrobial resistance genes in Bacteroides and Parabacteroides strains isolated in Germany. J. Glob. Antimicrob. Resist. 2021, 24, 328–334. [Google Scholar] [CrossRef]
- Nagy, E.; Becker, S.; Soki, J.; Urbán, E.; Kostrzewa, M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Med. Microbiol. 2011, 60, 1584–1590. [Google Scholar] [CrossRef]
- Wybo, I.; De Bel, A.; Soetens, O.; Echahidi, F.; Vandoorslaer, K.; Van Cauwenbergh, M.; Piérard, D. Differentiation of cfiA -Negative and cfiA -Positive Bacteroides fragilis Isolates by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2011, 49, 1961–1964. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Kosai, K.; Ota, K.; Uno, N.; Sakamoto, K.; Hasegawa, H.; Izumikawa, K.; Mukae, H.; Yanagihara, K. Rapid detection and surveillance of cfiA-positive Bacteroides fragilis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anaerobe 2021, 72, 102448. [Google Scholar] [CrossRef] [PubMed]
- Ferløv-Schwensen, S.A.; Sydenham, T.V.; Hansen, K.C.M.; Hoegh, S.V.; Justesen, U.S. Prevalence of antimicrobial resistance and the cfiA resistance gene in Danish Bacteroides fragilis group isolates since 1973. Int. J. Antimicrob. Agents 2017, 50, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Jeverica, S.; Sóki, J.; Premru, M.M.; Nagy, E.; Papst, L. High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe 2019, 58, 30–34. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, B.; Gao, X.; Wen, J.; Wang, Z.; Wang, J. High prevalence of cfiA positive Bacteroides fragilis isolates collected at a teaching hospital in Hohhot, China. Anaerobe 2023, 79, 102691. [Google Scholar] [CrossRef]
- Wallace, M.J.; Jean, S.; Wallace, M.A.; Burnham, C.-A.D.; Dantas, G. Comparative Genomics of Bacteroides fragilis Group Isolates Reveals Species-Dependent Resistance Mechanisms and Validates Clinical Tools for Resistance Prediction. mBio 2022, 13, e03603-21. [Google Scholar] [CrossRef] [PubMed]
- Vandecraen, J.; Chandler, M.; Aertsen, A.; Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 2017, 43, 709–730. [Google Scholar] [CrossRef]
- Schwensen, S.A.; Acar, Z.; Sydenham, T.V.; Johansson, C.; Justesen, U.S. Phenotypic detection of the cfiA metallo-β-lactamase in Bacteroides fragilis with the meropenem–EDTA double-ended Etest and the ROSCO KPC/MBL Confirm Kit. J. Antimicrob. Chemother. 2017, 72, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Sóki, J.; Lang, U.; Schumacher, U.; Nagy, I.; Berényi, K.; Fehér, T.; Burián, K.; Nagy, E. A novel Bacteroides metallo-β-lactamase (MBL) and its gene (crxA) in Bacteroides xylanisolvens revealed by genomic sequencing and functional analysis. J. Antimicrob. Chemother. 2022, 77, 1553–1556. [Google Scholar] [CrossRef]
- Yokoyama, S.; Hayashi, M.; Goto, T.; Muto, Y.; Tanaka, K. Identification of cfxA gene variants and susceptibility patterns in β-lactamase-producing Prevotella strains. Anaerobe 2023, 79, 102688. [Google Scholar] [CrossRef]
- Binta, B.; Patel, M. Detection of cfxA2, cfxA3, and cfxA6 genes in beta-lactamase producing oral anaerobes. J. Appl. Oral Sci. 2016, 24, 142–147. [Google Scholar] [CrossRef]
- Toprak, N.U.; Akgul, O.; Sóki, J.; Soyletir, G.; Nagy, E.; Leitner, E.; Wybo, I.; Tripkovic, V.; Justesen, U.S.; Jean-Pierre, H.; et al. Detection of beta-lactamase production in clinical Prevotella species by MALDI-TOF MS method. Anaerobe 2020, 65, 102240. [Google Scholar] [CrossRef]
- Aldridge, K.E.; Ashcraft, D.; Cambre, K.; Pierson, C.L.; Jenkins, S.G.; Rosenblatt, J.E. Multicenter Survey of the Changing In Vitro Antimicrobial Susceptibilities of Clinical Isolates of Bacteroides fragilis Group, Prevotella, Fusobacterium, Porphyromonas, and Peptostreptococcus Species. Antimicrob. Agents Chemother. 2001, 45, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Summanen, P.H. Comparison of Effects of Medium Composition and Atmospheric Conditions on Detection of Bilophila wadsworthia β-Lactamase by Cefinase and Cefinase Plus Methods. J. Clin. Microbiol. 2000, 38, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, P.C.; Spangler, S.K.; Pankuch, G.A.; Philippon, A.; Jacobs, M.R.; Shiman, R.; Goldstein, E.J.C.; Citron, D.M. Characterization of a β-lactamase from Clostridium clostridioforme. J. Antimicrob. Chemother. 1994, 33, 33–40. [Google Scholar] [CrossRef]
