Interconnection between Microbiota–Gut–Brain Axis and Autism Spectrum Disorder Comparing Therapeutic Options: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Processing
2.3. Eligibility Criteria and Study Selection
2.4. Data Processing
2.5. Data Extraction
2.6. Data Analysis
2.7. PICOS Criteria
2.8. Study Evaluation
3. Results
4. Discussion
4.1. Probiotics/Prebiotics
4.2. Alternative Medicines
4.3. Synbiotics
4.4. Dietary Supplements
4.5. FMT and MTT
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Aberrant Behavior Checklist; |
ABC-2 | Aberrant Behavior Checklist second edition; |
AFU | Active Fluorescent Units; |
ASD | autism spectrum disorders; |
ATECAutism | Treatment Evaluation Checklist; |
CARS | Childhood Autism Rating Scale; |
CFU | colony-forming units; |
CNS | central nervous system; |
CGI | Clinical Global Impression; |
CPRS-R | Conners’ Parent Rating Scale—Revised; |
FDA | Food and Drug Administration; |
FMT | fecal microbiota transplantation; |
GABA | gamma-aminobutyric acid; |
GI | gastrointestinal; |
GM | gut microbiota; |
GOS | galactooligosaccharides; |
GR | glucoraphanin; |
ISAPP | International Scientific Association for Probiotics and Prebiotics; |
IU | international unit; |
KD | ketogenic diet; |
LPS | lipopolysaccharide; |
MGBA | microbiota–gut–brain axis; |
MTT | microbiota transfer therapy; |
OXT | oxytocin; |
PEG | polyethylene glycol; |
PICOS | population, intervention, comparison, outcome, study design; |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses; |
PRIMSA-Scr | PRISMA Extension for Scoping Reviews; |
PROSPERO | International Prospective Register of Systematic Reviews; |
RBS-R | Repetitive Behavior Scale—Revised; |
SCFA | short-chain fatty acids; |
SHGM | Standardized Human Gut Microbiota; |
SpCO | carboxyhemoglobin; |
SRS | Social Responsiveness Scale; |
TD | typically developing. |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013; pp. 5–25. ISBN 978-0-89042-555-8. [Google Scholar]
- Lord, C.; Spence, S.J. Autism Spectrum Disorders: Phenotype and Diagnosis. In Understanding Autism: From Basic Neuroscience to Treatment; CRC Press/Routledge/Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 1–23. ISBN 978-0-8493-2732-2. [Google Scholar]
- Hossain, M.; Khan, N.; Sultana, A.; Ma, P.; McKyer, E.L.J.; Ahmed, H.U.; Purohit, N. Prevalence of comorbid psychiatric disorders among people with autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Psychiatry Res. 2020, 287, 112922. [Google Scholar] [CrossRef]
- Kohane, I.S.; McMurry, A.; Weber, G.; MacFadden, D.; Rappaport, L.; Kunkel, L.; Bickel, J.; Wattanasin, N.; Spence, S.; Murphy, S.; et al. The Co-Morbidity Burden of Children and Young Adults with Autism Spectrum Disorders. PLoS ONE 2012, 7, e33224. [Google Scholar] [CrossRef]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Topi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics Efficacy on Oxidative Stress Values in Inflammatory Bowel Disease: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Endocr. Metab. Immune Disord.-Drug Targets 2019, 19, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.J.; Dovgan, K.; Takahashi, N.; Beversdorf, D.Q. The Relationship Among Gastrointestinal Symptoms, Problem Behaviors, and Internalizing Symptoms in Children and Adolescents with Autism Spectrum Disorder. Front. Psychiatry 2019, 10, 194. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Santacroce, L.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Luperto, P.; De Nitto, E.; Topi, S. The Human Respiratory System and its Microbiome at a Glimpse. Biology 2020, 9, 318. [Google Scholar] [CrossRef]
- Ho, L.K.H.; Tong, V.J.W.; Syn, N.; Nagarajan, N.; Tham, E.H.; Tay, S.K.; Shorey, S.; Tambyah, P.A.; Law, E.C.N. Gut microbiota changes in children with autism spectrum disorder: A systematic review. Gut Pathog. 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, J.; Wu, F.; Zheng, H.; Peng, Q.; Zhou, H. Altered composition and function of intestinal microbiota in autism spectrum disorders: A systematic review. Transl. Psychiatry 2019, 9, 43. [Google Scholar] [CrossRef]
- Isacco, C.G.; Ballini, A.; De Vito, D.; Nguyen, K.C.D.; Cantore, S.; Bottalico, L.; Quagliuolo, L.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; et al. Rebalancing the Oral Microbiota as an Efficient Tool in Endocrine, Metabolic and Immune Disorders. Endocr. Metab. Immune Disord.-Drug Targets 2021, 21, 777–784. [Google Scholar] [CrossRef]
- Burger-van Paassen, N.; Vincent, A.; Puiman, P.J.; Van Der Sluis, M.; Bouma, J.; Boehm, G.; van Goudoever, J.B.; Van Seuningen, I.; Renes, I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J. 2009, 420, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Sandler, R.H.; Finegold, S.M.; Bolte, E.R.; Buchanan, C.P.; Maxwell, A.P.; Väisänen, M.-L.; Nelson, M.N.; Wexler, H.M. Short-Term Benefit From Oral Vancomycin Treatment of Regressive-Onset Autism. J. Child Neurol. 2000, 15, 429–435. [Google Scholar] [CrossRef]
