HIV RNA/DNA Levels at Diagnosis Can Predict Immune Reconstitution: A Longitudinal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size Estimation
2.3. Sample Measurements
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Univariable Analysis
3.3. Multivariable Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fanales-Belasio, E.; Raimondo, M.; Suligoi, B.; Buttò, S. HIV virology and pathogenetic mechanisms of infection: A brief overview. Ann. Ist. Super. Sanita 2010, 46, 5–14. [Google Scholar] [CrossRef]
- Chun, T.W.; Carruth, L.; Finzi, D.; Shen, X.; DiGiuseppe, J.A.; Taylor, H.; Hermankova, M.; Chadwick, K.; Margolick, J.; Quinn, T.C.; et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997, 387, 183–188. [Google Scholar] [CrossRef]
- Hatzakis, A.E.; Touloumi, G.; Pantazis, N.; Anastassopoulou, C.G.; Katsarou, O.; Karafoulidou, A.; Goedert, J.J.; Kostrikis, L.G. Cellular HIV-1 DNA load predicts HIV-RNA rebound and the outcome of highly active antiretroviral therapy. AIDS 2004, 18, 2261–2267. [Google Scholar] [CrossRef]
- Kostrikis, L.G.; Touloumi, G.; Karanicolas, R.; Pantazis, N.; Anastassopoulou, C.; Karafoulidou, A.; Goedert, J.J.; Hatzakis, A. Quantitation of human immunodeficiency virus type 1 DNA forms with the second template switch in peripheral blood cells predicts disease progression independently of plasma RNA load. J Virol. 2002, 76, 10099–10108. [Google Scholar] [CrossRef] [Green Version]
- Rouzioux, C.; Hubert, J.B.; Burgard, M.; Deveau, C.; Goujard, C.; Bary, M.; Séréni, D.; Viard, J.P.; Delfraissy, J.F.; Meyer, L. Early levels of HIV-1 DNA in peripheral blood mononuclear cells are predictive of disease progression independently of HIV-1 RNA levels and CD4+ T cell counts. J. Infect. Dis. 2005, 192, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Avettand-Fenoel, V.; Bouteloup, V.; Mélard, A.; Fagard, C.; Chaix, M.L.; Leclercq, P.; Chêne, G.; Viard, J.P.; Rouzioux, C.; Members of the ETOILE Study. Higher HIV-1 DNA associated with lower gains in CD4 cell count among patients with advanced therapeutic failure receiving optimized treatment (ANRS 123–ETOILE). J. Antimicrob. Chemother. 2010, 65, 2212–2214. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V.; Costagliola, D.; Bonduelle, O.; N’go, N.; Schnuriger, A.; Théodorou, I.; Clauvel, J.P.; Sicard, D.; Agut, H.; Debré, P.; et al. Combination of HIV-1-specific CD4 Th1 cell responses and IgG2 antibodies is the best predictor for persistence of long-term nonprogression. J. Infect. Dis. 2005, 191, 2053–2063. [Google Scholar] [CrossRef]
- Autran, B.; Descours, B.; Avettand-Fenoel, V.; Rouzioux, C. Elite controllers as a model of functional cure. Curr. Opin. HIV AIDS 2011, 6, 181–187. [Google Scholar] [CrossRef]
- N’takpe, J.B.; Gabillard, D.; Moh, R.; Gardiennet, E.; Emieme, A.; Badje, A.; Kouame, G.M.; Karcher, S.; Le Carrou, J.; Ménan, H.; et al. Association between cellular HIV-1 DNA level and mortality in HIV-1 infected African adults starting ART with high CD4 counts. EBioMedicine 2020, 56, 102815. [Google Scholar] [CrossRef]
- Smith, C.J.; Sabin, C.A.; Youle, M.S.; Kinloch-de Loes, S.; Lampe, F.C.; Madge, S.; Cropley, I.; Johnson, M.A.; Phillips, A.N. Factors influencing increases in CD4 cell counts of HIV-positive persons receiving long-term highly active antiretroviral therapy. J. Infect. Dis. 2004, 190, 1860–1868. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; May, M.; Chêne, G.; Phillips, A.N.; Ledergerber, B.; Dabis, F.; Costagliola, D.; Monforte, A.D.; De Wolf, F.; Reiss, P.; et al. Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: A collaborative analysis of prospective studies. Lancet 2002, 360, 119–129. [Google Scholar] [CrossRef]