- Könönen, E.; Kanervo, A.; Salminen, K.; Jousimies-Somer, H. β-Lactamase Production and Antimicrobial Susceptibility of Oral Heterogeneous Fusobacterium nucleatum Populations in Young Children. Antimicrob. Agents Chemother. 1999, 43, 1270–1273. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H.M.; Halebian, S. Alterations to the penicillin-binding proteins in the Bacteroides fragilis group: A mechanism for non-β-lactamase mediated cefoxitin resistance. J. Antimicrob. Chemother. 1990, 26, 7–20. [Google Scholar] [CrossRef]
- Fang, H.; Edlund, C.; Nord, C.E.; Hedberg, M. Selection of Cefoxitin—Resistant Bacteroides thetaiotaomicron Mutants and Mechanisms Involved in β—Lactam Resistance. Clin. Infect. Dis. 2002, 35, S47–S53. [Google Scholar] [CrossRef]
- Ayala, J.; Quesada, A.; Vadillo, S.; Criado, J.; Píriz, S. Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J. Med. Microbiol. 2005, 54, 1055–1064. [Google Scholar] [CrossRef]
- Park, M.; Rafii, F. Exposure to β-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens. Anaerobe 2017, 45, 78–85. [Google Scholar] [CrossRef]
- Park, M.; Sutherland, J.B.; Rafii, F. β-Lactam resistance development affects binding of penicillin-binding proteins (PBPs) of Clostridium perfringens to the fluorescent penicillin, BOCILLIN FL. Anaerobe 2020, 62, 102179. [Google Scholar] [CrossRef]
- Theron, M.M.; van Rensburg, M.N.J.; Chalkley, L.J. Penicillin-binding proteins involved in high-level piperacillin resistance in Veillonella spp. J. Antimicrob. Chemother. 2003, 52, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Pumbwe, L.; Ueda, O.; Yoshimura, F.; Chang, A.; Smith, R.L.; Wexler, H.M. Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J. Antimicrob. Chemother. 2006, 58, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Behra-Miellet, J.; Calvet, L.; Dubreuil, L. A Bacteroides thetaiotamicron porin that could take part in resistance to β-lactams. Int. J. Antimicrob. Agents 2004, 24, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Dhand, A.; Snydman, D.R. Mechanism of resistance in metronidazole. In Antimicrobial Drug Resistance; Mayers, D.L., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 223–227. ISBN 978-1-60327-592-7. [Google Scholar]
- Dingsdag, S.A.; Hunter, N. Metronidazole: An update on metabolism, structure–cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 2018, 73, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Ingham, H.R.; Eaton, S.; Venables, C.W.; Adams, P.C. Bacteroides fragilis resistant to metronidazole after long-term therapy. Lancet 1978, 311, 214. [Google Scholar] [CrossRef] [PubMed]
- Alauzet, C.; Lozniewski, A.; Marchandin, H. Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe 2019, 55, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Casarotto, M.; Tartaglia, M.; Gibellini, D.; Mazzariol, A. Antimicrobial susceptibility of anaerobic clinical isolates: A two-year surveillance. Anaerobe 2023, 80, 102715. [Google Scholar] [CrossRef] [PubMed]
- Zurita, J.; Sevillano, G.; Miño, A.P.Y.; Flores, F.; Bovera, M. Draft Genome Sequence of a Metronidazole-Resistant Bacteroides fragilis Strain Isolated in Ecuador. Genome Announc. 2019, 8, e01125-19. [Google Scholar] [CrossRef] [PubMed]
- Löfmark, S.; Fang, H.; Hedberg, M.; Edlund, C. Inducible Metronidazole Resistance and nim Genes in Clinical Bacteroides fragilis Group Isolates. Antimicrob. Agents Chemother. 2005, 49, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Ray, P.; Angrup, A. Phenotypic and genotypic antimicrobial resistance in clinical anaerobic isolates from India. JAC-Antimicrobial Resist. 2021, 3, dlab044. [Google Scholar] [CrossRef] [PubMed]
- Alauzet, C.; Mory, F.; Teyssier, C.; Hallage, H.; Carlier, J.P.; Grollier, G.; Lozniewski, A. Metronidazole Resistance in Prevotella spp. and Description of a New nim Gene in Prevotella baroniae. Antimicrob. Agents Chemother. 2010, 54, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Katsandri, A.; Avlamis, A.; Pantazatou, A.; Houhoula, D.P.; Papaparaskevas, J. Dissemination of nim-class genes, encoding nitroimidazole resistance, among different species of Gram-negative anaerobic bacteria isolated in Athens, Greece. J. Antimicrob. Chemother. 2006, 58, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Marchandin, H.; Jean-Pierre, H.; Campos, J.; Dubreuil, L.; Teyssier, C.; Jumas-Bilak, E. nimE Gene in a Metronidazole-Susceptible Veillonella sp. Strain. Antimicrob. Agents Chemother. 2004, 48, 3207–3208. [Google Scholar] [CrossRef]