- Contaldo, M.; Fusco, A.; Stiuso, P.; Lama, S.; Gravina, A.G.; Itro, A.; Federico, A.; Itro, A.; Dipalma, G.; Inchingolo, F.; et al. Oral Microbiota and Salivary Levels of Oral Pathogens in Gastro-Intestinal Diseases: Current Knowledge and Exploratory Study. Microorganisms 2021, 9, 1064. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.-S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord. 2018, 228, 13–19. [Google Scholar] [CrossRef]
- Foster, J.A.; McVey Neufeld, K.-A. Gut–brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Signorini, L.; Ballini, A.; Arrigoni, R.; De Leonardis, F.; Saini, R.; Cantore, S.; De Vito, D.; Coscia, M.F.; Dipalma, G.; Santacroce, L.; et al. Evaluation of a Nutraceutical Product with Probiotics, Vitamin D, Plus Banaba Leaf Extracts (Lagerstroemia speciosa) in Glycemic Control. Endocr. Metab. Immune Disord.-Drug Targets 2021, 21, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Soh, A.Y.S.; Venkatanarayanan, N.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.-S. A Systematic Review of the Effect of Probiotic Supplementation on Schizophrenia Symptoms. Neuropsychobiology 2019, 78, 1–6. [Google Scholar] [CrossRef]
- Ballini, A.; Signorini, L.; Inchingolo, A.D.; Saini, R.; Gnoni, A.; Scacco, S.; Cantore, S.; Dipalma, G.; Inchingolo, F.; Santacroce, L. Probiotics May Improve Serum Folate Availability in Pregnant Women: A Pilot Study. Open Access Maced. J. Med. Sci. 2020, 8, 1124–1130. [Google Scholar] [CrossRef]
- Li, Y.-J.; Ou, J.-J.; Li, Y.-M.; Xiang, D.-X. Dietary Supplement for Core Symptoms of Autism Spectrum Disorder: Where Are We Now and Where Should We Go? Front. Psychiatry 2017, 8, 155. [Google Scholar] [CrossRef]
- Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Gibson, E.L.; Nielsen, D.S.; Costabile, A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018, 6, 133. [Google Scholar] [CrossRef]
- Isacco, C.G.; Ballini, A.; De Vito, D.; Inchingolo, A.M.; Cantore, S.; Paduanelli, G.; Nguyen, K.C.D.; Inchingolo, A.D.; Dipalma, G.; Inchingolo, F. Probiotics in Health and Immunity: A First Step toward Understanding the Importance of Microbiota System in Translational Medicine. In Prebiotics and Probiotics-Potential Benefits in Nutrition and Health; Franco-Robles, E., Ramírez-Emiliano, J., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-921-8. [Google Scholar]
- Sharon, G.; Cruz, N.J.; Kang, D.-W.; Gandal, M.J.; Wang, B.; Kim, Y.-M.; Zink, E.M.; Casey, C.P.; Taylor, B.C.; Lane, C.J.; et al. Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell 2019, 177, 1600–1618.e17. [Google Scholar] [CrossRef]
- Bicks, L.K.; Koike, H.; Akbarian, S.; Morishita, H. Prefrontal Cortex and Social Cognition in Mouse and Man. Front. Psychol. 2015, 6, 1805. [Google Scholar] [CrossRef] [PubMed]
- Campanella, V.; Syed, J.; Santacroce, L.; Saini, R.; Ballini, A.; Inchingolo, F. Oral probiotics influence oral and respiratory tract infections in pediatric population: A randomized double-blinded placebo-controlled pilot study. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8034–8041. [Google Scholar] [PubMed]
- Deehan, E.C.; Duar, R.M.; Armet, A.M.; Perez-Muñoz, M.E.; Jin, M.; Walter, J. Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiol. Spectr. 2017, 5, BAD-0019-2017. [Google Scholar] [CrossRef]
- Casu, C.; Mosaico, G.; Natoli, V.; Scarano, A.; Lorusso, F.; Inchingolo, F. Microbiota of the Tongue and Systemic Connections: The Examination of the Tongue as an Integrated Approach in Oral Medicine. Hygiene 2021, 1, 56–68. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 2017, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gao, X.; Xi, L.; Shi, Y.; Peng, L.; Wang, C.; Zou, L.; Yang, Y. Mo1667 Fecal microbiota transplantation for children with autism spectrum disorder. Gastrointest. Endosc. 2019, 89, AB512–AB513. [Google Scholar] [CrossRef]
- Pacifici, L.; Santacroce, L.; DiPalma, G.; Haxhirexha, K.; Topi, S.; Cantore, S.; Altini, V.; Pacifici, A.; De Vito, D.; Pettini, F.; et al. Gender medicine: The impact of probiotics on male patients. Clin. Ter. 2021, 171, e8–e15. [Google Scholar]
- Gupta, S.; Allen-Vercoe, E.; Petrof, E.O. Fecal microbiota transplantation: In perspective. Ther. Adv. Gastroenterol. 2016, 9, 229–239. [Google Scholar] [CrossRef]
- Finch Therapeutics Receives Fast Track Designation for the Investigation of Full-Spectrum Microbiota as a Treatment for Children with Autism Spectrum Disorder. Available online: https://www.businesswire.com/news/home/20190429005087/en/Finch-Therapeutics-Receives-Fast-Track-Designation-for-the-Investigation-of-Full-Spectrum-Microbiota-as-a-Treatment-for-Children-with-Autism-Spectrum-Disorder (accessed on 2 April 2023).