- Pantazis, N.; Papastamopoulos, V.; Paparizos, V.; Metallidis, S.; Adamis, G.; Antoniadou, A.; Psichogiou, M.; Chini, M.; Sambatakou, H.; Sipsas, N.V.; et al. Long-term evolution of CD4+ cell count in patients under combined antiretroviral therapy. AIDS 2019, 33, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Opportunistic Infections Project Team of the Collaboration of Observational HIV Epidemiological Research in Europe (COHERE) in EuroCoord. CD4 cell count and the risk of AIDS or death in HIV-Infected adults on combination antiretroviral therapy with a suppressed viral load: A longitudinal cohort study from COHERE. PLoS Med. 2012, 9, e1001194. [Google Scholar] [CrossRef] [Green Version]
- Feiveson, A.H. Power by simulation. Stata J. 2002, 2, 107–124. [Google Scholar] [CrossRef]
- Beloukas, A.; Paraskevis, D.; Haida, C.; Sypsa, V.; Hatzakis, A. Development and assessment of a multiplex real-time PCR assay for quantification of human immunodeficiency virus type 1 DNA. J. Clin. Microbiol. 2009, 47, 2194–2199. [Google Scholar] [CrossRef] [Green Version]
- Kostaki, E.G.; Limnaios, S.; Adamis, G.; Xylomenos, G.; Chini, M.; Mangafas, N.; Lazanas, M.; Patrinos, S.; Metallidis, S.; Tsachouridou, O.; et al. Estimation of the determinants for HIV late presentation using the traditional definition and molecular clock-inferred dates: Evidence that older age, heterosexual risk group and more recent diagnosis are prognostic factors. HIV Med. 2022, 23, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Ananworanich, J.; Chomont, N.; Eller, L.A.; Kroon, E.; Tovanabutra, S.; Bose, M.; Nau, M.; Fletcher, J.L.; Tipsuk, S.; Vandergeeten, C.; et al. HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART. EBioMedicine 2016, 11, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, N.; Von Siebenthal, C.; Vongrad, V.; Turk, T.; Neumann, K.; Beerenwinkel, N.; Bogojeska, J.; Fellay, J.; Roth, V.; Kok, Y.L.; et al. Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART. Nat. Commun. 2019, 10, 3193. [Google Scholar] [CrossRef] [Green Version]
- Bonham, S.; Meya, D.B.; Bohjanen, P.R.; Boulware, D.R. Biomarkers of HIV Immune Reconstitution Inflammatory Syndrome. Biomark Med. 2008, 2, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Sheikh, V.; Sereti, I.; French, M.A. Immune reconstitution disorders in patients with HIV infection: From pathogenesis to prevention and treatment. Curr. HIV/AIDS Rep. 2014, 11, 223–232. [Google Scholar] [CrossRef]
- Tsiara, C.G.; Nikolopoulos, G.K.; Bagos, P.G.; Goujard, C.; Katzenstein, T.L.; Minga, A.K.; Rouzioux, C.; Hatzakis, A. Impact of HIV type 1 DNA levels on spontaneous disease progression: A meta-analysis. AIDS Res. Hum. Retrovir. 2012, 28, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Psichogiou, M.; Basoulis, D.; Tsikala-Vafea, M.; Vlachos, S.; Kapelios, C.J.; Daikos, G.L. Integrase Strand Transfer Inhibitors and the Emergence of Immune Reconstitution Inflammatory Syndrome (IRIS). Curr. HIV Res. 2017, 15, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Wijting, I.E.; Wit, F.W.; Rokx, C.; Leyten, E.M.; Lowe, S.H.; Brinkman, K.; Bierman, W.F.; van Kasteren, M.E.; Postma, A.M.; Bloemen, V.C.; et al. Immune reconstitution inflammatory syndrome in HIV infected late presenters starting integrase inhibitor containing antiretroviral therapy. EClinicalMedicine 2019, 17, 100210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutertre, M.; Cuzin, L.; Demonchy, E.; Puglièse, P.; Joly, V.; Valantin, M.A.; Cotte, L.; Huleux, T.; Delobel, P.; Martin-Blondel, G.; et al. Initiation of Antiretroviral Therapy Containing Integrase Inhibitors Increases the Risk of IRIS Requiring Hospitalization. J. Acquir. Immune Defic. Syndr. 2017, 76, e23–e26. [Google Scholar] [CrossRef] [PubMed]