- Theron, M.M.; van Rensburg, M.N.J.; Chalkley, L.J. Nitroimidazole resistance genes (nimB) in anaerobic Gram-positive cocci (previously Peptostreptococcus spp.). J. Antimicrob. Chemother. 2004, 54, 240–242. [Google Scholar] [CrossRef]
- Gal, M.; Brazier, J.S. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J. Antimicrob. Chemother. 2004, 54, 109–116. [Google Scholar] [CrossRef]
- Husain, F.; Veeranagouda, Y.; Hsi, J.; Meggersee, R.; Abratt, V.; Wexler, H.M. Two Multidrug-Resistant Clinical Isolates of Bacteroides fragilis Carry a Novel Metronidazole Resistance nim Gene (nimJ). Antimicrob. Agents Chemother. 2013, 57, 3767–3774. [Google Scholar] [CrossRef] [PubMed]
- Stanko, A.P.; Sóki, J.; Brkić, D.V.; Plečko, V. Lactate dehydrogenase activity in Bacteroides fragilis group strains with induced resistance to metronidazole. J. Glob. Antimicrob. Resist. 2016, 5, 11–14. [Google Scholar] [CrossRef]
- Patel, E.H.; Paul, L.V.; Casanueva, A.I.; Patrick, S.; Abratt, V.R. Overexpression of the rhamnose catabolism regulatory protein, RhaR: A novel mechanism for metronidazole resistance in Bacteroides thetaiotaomicron. J. Antimicrob. Chemother. 2009, 64, 267–273. [Google Scholar] [CrossRef]
- Veeranagouda, Y.; Husain, F.; Boente, R.; Moore, J.; Smith, C.J.; Rocha, E.R.; Patrick, S.; Wexler, H.M. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis. J. Antimicrob. Chemother. 2014, 69, 2634–2643. [Google Scholar] [CrossRef]
- Paunkov, A.; Sóki, J.; Leitsch, D. Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Front. Microbiol. 2022, 13, 898453. [Google Scholar] [CrossRef]
- Steffens, L.S.; Nicholson, S.; Paul, L.V.; Nord, C.E.; Patrick, S.; Abratt, V.R. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole. Res. Microbiol. 2010, 161, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; Jacobus, N.V.; McDermott, L.A.; Golan, Y.; Hecht, D.W.; Goldstein, E.J.C.; Harrell, L.J.; Jenkins, S.; Newton, D.; Pierson, C.; et al. Lessons Learned from the Anaerobe Survey: Historical Perspective and Review of the Most Recent Data (2005–2007). Clin. Infect. Dis. 2010, 50 (Suppl. S1), S26–S33. [Google Scholar] [CrossRef] [PubMed]
- Piérard, D.; De Meyer, A.; Rosseel, P.; Glupczynski, Y.; Struelens, M.J.; Delmee, M.; Pattyn, S.R.; Verschraegen, G.; Melin, P.; Lauwers, S.; et al. In Vitro Activity of Amoxycillin Plus Clavulanic Acid And Ticarcillin Plus Clavulanic Acid Compared With That Of Other Antibiotics Against Anaerobic Bacteria. Acta Clin. Belg. 1989, 44, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Dumont, Y.; Bonzon, L.; Michon, A.-L.; Carriere, C.; Didelot, M.-N.; Laurens, C.; Renard, B.; Veloo, A.C.M.; Godreuil, S.; Jean-Pierre, H. Epidemiology and microbiological features of anaerobic bacteremia in two French University hospitals. Anaerobe 2020, 64, 102207. [Google Scholar] [CrossRef]
- Di Bella, S.; Antonello, R.M.; Sanson, G.; Maraolo, A.E.; Giacobbe, D.R.; Sepulcri, C.; Ambretti, S.; Aschbacher, R.; Bartolini, L.; Bernardo, M.; et al. Anaerobic bloodstream infections in Italy (ITANAEROBY): A 5-year retrospective nationwide survey. Anaerobe 2022, 75, 102583. [Google Scholar] [CrossRef]
- Veloo, A.C.M.; Tokman, H.B.; Jean-Pierre, H.; Dumont, Y.; Jeverica, S.; Lienhard, R.; Novak, A.; Rodloff, A.; Rotimi, V.; Wybo, I.; et al. Antimicrobial susceptibility profiles of anaerobic bacteria, isolated from human clinical specimens, within different European and surrounding countries. A joint ESGAI study. Anaerobe 2020, 61, 102111. [Google Scholar] [CrossRef]
- Johnsen, B.O.; Handal, N.; Meisal, R.; Bjørnholt, J.V.; Gaustad, P.; Leegaard, T.M. erm gene distribution among Norwegian Bacteroides isolates and evaluation of phenotypic tests to detect inducible clindamycin resistance in Bacteroides species. Anaerobe 2017, 47, 226–232. [Google Scholar] [CrossRef]
- Rodloff, A.C.; Dowzicky, M.J. In vitro activity of tigecycline and comparators against a European collection of anaerobes collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2010–2016. Anaerobe 2018, 51, 78–88. [Google Scholar] [CrossRef]
- Koizumi, J.; Nakase, K.; Hayashi, N.; Nasu, Y.; Hirai, Y.; Nakaminami, H. Prevalence of antimicrobial-resistant Cutibacterium isolates and development of multiplex PCR method for Cutibacterium species identification. J. Infect. Chemother. 2023, 29, 198–204. [Google Scholar] [CrossRef]