- Ballini, A.; Gnoni, A.; De Vito, D.; DiPalma, G.; Cantore, S.; Isacco, C.G.; Saini, R.; Santacroce, L.; Topi, S.; Scarano, A.; et al. Effect of probiotics on the occurrence of nutrition absorption capacities in healthy children: A randomized double-blinded placebo-controlled pilot study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8645–8657. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Cazzolla, A.P.; Di Cosola, M.; Greco Lucchina, A.; Santacroce, L.; Charitos, I.A.; Topi, S.; Malcangi, G.; Hazballa, D.; Scarano, A.; et al. The integumentary system and its microbiota between health and disease. J. Biol. Regul. Homeost. agents 2021, 35, 303–321. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Sgritta, M.; Dooling, S.W.; Buffington, S.A.; Momin, E.N.; Francis, M.B.; Britton, R.A.; Costa-Mattioli, M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron 2019, 101, 246–259.e6. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, L.; Sardaro, N.; Topi, S.; Pettini, F.; Bottalico, L.; Cantore, S.; Cascella, G.; Del Prete, R.; Dipalma, G.; Inchingolo, F. The Pivotal Role of Oral Microbiota in Health and Disease. J. Biol. Regul. Homeost. Agents 2020, 34, 733–737. [Google Scholar] [CrossRef]
- Dipalma, G.; Inchingolo, A.D.; Mancini, A.; Tartaglia, G.M.; Malcangi, G.; Semjonova, A.; Ferrara, E.; Lorusso, F.; Scarano, A.; Ferati, K.; et al. High-grade glioma and oral microbiome: Association or causality? what we know so far. J. Biol. Regul. Homeost. Agents 2022, 36, 11–20. [Google Scholar] [CrossRef]
- El-Ansary, A.; Ben Bacha, A.; Bjørklund, G.; Al-Orf, N.; Bhat, R.S.; Moubayed, N.; Abed, K. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab. Brain Dis. 2018, 33, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, A.; Pacifici, L.; Nuzzolese, M.; Cascella, G.; Ballini, A.; Santacroce, L.; DiPalma, G.; Aiello, E.; Amantea, M.; Saini, R.; et al. The alteration of stress-related physiological parameters after probiotics administration in oral surgeons with different degrees of surgical experience. Clin. Ter. 2020, 171, e197–e208. [Google Scholar] [PubMed]
- Inchingolo, F.; Santacroce, L.; Cantore, S.; Ballini, A.; Del Prete, R.; Topi, S.; Saini, R.; Dipalma, G.; Arrigoni, R. Probiotics and EpiCor® in human health. J. Biol. Regul. Homeost. Agents 2019, 33, 1973–1979. [Google Scholar] [CrossRef]
- Ballini, A.; Cantore, S.; Saini, R.; Pettini, F.; Fotopoulou, E.A.; Saini, S.R.; Georgakopoulos, I.P.; DiPalma, G.; Isacco, C.G.; Inchingolo, F. Effect of activated charcoal probiotic toothpaste containing Lactobacillus paracasei and xylitol on dental caries: A randomized and controlled clinical trial. J. Biol. Regul. Homeost. Agents 2019, 33, 977–981. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Turriziani, L.; Ricciardello, A.; Cucinotta, F.; Bellomo, F.; Turturo, G.; Boncoddo, M.; Mirabelli, S.; Scattoni, M.L.; Rossi, M.; Persico, A.M. Gut mobilization improves behavioral symptoms and modulates urinary p-cresol in chronically constipated autistic children: A prospective study. Autism Res. 2022, 15, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, Y.; Li, H.; Li, B.; Duan, G.; Zhu, C. The role of probiotics in children with autism spectrum disorders: A study protocol for a randomised controlled trial. PLoS ONE 2022, 17, e0263109. [Google Scholar] [CrossRef] [PubMed]
- Sherman, H.T.; Liu, K.; Kwong, K.; Chan, S.-T.; Li, A.C.; Kong, X.-J. Carbon monoxide (CO) correlates with symptom severity, autoimmunity, and responses to probiotics treatment in a cohort of children with autism spectrum disorder (ASD): A post-hoc analysis of a randomized controlled trial. BMC Psychiatry 2022, 22, 536. [Google Scholar] [CrossRef]
- Guidetti, C.; Salvini, E.; Viri, M.; Deidda, F.; Amoruso, A.; Visciglia, A.; Drago, L.; Calgaro, M.; Vitulo, N.; Pane, M.; et al. Randomized Double-Blind Crossover Study for Evaluating a Probiotic Mixture on Gastrointestinal and Behavioral Symptoms of Autistic Children. J. Clin. Med. 2022, 11, 5263. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-J.; Liu, J.; Liu, K.; Koh, M.; Sherman, H.; Liu, S.; Tian, R.; Sukijthamapan, P.; Wang, J.; Fong, M.; et al. Probiotic and Oxytocin Combination Therapy in Patients with Autism Spectrum Disorder: A Randomized, Double-Blinded, Placebo-Controlled Pilot Trial. Nutrients 2021, 13, 1552. [Google Scholar] [CrossRef]
- Kong, X.-J.; Liu, J.; Li, J.; Kwong, K.; Koh, M.; Sukijthamapan, P.; Guo, J.J.; Sun, Z.J.; Song, Y. Probiotics and oxytocin nasal spray as neuro-social-behavioral interventions for patients with autism spectrum disorders: A pilot randomized controlled trial protocol. Pilot Feasibility Stud. 2020, 6, 20. [Google Scholar] [CrossRef]
- Arnold, L.E.; Luna, R.A.; Williams, K.; Chan, J.; Parker, R.A.; Wu, Q.; Hollway, J.A.; Jeffs, A.; Lu, F.; Coury, D.L.; et al. Probiotics for Gastrointestinal Symptoms and Quality of Life in Autism: A Placebo-Controlled Pilot Trial. J. Child Adolesc. Psychopharmacol. 2019, 29, 659–669. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Liong, M.T.; Chung, Y.-C.E.; Huang, H.-Y.; Peng, W.-S.; Cheng, Y.-F.; Lin, Y.-S.; Wu, Y.-Y.; Tsai, Y.-C. Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2019, 11, 820. [Google Scholar] [CrossRef]
- Dinesh, K.S.; Krishnendhu, C.; Balakrishnan, G.; AS, S.K.; George, M.J.; Patel, A. Effect of Ayurveda in management of dysbiosis with special reference to Bifidobacterium in children with autism spectrum disorders. Biomedicine 2022, 42, 325–332. [Google Scholar] [CrossRef]
- Sanctuary, M.R.; Kain, J.N.; Chen, S.Y.; Kalanetra, K.; Lemay, D.G.; Rose, D.R.; Yang, H.T.; Tancredi, D.J.; German, J.B.; Slupsky, C.M.; et al. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE 2019, 14, e0210064. [Google Scholar] [CrossRef]
- Bent, S.; Lawton, B.; Warren, T.; Widjaja, F.; Dang, K.; Fahey, J.W.; Cornblatt, B.; Kinchen, J.; Delucchi, K.; Hendren, R.L. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol. Autism 2018, 9, 35. [Google Scholar] [CrossRef]
- Nirmalkar, K.; Qureshi, F.; Kang, D.-W.; Hahn, J.; Adams, J.B.; Krajmalnik-Brown, R. Shotgun Metagenomics Study Suggests Alteration in Sulfur Metabolism and Oxidative Stress in Children with Autism and Improvement after Microbiota Transfer Therapy. Int. J. Mol. Sci. 2022, 23, 13481. [Google Scholar] [CrossRef]
- Kang, D.-W.; Adams, J.B.; Coleman, D.M.; Pollard, E.L.; Maldonado, J.; McDonough-Means, S.; Caporaso, J.G.; Krajmalnik-Brown, R. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci. Rep. 2019, 9, 5821. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, H.; Cheng, Y.; Xu, F.; Ruan, G.; Ying, S.; Tang, W.; Chen, L.; Chen, M.; Lv, L.; et al. Fecal Microbiota Transplantation Relieves Gastrointestinal and Autism Symptoms by Improving the Gut Microbiota in an Open-Label Study. Front. Cell. Infect. Microbiol. 2021, 11, 759435. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, F.; Adams, J.; Hanagan, K.; Kang, D.-W.; Krajmalnik-Brown, R.; Hahn, J. Multivariate Analysis of Fecal Metabolites from Children with Autism Spectrum Disorder and Gastrointestinal Symptoms before and after Microbiota Transfer Therapy. J. Pers. Med. 2020, 10, 152. [Google Scholar] [CrossRef]
- Kang, D.-W.; Adams, J.B.; Vargason, T.; Santiago, M.; Hahn, J.; Krajmalnik-Brown, R. Distinct Fecal and Plasma Metabolites in Children with Autism Spectrum Disorders and Their Modulation after Microbiota Transfer Therapy. mSphere 2020, 5, e00314-20. [Google Scholar] [CrossRef] [PubMed]
- Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015, 138, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Kałużna-Czaplińska, J.; Błaszczyk, S. The level of arabinitol in autistic children after probiotic therapy. Nutrition 2012, 28, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Parracho, H.M.R.T.; Gibson, G.R.; Knott, F.; Bosscher, D.; Kleerebezem, M.; McCartney, A.L. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int. J. Probiotics Prebiotics 2010, 5, 69–74. [Google Scholar]
- Cantore, S.; Ballini, A.; De Vito, D.; Abbinante, A.; Altini, V.; DiPalma, G.; Inchingolo, F.; Saini, R. Clinical results of improvement in periodontal condition by administration of oral probiotics. J. Biol. Regul. Homeost. Agents 2018, 32, 1329–1334. [Google Scholar]
- Grimaldi, R.; Cela, D.; Swann, J.R.; Vulevic, J.; Gibson, G.R.; Tzortzis, G.; Costabile, A. In vitro fermentation of B-GOS: Impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children. FEMS Microbiol. Ecol. 2017, 93, 233. [Google Scholar] [CrossRef]
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; et al. Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef]
- Inchingolo, F.; DiPalma, G.; Cirulli, N.; Cantore, S.; Saini, R.S.; Altini, V.; Santacroce, L.; Ballini, A.; Saini, R. Microbiological results of improvement in periodontal condition by administration of oral probiotics. J. Biol. Regul. Homeost. Agents 2018, 32, 1323–1328. [Google Scholar]
- Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism–Comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011, 11, 22. [Google Scholar] [CrossRef]
- Signorini, L.; De Leonardis, F.; Santacroce, L.; Haxhirexha, K.; Topi, S.; Fumarola, L.; Dipalma, G.; Coscia, M.F.; Inchingolo, F. Probiotics May Modulate the Impact of Aging on Adults. J. Biol. Regul. Homeost. Agents 2020, 34, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.A.; Ossenkopp, K.-P.; Kavaliers, M.; MacFabe, D.F. Pre- and Neonatal Exposure to Lipopolysaccharide or the Enteric Metabolite, Propionic Acid, Alters Development and Behavior in Adolescent Rats in a Sexually Dimorphic Manner. PLoS ONE 2014, 9, e87072. [Google Scholar] [CrossRef] [PubMed]
- Macfabe, D.F. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb. Ecol. Health Dis. 2012, 23, 19260. [Google Scholar] [CrossRef]
- Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Low Relative Abundances of the Mucolytic Bacterium Akkermansia muciniphila and Bifidobacterium spp. in Feces of Children with Autism. Appl. Environ. Microbiol. 2011, 77, 6718–6721. [Google Scholar] [CrossRef]
- Newell, C.; Bomhof, M.R.; Reimer, R.A.; Hittel, D.S.; Rho, J.M.; Shearer, J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism 2016, 7, 37. [Google Scholar] [CrossRef]
- Ruskin, D.N.; Svedova, J.; Cote, J.L.; Sandau, U.; Rho, J.M.; Kawamura, M., Jr.; Boison, D.; Masino, S.A. Ketogenic Diet Improves Core Symptoms of Autism in BTBR Mice. PLoS ONE 2013, 8, e65021. [Google Scholar] [CrossRef]