- Broly, M.; Ruffier D’Epenoux, L.; Guillouzouic, A.; Le Gargasson, G.; Juvin, M.-E.; Leroy, A.G.; Bémer, P.; Corvec, S. Propionibacterium/Cutibacterium species–related positive samples, identification, clinical and resistance features: A 10-year survey in a French hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1357–1364. [Google Scholar] [CrossRef]
- Steininger, C.; Willinger, B. Resistance patterns in clinical isolates of pathogenic Actinomyces species. J. Antimicrob. Chemother. 2016, 71, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shoemaker, N.B.; Wang, G.-R.; Salyers, A.A. Characterization of a Bacteroides Mobilizable Transposon, NBU2, Which Carries a Functional Lincomycin Resistance Gene. J. Bacteriol. 2000, 182, 3559–3571. [Google Scholar] [CrossRef] [PubMed]
- Oprica, C.; Löfmark, S.; Lund, B.; Edlund, C.; Emtestam, L.; Nord, C.E. Genetic basis of resistance in Propionibacterium acnes strains isolated from diverse types of infection in different European countries. Anaerobe 2005, 11, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Guérin, F.; Lachaal, S.; Auzou, M.; Le Brun, C.; Barraud, O.; Decousser, J.-W.; Lienhard, R.; Baraduc, R.; Dubreuil, L.; Cattoir, V. Molecular basis of macrolide-lincosamide-streptogramin (MLS) resistance in Finegoldia magna clinical isolates. Anaerobe 2020, 64, 102220. [Google Scholar] [CrossRef]
- Reig, M.; Galan, J.-C.; Baquero, F.; Perez-Diaz, J.C. Macrolide Resistance in Peptostreptococcus spp. Mediated by ermTR: Possible Source of Macrolide-Lincosamide-Streptogramin B Resistance in Streptococcus pyogenes. Antimicrob. Agents Chemother. 2001, 45, 630–632. [Google Scholar] [CrossRef]
- Piérard, D.; De Meyer, A.; Rosseel, P.; Van Cauwenbergh, M.; Struelens, M.; Delmée, M.; Goossens, H.; Claeys, G.; Glupczynski, Y.; Verbist, L.; et al. In Vitro Activity of Amoxycillin/Clavulanate and Ticarcillin/Clavulanate Compared with That of Other Antibiotics Against Anaerobic Bacteria: Comparison with the Results of the 1987 Survey. Acta Clin. Belg. 1996, 51, 70–79. [Google Scholar] [CrossRef]
- Cobo, F.; Sadyrbaeva-Dolgova, S.; Navarro-Marí, J.M. Different breakpoints interpretation yielded distinct resistance rates to moxifloxacin of clinically significant anaerobic bacteria. Anaerobe 2021, 72, 102471. [Google Scholar] [CrossRef]
- Principe, L.; Sanson, G.; Luzzati, R.; Aschbacher, R.; Pagani, E.; Luzzaro, F.; Di Bella, S. Time to reconsider moxifloxacin anti-anaerobic activity? J. Chemother. 2022, 34, 1–2. [Google Scholar] [CrossRef]
- Stein, G.E.; Goldstein, E.J.C. Fluoroquinolones and Anaerobes. Clin. Infect. Dis. 2006, 42, 1598–1607. [Google Scholar] [CrossRef]
- Wexler, H.M. Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef]
- Brook, I.; Wexler, H.M.; Goldstein, E.J.C. Antianaerobic Antimicrobials: Spectrum and Susceptibility Testing. Clin. Microbiol. Rev. 2013, 26, 526–546. [Google Scholar] [CrossRef]
- Balbi, H.J. Chloramphenicol: A Review. Pediatr. Rev. 2004, 25, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Thadepalli, H.; Gorbach, S.L.; Bartlett, J.G. Apparent failure of chloramphenicol in the treatment of anaerobic infections. Obstet Gynecol. Surv. 1978, 33, 334–335. [Google Scholar] [CrossRef] [PubMed]
- Sutter, V.L.; Finegold, S.M. Susceptibility of Anaerobic Bacteria to 23 Antimicrobial Agents. Antimicrob. Agents Chemother. 1976, 10, 736–752. [Google Scholar] [CrossRef]
- Brook, I. Antimicrobials therapy of anaerobic infections. J. Chemother. 2016, 28, 143–150. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, J.; He, J.; Miao, X.; Xu, M.; Wu, X.; Xu, B.; Yu, L.; Zhang, W. Antimicrobial Resistance and Prevalence of Resistance Genes of Obligate Anaerobes Isolated from Periodontal Abscesses. J. Periodontol. 2014, 85, 327–334. [Google Scholar] [CrossRef]
- Townsend, M.L.; Pound, M.W.; Drew, R.H. Tigecycline: A new glycylcycline antimicrobial. Int. J. Clin. Pract. 2006, 60, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Babinchak, T.; Ellis-Grosse, E.; Dartois, N.; Rose, G.M.; Loh, E.; Tigecycline 301 Study Group; Tigecycline 306 Study Group. The Efficacy and Safety of Tigecycline for the Treatment of Complicated Intra-Abdominal Infections: Analysis of Pooled Clinical Trial Data. Clin. Infect. Dis. 2005, 41 (Suppl. S5), S354–S367. [Google Scholar] [CrossRef]