- Ruskin, D.N.; Fortin, J.A.; Bisnauth, S.N.; Masino, S.A. Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse. Physiol. Behav. 2017, 168, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Ruskin, D.N.; Murphy, M.I.; Slade, S.L.; Masino, S.A. Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder. PLoS ONE 2017, 12, e0171643. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Tavella, V.J.; Luo, X.M. Role of Lactobacillus reuteri in Human Health and Diseases. Front. Microbiol. 2018, 9, 757. [Google Scholar] [CrossRef] [PubMed]
- Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Costa-Mattioli, M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell 2016, 165, 1762–1775. [Google Scholar] [CrossRef]
- Varian, B.J.; Poutahidis, T.; DiBenedictis, B.T.; Levkovich, T.; Ibrahim, Y.; Didyk, E.; Shikhman, L.; Cheung, H.K.; Hardas, A.; Ricciardi, C.E.; et al. Microbial lysate upregulates host oxytocin. Brain Behav. Immun. 2017, 61, 36–49. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Avantario, P.; Azzollini, D.; Buongiorno, S.; Viapiano, F.; Campanelli, M.; Ciocia, A.M.; De Leonardis, N.; et al. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022, 14, 3519. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Di Cosola, M.; Inchingolo, A.M.; Greco Lucchina, A.; Malcangi, G.; Pettini, F.; Scarano, A.; Bordea, I.R.; Hazballa, D.; Lorusso, F.; et al. Correlation between occlusal trauma and oral microbiota: A microbiological investigation. J. Biol. Regul. Homeost. Agents 2021, 35, 295–302. [Google Scholar] [CrossRef]
- Dipalma, G.; Inchingolo, A.D.; Inchingolo, F.; Charitos, I.A.; Di Cosola, M.; Cazzolla, A.P. Focus on the cariogenic process: Microbial and biochemical interactions with teeth and oral environment. J. Biol. Regul. Homeost. Agents 2021, 35, 429–440. [Google Scholar] [CrossRef]
- Weston, B.; Fogal, B.; Cook, D.; Dhurjati, P. An agent-based modeling framework for evaluating hypotheses on risks for developing autism: Effects of the gut microbial environment. Med. Hypotheses 2015, 84, 395–401. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Inchingolo, A.M.; Piras, F.; Settanni, V.; Garofoli, G.; Palmieri, G.; Ceci, S.; Patano, A.; De Leonardis, N.; et al. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 4027. [Google Scholar] [CrossRef] [PubMed]
- Borsani, E.; Bonazza, V.; Buffoli, B.; Nocini, P.F.; Albanese, M.; Zotti, F.; Inchingolo, F.; Rezzani, R.; Rodella, L.F. Beneficial Effects of Concentrated Growth Factors and Resveratrol on Human Osteoblasts In Vitro Treated with Bisphosphonates. BioMed Res. Int. 2018, 2018, 4597321. [Google Scholar] [CrossRef]
- Inchingolo, F.; Hazballa, D.; Inchingolo, A.D.; Malcangi, G.; Marinelli, G.; Mancini, A.; Maggiore, M.E.; Bordea, I.R.; Scarano, A.; Farronato, M.; et al. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. Materials 2022, 15, 1120. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Isacco, C.G.; Inchingolo, A.D.; Nguyen, K.C.D.; Cantore, S.; Santacroce, L.; Scacco, S.; Cirulli, N.; Corriero, A.; Puntillo, F.; et al. The human microbiota key role in the bone metabolism activity. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2659–2670. [Google Scholar] [CrossRef] [PubMed]
- Rapone, B.; Ferrara, E.; Montemurro, N.; Converti, I.; Loverro, M.; Loverro, M.T.; Gnoni, A.; Scacco, S.; Siculella, L.; Corsalini, M.; et al. Oral Microbiome and Preterm Birth: Correlation or Coincidence? A Narrative Review. Open Access Maced. J. Med. Sci. 2020, 8, 123–132. [Google Scholar] [CrossRef]
- Tariq, R.; Pardi, D.S.; Bartlett, M.G.; Khanna, S. Low Cure Rates in Controlled Trials of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2019, 68, 1351–1358. [Google Scholar] [CrossRef]
- Inchingolo, F.; Martelli, F.S.; Gargiulo Isacco, C.; Borsani, E.; Cantore, S.; Corcioli, F.; Boddi, A.; Nguyễn, K.C.D.; De Vito, D.; Aityan, S.K.; et al. Chronic Periodontitis and Immunity, Towards the Implementation of a Personalized Medicine: A Translational Research on Gene Single Nucleotide Polymorphisms (SNPs) Linked to Chronic Oral Dysbiosis in 96 Caucasian Patients. Biomedicines 2020, 8, 115. [Google Scholar] [CrossRef]
- Montemurro, N.; Perrini, P.; Marani, W.; Chaurasia, B.; Corsalini, M.; Scarano, A.; Rapone, B. Multiple Brain Abscesses of Odontogenic Origin. May Oral Microbiota Affect Their Development? A Review of the Current Literature. Appl. Sci. 2021, 11, 3316. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Semjonova, A.; Inchingolo, A.M.; Patano, A.; Coloccia, G.; Ceci, S.; Marinelli, G.; Di Pede, C.; Ciocia, A.M.; et al. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. Children 2022, 9, 1014. [Google Scholar] [CrossRef]
- Ben Itzchak, E.; Zachor, D.A. Who benefits from early intervention in autism spectrum disorders? Res. Autism Spectr. Disord. 2011, 5, 345–350. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vila, A.V.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.M.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 2013, 18, 666–673. [Google Scholar] [CrossRef] [PubMed]
Article screening strategy | Database: Scopus, Web of Science, and Pubmed |
Keywords: A “AUTISM”; B “MICROBIOTA” | |
Boolean variable: “AND” | |
Timespan: 2013–2023 | |
Language: English |
Criteria | Application in the present study. |
Population | Subjects diagnosed with ASD according to DSM-5 criteria. |
Intervention | Supplementation with probiotics or prebiotics or synbiotics, FMT therapy or MTT. |
Comparisons | Comparing pre- and postintervention Bristol Stool Scale, Aberrant Behavior Checklist, Aberrant Behavior Checklist second edition, Autism Treatment Evaluation Checklist, Childhood Autism Rating Scale, Clinical Global Impression, Conners’ Parent Rating Scale—Revised and Social Responsiveness Scale, COoximetry, the fecal microbiome determined using 16 s rRNA sequencing, blood serum inflammatory markers, autoantibodies and oxytocin ratings in individuals after the study period. |
Outcomes | Changes in behavioral test domains, in addition to the overall tests score. Changes in baseline and end in gastrointestinal and behavioral symptom measurements. |
Study design | Clinical trials. |
Reference | Number of Subjects | Type of Intervention and Dose | Study Duration | Type of Study | Age Average of Subjects | Main Results |
---|---|---|---|---|---|---|
Probiotics/Prebiotics | ||||||
Turriziani et al., 2022 [45] | 21 | All children received gut mobilization using a conventional procedure that included once-daily oral injection of polyethylene glycol (PEG) at a dosage of 6.9 g/day. Urine was collected at each time point to measure p-cresol, stool quality was assessed by parental report using the Bristol Stool Scale, and parents completed the Repetitive Behavior Scale—Revised (RBS-R), Conners’ Parent Rating Scale—Revised (CPRS-R), and Social Responsiveness Scale (SRS), whereas ASD severity was measured using the Childhood Autism Rating Scale (CARS), which was administered by the same psychologist at all three time points for each subject. | 26 weeks | Pre/post design | 4.6 ± 1.7 | The ingestion of PEG, which binds water molecules via hydrogen bonds, consistently enhanced bowel transit. Over a six-month period, gut mobilization was routinely followed by a gradual and substantial decrease in hyperactivity, anxiety, social interaction impairments, and stereotypic behaviors; hence, behavioral improvement was not only statistically significant, but also therapeutically useful. CARS overall score decreased by 7.7 points on average. Urinary p-cresol excretion patterns showed significant intra- and interindividual heterogeneity, with a rise at one month and a reduction at six months. The effect of PEG therapy on the microbiota is the most probable explanation for these alterations. PEG ingestion can influence microbiota composition via many routes, with distinct and potentially opposing consequences. Eight-to-twelve-point mean decreases in SRS, CARS, RBS, and CRPS scale scores. Urinary p-cresol levels showed unpredictable patterns that were not substantially associated to changes in behavioral characteristics. Total urine p-cresol, as determined in this study, is nearly exclusively composed of p-cresyl sulfate, with p-cresyl glucuronide and unconjugated free p-cresol accounting for little more than 5% on average. Variation in p-cresol absorption appears to contribute minimally, if at all, to these behavioral alterations. |
Zhang et al., 2022 [46] | 160 | Probiotics—lyophilized powder mixtures containing Lactobacillus, Bifidobacteria, and Streptococcus thermophilus to be taken 10 billion colony units twice a day for three months, followed by a three-month washout period and a six-month follow-up. Maltodextrin is administered to the placebo group. All participants receive the Autism Treatment Evaluation Checklist (ATEC), CARS, social responsiveness scale second edition, children’s sleep health questionnaire, survey of food habits, GI assessment questionnaires, and the Bristol Stool Chart at each time point. At this time, the youngsters must refrain from taking antibiotics. | 52 weeks | Parallel | N/A | Microbiota changes in children with ASD following probiotic administration may enhance microbiota balance and consequently ASD symptoms. |
Sherman et al., 2022 [47] | 35 | For a total of 16 weeks, the probiotics group received oral probiotics PS128 (Lactobacillus plantarum PS128, a total of 6 × 1010 Colony Forming Units (CFU) per day), while the control group received oral placebo (microcrystalline cellulose). Post-hoc exploratory analysis. The outcomes of this study include the SRS, the Aberrant Behavior Checklist second edition (ABC-2), the Clinical Global Impression (CGI) scale, carboxyhemoglobin (SpCO) measured using COoximetry, the fecal microbiome as determined using 16 s rRNA sequencing, blood serum inflammatory markers, autoantibodies and oxytocin (OXT) as determined using ELISA. | 16 weeks | Parallel | 10.26 ± 4.78 | Serum antitubulin, CaM kinase II, antidopamine receptor D1 (antiD1), and SpCO levels were found to be elevated in the bulk of ASD patients. In the therapy group, ASD intensity is associated with SpCO (baseline, R = 0.38, p = 0.029), antilysoganglioside GM1 (R = 0.83, p = 0.022), antitubulin (R = 0.69, p = 0.042), and antiD1 (R = 0.71, p = 0.045). |
Guidetti et al., 2022 [48] | 61 | One sachet of the product every day containing 10 × 109 CFU/active fluorescent units (AFU), 2.5 g of the probiotic mixture’s freeze-dried powder: Limosilactobacillus fermentum LF10 (DSM 19187), Ligilactobacillus salivarius LS03 (DSM 22776), Lactiplantibacillus plantarum LP01 (LMG P-21021), and a mixture of five strains of Bifidobacterium longum DLBL (probiotic formulation of Probiotical S.p.A., Novara, Italy) (DSM 22776), (LF10: 4 × 109 CFU/AFU/dose; LS03, LP01, and DLBL mix: 2 × 109 CFU/AFU/strain) The placebo group received sachets containing 2.5 g of powdered maltodextrin. | 32 weeks | Crossover | 4 | Definite probiotics can lower the severity of behavioral and GI issues that often plague these individuals. |