- Grosse, E.J.E.; Babinchak, T.; Dartois, N.; Rose, G.; Loh, E.; Tigecycline 300 cSSSI Study Group; Tigecycline 305 cSSSI Study Group. The Efficacy and Safety of Tigecycline in the Treatment of Skin and Skin—Structure Infections: Results of 2 Double—Blind Phase 3 Comparison Studies with Vancomycin—Aztreonam. Clin. Infect. Dis. 2005, 41 (Suppl. S5), S341–S353. [Google Scholar] [CrossRef]
- Taylor, D.E.; Chau, A. Tetracycline resistance mediated by ribosomal protection. Antimicrob. Agents Chemother. 1996, 40, 1–5. [Google Scholar] [CrossRef]
- Sanchez-Pescador, R.; Brown, J.T.; Roberts, M.; Urdea, M.S. Homology of the TetM with translational elongation factors: Implications for potential modes of tetM conferred tetracycline resistance. Nucleic Acids Res. 1988, 16, 1218. [Google Scholar] [CrossRef]
- Perry, M.D.; Vranckx, K.; Copsey-Mawer, S.; Scotford, S.; Anderson, B.; Day, P.; Watkins, J.; Corden, S.; Hughes, H.; Morris, T.E. First large-scale study of antimicrobial susceptibility data, and genetic resistance determinants, in Fusobacterium necrophorum highlighting the importance of continuing focused susceptibility trend surveillance. Anaerobe 2023, 80, 102717. [Google Scholar] [CrossRef]
- Roberts, M.C. Acquired tetracycline and/or macrolide–lincosamides–streptogramin resistance in anaerobes. Anaerobe 2003, 9, 63–69. [Google Scholar] [CrossRef]
- Hecht, D.W. Anaerobes: Antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe 2006, 12, 115–121. [Google Scholar] [CrossRef]
- Bartha, N.A.; Soki, J.; Urbán, E.; Nagy, E. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int. J. Antimicrob. Agents 2011, 38, 522–525. [Google Scholar] [CrossRef]
- Zurenko, G.E.; Yagi, B.H.; Schaadt, R.D.; Allison, J.W.; Kilburn, J.O.; Glickman, S.E.; Hutchinson, D.K.; Barbachyn, M.R.; Brickner, S.J. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother. 1996, 40, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Clemett, D.; Markham, A. Linezolid. Drugs 2000, 59, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.C.; Merriam, C.V.; Citron, D.M. In Vitro Activity of Tedizolid Compared to Linezolid and Five Other Antimicrobial Agents against 332 Anaerobic Isolates, Including Bacteroides fragilis Group, Prevotella, Porphyromonas, and Veillonella Species. Antimicrob. Agents Chemother. 2020, 64, e01088-20. [Google Scholar] [CrossRef] [PubMed]
- Wareham, D.W.; Wilks, M.; Ahmed, D.; Brazier, J.S.; Millar, M. Anaerobic Sepsis Due to Multidrug—Resistant Bacteroides fragilis: Microbiological Cure and Clinical Response with Linezolid Therapy. Clin. Infect. Dis. 2005, 40, e67–e68. [Google Scholar] [CrossRef] [PubMed]
- Candela, T.; Marvaud, J.-C.; Nguyen, T.K.; Lambert, T. A cfr- like gene cfr (C) conferring linezolid resistance is common in Clostridium difficile. Int. J. Antimicrob. Agents 2017, 50, 496–500. [Google Scholar] [CrossRef]
- Cao, H.; Liu, M.C.-J.; Tong, M.-K.; Jiang, S.; Chow, K.-H.; To, K.K.-W.; Tse, C.W.-S.; Ho, P.-L. Comprehensive investigation of antibiotic resistance gene content in cfiA-harboring Bacteroides fragilis isolates of human and animal origins by whole genome sequencing. Int. J. Med. Microbiol. 2022, 312, 151559. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, P.; Wang, Y.; Shen, Z.; Wang, S. Multiresistance gene cfr(C) in Clostridium perfringens of cattle origin from China. J. Antimicrob. Chemother. 2021, 76, 3310–3312. [Google Scholar] [CrossRef]
- Parisio, E.M.; Camarlinghi, G.; Antonelli, A.; Coppi, M.; Mosconi, L.; Rossolini, G.M. Epidemiology and antibiotic susceptibility profiles of obligate anaerobes in a hospital of central Italy during a one-year (2019) survey. Anaerobe 2022, 78, 102666. [Google Scholar] [CrossRef]
- Sárvári, K.P.; Soki, J.; Kristóf, K.; Juhász, E.; Miszti, C.; Melegh, S.Z.; Latkóczy, K.; Urbán, E. Molecular characterisation of multidrug-resistant Bacteroides isolates from Hungarian clinical samples. J. Glob. Antimicrob. Resist. 2018, 13, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, I.; Aoki, K.; Miura, Y.; Yamaguchi, T.; Matsumoto, T. Fatal sepsis caused by multidrug-resistant Bacteroides fragilis, harboring a cfiA gene and an upstream insertion sequence element, in Japan. Anaerobe 2017, 44, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yan, A. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria. Antibiotics 2015, 4, 379–396. [Google Scholar] [CrossRef] [PubMed]
Method | N | Range MIC | MIC50 | MIC90 | References | |
---|---|---|---|---|---|---|
Bacteroides fragilis | E-test | 111 | 0.016–256 | 0.19 | 1 | [15] |
E-test | 324 | 0.016–256 | 0.125 | 2 | [20] | |
E-test | 92 | 0.125–>256 | 1 | 8 | [17] | |
E-test | 63 | 0.064–>256 | 2 | 32 | [19] | |
E-test | 69 | 0.25–8 | 0.5 | 4 | [13] | |
Bacteroides spp./ Parabacteroides spp. | E-test | 111 | 0.032–32 | 1 | 8 | [13] |
E-test | 38 | 0.016–256 | 2 | 32 | [20] | |
Fusobacterium spp. | E-test | 21 | 0.016–4 | 0.064 | 1 | [13] |
E-test | 30 | 0.016–>256 | 0.047 | 0.5 | [17] | |
E-test | 22 | ≤0.016–2 | 0.064 | 0.25 | [19] | |
Prevotella spp. | E-test | 62 | 0.016–4 | 0.38 | 2 | [17] |
E-test | 39 | ≤0.016–32 | 1 | 4 | [19] | |
E-test | 45 | 0.016–2 | 0.125 | 1 | [13] | |
Veillonella spp. | E-test | 17 | 0.016–8 | 0.38 | 8 | [17] |
E-test | 8 | <0.016–2 | 0.5 | 2 | [13] |
Method | N | Range MIC | MIC50 | MIC90 | References | |
---|---|---|---|---|---|---|
Actinomyces spp. | E-test | 549 | 0.002–4 | 0.06 | 0.5 | [22] |
Agar dilution | 23 | ≤0.06–0.5 | 0.12 | 0.12 | [21] | |
Anaerococcus spp. | E-test | 117 | 0.002–16 | 0.12 | 0.5 | [22] |
E-test | 26 | ≤ 0.02–1 | 0.03 | 0.25 | [28] | |
A. prevotii | E-test | 31 | 0.004–0.25 | 0.023 | 0.125 | [31] |
Clostridium spp. | E-test | 19 | ≤0.016–>256 | 0.25 | >256 | [19] |
E-test | 37 | ≤0.016–>32 | 0.094 | 12 | [31] | |
E-test | 505 | ≤0.002–64 | 0.25 | 2 | [22] | |
Agar dilution | 27 | ≤0.06–2 | 0.5 | 2 | [21] | |
C. perfringens | E-test | 20 | ≤0.016–32 | 0.032 | 0.064 | [19] |
E-test | 20 | 0.016–1.5 | 0.064 | 0.25 | [31] | |
E-test | 52 | 0.03–0.25 | 0.12 | 0.12 | [28] | |
E-test | 163 | 0.0075–64 | 0.12 | 0.25 | [22] | |
Cutibacterium spp. | E-test | 657 | 0.002–0.5 | 0.03 | 0.12 | [22] |
C. acnes | E-test | 74 | ≤0.016–0.064 | ≤0.016 | 0.032 | [19] |
E-test | 40 | ≤0.016–0.5 | 0.032 | 0.094 | [31] | |
Finegoldia magna | E-test | 31 | 0.06–0.25 | 0.12 | 0.25 | [28] |
E-test | 37 | 0.008–0.38 | 0.125 | 0.25 | [31] | |
E-test | 32 | ≤0.016–1 | 0.064 | 0.125 | [19] | |
Agar dilution | 31 | ≤0.06–0.12 | ≤0.06 | ≤0.06 | [21] | |
E-test | 120 | 0.015–0.5 | 0.12 | 0.25 | [22] | |
Eggerthella spp. | E-test | 187 | 0.004–16 | 1 | 4 | [22] |
E-test/MIC gradient strip | 100 | 0.06–8 | 1 | 2 | [32] | |
Parvimonas spp. | E-test | 11 | ≤0.016–0.25 | 0.016 | 0.125 | [31] |
E-test | 40 | ≤0.002–0.12 | 0.0075 | 0.03 | [28] | |
Agar dilution | 29 | ≤0.06–0.25 | 0.12 | 0.25 | [21] | |
E-test | 191 | 0.002–0.5 | 0.0075 | 0.06 | [22] | |
Peptoniphilus spp. | E-test | 21 | 0.004–0.25 | 0.032 | 0.19 | [31] |
E-test | 16 | ≤0.016–1 | 0.25 | 0.5 | [19] | |
E-test | 138 | 0.002–0.5 | 0.0075 | 0.06 | [22] | |
Peptostreptococcus anaerobius | E-test | 19 | 0.003–2 | 0.064 | 0.25 | [31] |
Method | N | Range MIC | MIC50 | MIC90 | References | |
---|---|---|---|---|---|---|
Bacteroides fragilis | Agar dilution | 60 | 0.25–8 | 4 | 4 | [21] |
E-test | 111 | 0.094–0.47 | 0.023 | 0.19 | [15] | |
Microdilution | 42 | ≤2–8 | ≤2 | 8 | [23] | |
E-test | 92 | 0.125–>256 | 0.75 | 2 | [17] | |
E-test | 63 | 0.064–>256 | 0.125 | 0.5 | [19] | |
E-test | 485 | 0.015–>256 | 1 | 4 | [22] | |
Bacteroides fragilis | Agar dilution | 54 | 0.5–8 | 2 | 4 | [21] |
group | E-test | 65 | 0.064–>256 | 1 | 6 | [17] |
(without B. fragilis) | E-test | 59 | ≤0.016–>256 | 0.125 | 1 | [19] |
E-test | 401 | 0.03–>256 | 1 | 4 | [22] | |
Bacteroides spp./ | Agar dilution | 10 | 1–4 | 2 | 4 | [21] |
Parabacteroides spp. | ||||||
Fusobacterium spp. | Agar dilution | 19 | 0.12–1 | ≤0.06 | 1 | [21] |
Microdilution | 14 | ≤2 | ≤2 | ≤2 | [23] | |
E-test | 34 | 0.016–≥256 | 0.032 | 0.125 | [68] | |
E-test | 30 | <0.016–8 | 0.023 | 0.5 | [17] | |
E-test | 22 | ≤0.016–4 | ≤0.016 | 0.5 | [19] | |
E-test | 101 | ≤0.015–4 | 0.06 | 0.5 | [22] | |
Prevotella spp. | Agar dilution | 25 | 0.125–>8 | 0.5 | 8 | [26] |
E-test | 160 | 0.016–≥256 | 0.064 | 0.5 | [68] | |
Agar dilution | 33 | 0.12–32 | 1 | 8 | [21] | |
E-test | 62 | 0.016–>256 | 0.38 | 4 | [17] | |
Microdilution | 29 | ≤2–8 | ≤2 | 4 | [23] | |
E-test | 39 | ≤0.016–1 | 0.125 | 0.5 | [19] | |
E-test | 244 | ≤0.015–>256 | 0.5 | 2 | [22] | |
Veillonella spp. | Agar dilution | 11 | 2–32 | 8 | 32 | [21] |