Kong et al., 2021 [49] | 35 | Probiotic— 6 × 1010 CFUs. | 28 weeks | Parallel | 9.85 ± 4.91 | Nonsignificant improvement in total Autistic Behavior Checklist (ABC) score (p = 0.077). |
Kong et al., 2020 [50] | 60 | For the first 12 weeks, all patients are randomly allocated to one of two groups: group A (30 subjects) receives oral L. reuteri probiotics (1010 CFU), whereas group B (30 subjects) receives an oral placebo. In the second stage, individuals in groups A and B continue to receive their respective oral L. reuteri probiotics or placebos as in stage 1. In addition, both groups are administered an intranasal OXT spray for an additional 12 weeks. Patients are started on 1 puff of 4 IU daily, and they also receive MRI training. Following one week, the dosage is increased to one puff in each nostril, twice a day (8 IU). Following the second week, the dose is increased to one puff in each nostril, twice daily (16 IU). After the third week, the dose is titrated up to the maximum amount of 24 IU daily, which is 2 puffs in each nostril in the morning and 1 puff per nostril in the afternoon. Even in younger individuals, a daily dose of 24 IU has been found to be safe and sufficient (ages 3–8 years old). | 24 weeks | Parallel | N/A | (1) Variations in serum OXT levels, (2) variations in microbial relative abundance and diversity, and (3) variations in fecal short-chain fatty acid metabolites. |
Arnold et al., 2019 [51] | 13 | Probiotic—900 billion. | 19 weeks | Crossover | 8.83 ± 2.80 | Substantial enhancement in GI symptoms (p = 0.02). |
Liu et al., 2019 [52] | 80 | Probiotic—Lactobacillus plantarum PS128- 3 × 1010 CFUs. | 4 weeks | Parallel | 10.01 ± 2.32 | Certain behaviors improved. |
Grimaldi et al., 2018 [21] | 26 | Prebiotic B-GOS® (a galactooligosaccharide)-N/A. | 10 weeks | Parallel | 7.7 | Improvement in GI disorders. |
Alternative medicines | ||||||
Dinesh K.S. et al., 2022 [53] | 60 | Ayurveda polyherbal formulations (Rajanyadi Churna, Vilwadi Guilka) posology drug is administered with Lukewarm water thrice daily, 30 min before meals. | 9 weeks | Parallel | N/A | After one month of evaluation, there was a substantial improvement in bifidobacterial abundance in the test group compared to the control group. After one month of follow-up in the test group, the higher quantity remained. |
Synbiotics | ||||||
Sanctuary et al., 2019 [54] | 11 | Synbiotic and prebiotic comparison, 20 billion CFU/ day probiotic. | 12 weeks | Cross-over | 6.8 ± 2.4 | Substantial improvement in GI problems as well as some behavioral symptoms. |
Dietary supplements | ||||||
Bent et al., 2018 [55] | 15 | Sulforaphane (~2.5 μmol glucoraphanin (GR)/lb). Avmacol®, a sulforaphane-producing dietary supplement in tablet form, was used. Weight categories: 32–41 kg (6 tablets = 222 μmol GR/day), 41–50 kg (7 tablets = 259 μmol GR/day), 50–59 kg (8 tablets = 296 μmol GR/day), 59–68 kg (9 tablets = 333 μmol GR/day), 68–77 kg (10 tablets = 370 μmol GR/day), 77–86 kg (12 tablets = 444 μmol GR/day), 86–95 kg (13 tablets = 481 μmol GR/day), and 95–105 kg (15 tablets = 555 μmol GR/day). | 12 weeks | Pre/post design | 14.7 | (1) Responders exhibited a 21.8-point decrease (improvement) in total ABC (p < 0.001) and a 20.2-point decrease in SRS (p < 0.001), compared to increases of 10 points in ABC (p = 0.001) and 8 points in SRS (p = 0.076) for non-responders. (2) Changes in urine metabolites were linked to oxidative stress, amino acid metabolism/gut microbiome metabolites, neurotransmitters, stress, and other hormones, while behavioral improvements were linked to seven unique chemical forms of sphingomyelin. |
FMT or MTT | ||||||
Nirmalkar et al., 2022 [56] | 18 | Shotgun metagenomic study. Sequencing was performed using fecal DNA extracted from previous research [57]. | 18 weeks | Parallel | N/A | MTT changed the microbial composition of ASD individuals, causing many microbes to become depleted. Prevotella, Bifidobacterium, and the sulfur-reducer Desulfovibrio were among the beneficial bacteria that MTT also increased in abundance at the species level. However, Prevotella’s and Bifidobacterium’s abundances decreased over time (2 years), indicating that a longer MTT treatment period or a booster after a certain amount of time may be required to retain these bacteria. Similar to this, MTT also led to the normalization of many bacterial gene levels. Fascinatingly, microbial metabolic genes for folate biosynthesis, oxidative stress defense, and sulfur metabolism were distinct from typically developing (TD) patients at ASD baseline but resembled TD and/or donor levels after MTT (10 weeks, 2 yr). |
Li et al., 2021 [58] | 40 | After the 4-week FMT treatment phase, there was an 8-week following observation period. FMT was administered to 27 children through freeze-dried pills, whereas colonoscopic FMT was administered to 13 children. Rectal route: a weekly dosage of 2 × 1013 CFU. Once a week, 50–100 mL per child. Oral route: 2 × 1013 CFU dosage, 8–16 capsules per child, once a week. The night before the transplant, the volunteers were administered 2 L of GOLYTELY (PEG). The same dose (about 2 × 1014 CFU per patient) was administered to both the oral capsule and the rectal administration groups once a week for four weeks. | 12 weeks | Parallel | N/A | (1) In children with ASD, FMT was well tolerated and helpful in alleviating GI symptoms and autism-like behaviors. FMT appeared to cause the formation of a microbiota that differed greatly from the pre-FMT microbiota and was much more comparable to that of healthy donors and normally growing children. (2) Eubacterium coprostanoligenes that may be linked to treatment results. |