E-test | 33 | 0.032–≥256 | 1 | 4 | [68] | |
E-test | 17 | 0.023–8 | 0.75 | 3 | [17] | |
E-test | 73 | ≤0.016–>256 | 4 | 8 | [22] | |
V. parvula | E-test | 14 | 0.064–8 | 1 | 8 | [19] |
Method | N | Range MIC | MIC50 | MIC90 | References | |
---|---|---|---|---|---|---|
Actinomyces spp. | E-test | 549 | 0.03–≥512 | 512 | 512 | [22] |
Agar dilution | 23 | 32–>128 | >128 | >128 | [21] | |
Anaerococcus spp. | Agar dilution | 10 | 0.25–2 | 1 | 2 | [29] |
E-test | 117 | ≤0.015–16 | 0.50 | 2 | [22] | |
A. prevotii | E-test | 31 | 0.023–>256 | 0.25 | >256 | [31] |
Clostridium spp. | E-test | 71 | 0.016–≥256 | 0.5 | 4 | [68] |
E-test | 19 | ≤0.016–1 | 0.064 | 0.5 | [19] | |
E-test | 37 | 0.16–>256 | 0.125 | 4 | [31] | |
E-test | 504 | ≤0.015–8 | 0.5 | 4 | [22] | |
Agar dilution | 27 | 0.25–64 | 2 | 8 | [21] | |
C. perfringens | E-test | 20 | 0.25–32 | 1 | 4 | [19] |
E-test | 20 | 0.5–6 | 1.5 | 2 | [31] | |
E-test | 163 | 0.25–32 | 2 | 8 | [22] | |
Cutibacterium spp. | E-test | 657 | 0.25–>512 | 512 | 512 | [22] |
C. acnes | E-test | 40 | >256 | >256 | >256 | [31] |
Finegoldia magna | Agar dilution | 49 | 0.25–4 | 0.5 | 1 | [29] |
E-test | 37 | 0.064–>256 | 0.38 | 2 | [31] | |
E-test | 32 | ≤0.016–1 | 0.125 | 1 | [19] | |
Agar dilution | 31 | 0.12–8 | 1 | 1 | [21] | |
E-test | 100 | 0.016–≥256 | 0.125 | 256 | [68] | |
E-test | 120 | ≤0.015–4 | 0.5 | 2 | [22] | |
Eggerthella spp. | E-test | 187 | ≤0.015–512 | 0.5 | 4 | [22] |
Agar dilution | 38 | 0.5–1 | 1 | 1 | [21] | |
Parvimonas spp. | Agar dilution | 33 | 0.12–4 | 0.25 | 0.5 | [29] |
E-test | 11 | 0.032–>256 | 0.25 | 0.75 | [31] | |
E-test | 17 | ≤0.016–>256 | 0.064 | 2 | [19] | |
Agar dilution | 29 | 0.5–4 | 1 | 2 | [21] | |
E-test | 39 | 0.016–≥256 | 0.032 | 0.25 | [68] | |
E-test | 191 | ≤0.015–8 | 0.25 | 1 | [22] | |
Peptoniphilus spp. | Agar dilution | 30 | 0.12–4 | 1 | 2 | [29] |
E-test | 21 | 0.064–>256 | 0.25 | 16 | [31] | |
E-test | 16 | ≤0.016–>256 | 0.5 | 1 | [19] | |
E-test | 138 | ≤0.015–8 | 0.25 | 2.6 | [22] | |
Peptostreptococcus | Agar dilution | 11 | 0.25–1 | 0.5 | 1 | [29] |
anaerobius | E-test | 19 | 0.023–0.5 | 0.125 | 0.38 | [31] |
Method | N | Range MIC | MIC50 | MIC90 | References | |
---|---|---|---|---|---|---|
Bacteroides fragilis | Agar dilution | 60 | ≤0.06–>128 | 1 | >128 | [21] |
E-test | 111 | 0.016–256 | 0.5 | 256 | [15] | |
Microdilution | 42 | 0.5–32 | 1 | >16 | [23] | |
E-test | 92 | 0.032–>256 | 1.5 | >256 | [17] | |
E-test | 63 | ≤0.016–>256 | 0.5 | >256 | [19] | |
E-test | 472 | ≤0.015–>512 | 2 | 512 | [22] | |
Bacteroides fragilis | Agar dilution | 54 | ≤0.06–>128 | >128 | >128 | [21] |
Group | Microdilution | 37 | 0.5–32 | >16 | >16 | [23] |
(without B. fragilis) | E-test | 65 | 0.064–>256 | >256 | >256 | [17] |
E-test | 59 | ≤0.016–>256 | 8 | >256 | [19] | |
E-test | 392 | ≤0.015–>512 | 8 | 512 | [22] | |
Bacteroides/ | Agar dilution | 10 | 0.5–128 | >128 | >128 | [21] |
Parabacteroides spp. | ||||||
Fusobacterium spp. | Agar dilution | 19 | ≤0.06–>128 | 2 | 16 | [21] |
Microdilution | 14 | 0.25–16 | ≤0.5 | 4 | [23] | |
E-test | 34 | 0.016–≥256 | 0.032 | 256 | [68] | |
E-test | 30 | 0.016–≥256 | 0.047 | 0.38 | [17] | |
E-test | 63 | ≤0.016–>256 | 0.047 | 0.38 | [19] | |
E-test | 97 | ≤0.015–>512 | 0.03 | 2 | [22] | |
Prevotella spp. | Agar dilution | 33 | ≤0.06–>128 | ≤0.06 | >128 | [21] |
E-test | 62 | <0.016–>256 | 0.047 | >256 | [17] | |
E-test | 160 | 0.008–≥256 | 0.032 | 256 | [68] | |
Microdilution | 29 | 0.5–32 | >16 | >16 | [23] | |
E-test | 39 | ≤0.016–>256 | 0.064 | >256 | [19] | |
E-test | 241 | ≤0.015–>512 | 64 | 512 | [22] | |
Veillonella spp. | Agar dilution | 11 | ≤0.06–>128 | ≤0.06 | 2 | [21] |
E-test | 33 | 0.016–≥256 | 0.125 | 0.5 | [68] | |
E-test | 17 | 0.016–>256 | 0.125 | >256 | [17] | |
E-test | 14 | ≤0.016–>256 | 0.064 | 0.25 | [19] | |
V. parvula | E-test | 73 | ≤0.015–>512 | 0.12 | 0.9 | [22] |
Method | N | Range MIC | MIC50 | MIC90 | References | |
---|---|---|---|---|---|---|
Actinomyces spp. | E-test | 542 | ≤0.015–>512 | 0.25 | 512 | [22] |
Agar dilution | 23 | ≤0.06–>128 | 0.25 | >128 | [21] | |
Anaerococcus spp. | Agar dilution | 10 | ≤0.03–>32 | 0.06 | 16 | [29] |
E-test | 114 | ≤0.015–>512 | 0.12 | 512 | [22] | |
A. prevotii | E-test | 31 | 0.016–>256 | 0.25 | >256 | [31] |
Clostridium spp. | E-test | 71 | 0.016–>256 | 2 | 16 | [68] |
E-test | 19 | ≤0.016–>256 | 0.25 | 32 | [19] | |
E-test | 37 | 0.016–>256 | 0.25 | >256 | [31] | |
E-test | 491 | <0.015–>512 | 1 | 16 | [22] | |
Agar dilution | 27 | ≤0.06–>128 | 1 | >128 | [21] | |
C. perfringens | E-test | 20 | ≤0.016–>256 | 2 | 4 | [19] |
E-test | 20 | 0.032–>256 | 2 | >256 | [31] | |
E-test | 29 | 0.032–8 | 2 | 4 | [68] | |
E-test | 160 | 0.03–>512 | 2 | 4 | [22] | |
Cutibacterium spp. | E-test | 637 | ≤0.015–>512 | 0.06 | 5.6 | [22] |
C. acnes | E-test | 74 | ≤0.016–>256 | ≤0.016 | 0.125 | [19] |
E-test | 40 | 0.023->256 | 0.094 | 1 | [31] | |
Finegoldia magna | Agar dilution | 49 | ≤0.03–>32 | 1 | 32 | [29] |
E-test | 37 | 0.032–>256 | 6 | >256 | [31] | |
E-test | 32 | 0.032–>256 | 0.5 | >256 | [19] | |
Agar dilution | 31 | ≤0.06–64 | ≤0.06 | 0.5 | [21] | |
E-test | 100 | 0.016–>256 | 0.5 | 256 | [68] | |
E-test | 115 | ≤0.015–>512 | 2 | 512 | [22] | |
Eggerthella spp. | E-test | 180 | ≤0.015–>512 | 0.25 | 1 | [22] |
Parvimonas spp. | Agar dilution | 33 | ≤0.03–>32 | 0.12 | 1 | [29] |
E-test | 11 | 0.047–>256 | 0.125 | 16 | [31] | |
E-test | 17 | ≤0.016–32 | 0.064 | 0.125 | [19] | |
Agar dilution | 29 | ≤0.06–128 | 1 | 128 | [21] | |
E-test | 39 | 0.016–>256 | 0.125 | 256 | [68] | |
E-test | 188 | ≤0.015–>512 | 0.25 | 1 | [22] | |
Peptoniphilus spp. | Agar dilution | 30 | ≤0.03–>32 | 1 | >32 | [29] |
E-test | 21 | 0.016–>256 | 1.5 | >256 | [31] | |
E-test | 16 | ≤0.032–>256 | 0.064 | >256 | [19] | |
E-test | 136 | ≤0.015–>512 | 0.25 | 512 | [22] | |
Peptostreptococcus | Agar dilution | 11 | ≤0.03–>32 | 0.5 | 1 | [29] |
anaerobius | E-test | 19 | 0.023–>256 | 0.38 | >256 | [31] |
Antibiotic | Resistance Mechanism | Antibiotic Resistance Element | Example of Species |
---|---|---|---|
Β-lactams | Β-lactamase | ||
Penicillinase | Fusobacterium spp., Clostridium spp, Porphyromonas spp. | ||
Cephalosporinase | CepA | B. fragilis group | |
CfxA | B. fragilis group, Prevotella spp. | ||
Carbapenemase | CfiA | B. fragilis group | |
PBP-alteration | PBP1, PBP2, PBP3, PBP2Bfr | B. fragilis group | |
PBP1, PBP6 | Veillonella spp. | ||
Reduce uptake of drug | BmeABC | B. fragilis group | |
Loss of porin channels | B. fragilis | ||
Metronidazole | Drug inactivation | NimA-H, Nim J | Bacteroides spp |
NimA–C, NimI, Nim K | Prevotella spp. | ||
NimB | Peptostreptococcus spp., F. magna, A. prevotti, P. micra | ||
NimC | Porphyromonas spp. | ||
NimD | Fusobacterium spp. | ||
NimE | Veillonella spp. | ||
Metabolic changes | B. fragilis group | ||
Reduce uptake of drug | BmeABC | B. fragilis group | |
Increase DNA repair | RecA | B. fragilis | |
Clindamycin | rRNA methylases | ErmB, ErmF and ErmG | B. fragilis group, Prevotella spp. |
ErmX | Cutibacterium spp. | ||
Reduce uptake of drug | MsrSA and MefA | B. fragilis group | |
Fluoroquinolones | Target modification | GyrA and ParC | B. fragilis group |
Reduce uptake of drug | BexA | B. fragilis group | |
Chloramphenicol | Drug inactivation | Cat | B. fragilis group |
Tetracyclines | Reduce uptake of drug | TetA–E | B. fragilis group |
TetK and TetL | Peptostreptococcus spp., Veillonella spp. | ||
Drug inactivation | TetX | B. fragilis group | |
Ribosomal protection | TetM and TetQ, | B. fragilis group, Peptostreptococcus spp., Clostridium spp., Prevotella spp., Fusobacterium spp. | |
TetW | Veillonella spp., Prevotella spp. | ||
Tet32 | Clostridium spp., | ||
Linezolid | Ribosomal protection | Cfr(C) | B. fragilis, C. perfringens (animal isolates) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reissier, S.; Penven, M.; Guérin, F.; Cattoir, V. Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates. Microorganisms 2023, 11, 1474. https://doi.org/10.3390/microorganisms11061474
Reissier S, Penven M, Guérin F, Cattoir V. Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates. Microorganisms. 2023; 11(6):1474. https://doi.org/10.3390/microorganisms11061474
Chicago/Turabian StyleReissier, Sophie, Malo Penven, François Guérin, and Vincent Cattoir. 2023. "Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates" Microorganisms 11, no. 6: 1474. https://doi.org/10.3390/microorganisms11061474
APA StyleReissier, S., Penven, M., Guérin, F., & Cattoir, V. (2023). Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates. Microorganisms, 11(6), 1474. https://doi.org/10.3390/microorganisms11061474