Qureshi et al., 2020 [59] | 38 | Using ultrahigh-performance liquid chromatography–tandem mass spectroscopy, the researchers determined the content of 669 biochemical substances in the excrement of 18 ASD and 20 TD children. Following data were obtained from the ASD group during the 10-week MTT therapy and 8 weeks later. To describe changes in metabolites before, during, and after therapy, univariate and multivariate statistical analysis methods were used. The vancomycin dosage was tailored to each participant’s weight, starting at 40 mg/kg and rising to a limit of 2 g. After that, participants were exposed to one day of starvation and a stool cleanser (MoviPrep). The ASD cohort was split into two groups, each one following a different initial high dose (2.5 × 1012 cells/day) Standardized Human Gut Microbiota (SHGM) treatment. One MTT treatment consisted of a single dose administered rectally (n = 6) while the other involved doses administered orally on two days (n = 12). Both approaches were followed by an oral maintenance dose of a lower concentration SHGM (approximately 2.5 × 109 cells), with therapy terminating 8 weeks after the first high dose. The procedure, however, changed differently for both sets of ASD youngsters who received SHGM rectally and waited one week before starting low dosage SHGM. | 18 weeks | Parallel | N/A | Following MTT, observations show that the fecal metabolite patterns become more similar to those of the TD group. The median disparity between the ASD and TD groups was reduced by 82–88% for the panel metabolites, and 96% of the top fifty most discriminating individual metabolites reported more comparable values after therapy. As a result, these results are comparable, albeit less marked, to those obtained using plasma metabolites. |
Kang et al., 2020 [60] | 18 | Ten weeks of MTT and an 8-week follow-up observation period (refers to Kang et al. [57]). To investigate whether metabolites were different in the ASD group before therapy, plasma and fecal samples were collected from children with ASD who had chronic GI difficulties (chronic constipation and/or diarrhea) vs. normally TD children who did not have GI problems. | 10 weeks | Parallel | N/A | (1) Plasma metabolites: medium-chain fatty acids (caprylate and heptanoate), nicotinamide riboside, iminodiacetate, methylsuccinate, leucylglycine, and sarcosine were significantly lower at baseline and increased after MTT. (2) Fecal metabolites: Only p-cresol sulfate significantly changed after MTT. Significant correlations between p-cresol sulfate and Desulfovibrio, suggesting a potential role of Desulfovibrio in the metabolism of p-cresol sulfate and possible autism etiology. |
Kang et al., 2019 [57] | 18 | MTT consisting of two-week vancomycin treatment followed by a bowel cleanse and then high dose FMT for 1–2 days and 7–8 weeks of daily maintenance doses. After this 10-week MTT treatment and an 8-week follow-up observation period (18 weeks in total), results were reassessed after 2 years of follow-up. | 104 weeks | Pre/post design | N/A | Significant improvements both in GI and behavior symptoms. |
Kang et al., 2017 [29] | 18 | MTT:
| 18 weeks | Parallel | 12 ± 5 | Increase in variety andabundance of Bifidobacterium(×4), Prevotella, and Desulfovibrio;improvements in behavioral symptoms; significant improvements were seen in GI problems. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inchingolo, A.M.; Patano, A.; Piras, F.; Mancini, A.; Inchingolo, A.D.; Paduanelli, G.; Inchingolo, F.; Palermo, A.; Dipalma, G.; Malcangi, G. Interconnection between Microbiota–Gut–Brain Axis and Autism Spectrum Disorder Comparing Therapeutic Options: A Scoping Review. Microorganisms 2023, 11, 1477. https://doi.org/10.3390/microorganisms11061477
Inchingolo AM, Patano A, Piras F, Mancini A, Inchingolo AD, Paduanelli G, Inchingolo F, Palermo A, Dipalma G, Malcangi G. Interconnection between Microbiota–Gut–Brain Axis and Autism Spectrum Disorder Comparing Therapeutic Options: A Scoping Review. Microorganisms. 2023; 11(6):1477. https://doi.org/10.3390/microorganisms11061477
Chicago/Turabian StyleInchingolo, Angelo Michele, Assunta Patano, Fabio Piras, Antonio Mancini, Alessio Danilo Inchingolo, Gregorio Paduanelli, Francesco Inchingolo, Andrea Palermo, Gianna Dipalma, and Giuseppina Malcangi. 2023. "Interconnection between Microbiota–Gut–Brain Axis and Autism Spectrum Disorder Comparing Therapeutic Options: A Scoping Review" Microorganisms 11, no. 6: 1477. https://doi.org/10.3390/microorganisms11061477
APA StyleInchingolo, A. M., Patano, A., Piras, F., Mancini, A., Inchingolo, A. D., Paduanelli, G., Inchingolo, F., Palermo, A., Dipalma, G., & Malcangi, G. (2023). Interconnection between Microbiota–Gut–Brain Axis and Autism Spectrum Disorder Comparing Therapeutic Options: A Scoping Review. Microorganisms, 11(6), 1477. https://doi.org/10.3390/microorganisms11061477