- Bianco, C.; Meini, G.; Rossetti, B.; Lamonica, S.; Mondi, A.; Belmonti, S.; Fanti, L.; Ciccarelli, N.; Di Giambenedetto, S.; Zazzi, M.; et al. Switch to raltegravir-based regimens and HIV DNA decrease in patients with suppressed HIV RNA. J. Int. AIDS Soc. 2014, 17 (Suppl. S3), 19791. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, B.; Meini, G.; Bianco, C.; Lamonica, S.; Mondi, A.; Belmonti, S.; Fanti, I.; Ciccarelli, N.; Di Giambenedetto, S.; Zazzi, M.; et al. Total cellular HIV-1 DNA decreases after switching to raltegravir-based regimens in patients with suppressed HIV-1 RNA. J. Clin. Virol. 2017, 91, 18–24. [Google Scholar] [CrossRef]
- Ananworanich, J.; Chomont, N.; Fletcher, J.L.; Pinyakorn, S.; Schuetz, A.; Sereti, I.; Rerknimitr, R.; Dewar, R.; Kroon, E.; Vandergeeten, C.; et al. Markers of HIV reservoir size and immune activation after treatment in acute HIV infection with and without raltegravir and maraviroc intensification. J. Virus Erad. 2015, 1, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Parisi, S.G.; Sarmati, L.; Andreis, S.; Scaggiante, R.; Cruciani, M.; Ferretto, R.; Manfrin, V.; Basso, M.; Andreoni, M.; Mengoli, C.; et al. Strong and persistent correlation between baseline and follow-up HIV-DNA levels and residual viremia in a population of naïve patients with more than 4 years of effective antiretroviral therapy. Clin. Microbiol. Infect. 2015, 21, e5–e7. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sáinz, C.; Ramos, R.; Valor, L.; López, F.; Santamaría, B.; Hernández, D.C.; Cruz, J.S.; Navarro, J.; Modrego, J.; Alecsandru, D.; et al. Prognostic value of peripheral blood mononuclear cell-associated HIV-1 DNA for virological outcome in asymptomatic HIV-1 chronic infection. J. Clin. Virol. 2010, 48, 168–172. [Google Scholar] [CrossRef]
- Poizot-Martin, I.; Faucher, O.; Obry-Roguet, V.; Nicolino-Brunet, C.; Ronot-Bregigeon, S.; Dignat-George, F.; Tamalet, C. Lack of correlation between the size of HIV proviral DNA reservoir and the level of immune activation in HIV-infected patients with a sustained undetectable HIV viral load for 10 years. J. Clin. Virol. 2013, 57, 351–355. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, S.; Tagarro, A.; Foster, C.; Palma, P.; Cotugno, N.; Zicari, S.; Ruggiero, A.; De Rossi, A.; Dalzini, A.; Pahwa, S.; et al. Virological and Immunological Subphenotypes in a Cohort of Early Treated HIV-Infected Children. Front. Immunol. 2022, 13, 875692. [Google Scholar] [CrossRef] [PubMed]
HIV DNA | ||||
---|---|---|---|---|
Below Median * (n = 74) | Above Median * (n = 74) | Overall (n = 148) | ||
N(%) or Median (IQR) | N(%) or Median (IQR) | N(%) or Median (IQR) | p-Value | |
Sex | 0.355 | |||
Male | 65 (51.6) | 61 (48.4) | 126 (100.0) | |
Female | 9 (40.9) | 13 (59.1) | 22 (100.0) | |
Risk group | 0.007 | |||
MSM | 50 (61.0) | 32 (39.0) | 82 (100.0) | |
PWID | 17 (41.5) | 24 (58.5) | 41 (100.0) | |
Heterosexual | 7 (28.0) | 18 (72.0) | 25 (100.0) | |
Risk group & Sex | 0.024 | |||
MSM | 50 (61.0) | 32 (39.0) | 82 (100.0) | |
PWID-Male | 13 (38.2) | 21 (61.8) | 34 (100.0) | |
PWID-Female | 4 (57.1) | 3 (42.9) | 7 (100.0) | |
Heterosexual-Male | 2 (20.0) | 8 (80.0) | 10 (100.0) | |
Heterosexual-Female | 5 (33.3) | 10 (66.7) | 15 (100.0) | |
Origin | 0.019 | |||
Greece | 66 (54.5) | 55 (45.5) | 121 (100.0) | |
Other | 8 (29.6) | 19 (70.4) | 27 (100.0) | |
Median Age at cART initiation (years) | 35 (30, 45) | 36 (31, 43) | 36 (30, 43) | 0.765 |
Primary/recent infection | >0.999 | |||
No | 67 (50.0) | 67 (50.0) | 134 (100.0) | |
Yes | 7 (50.0) | 7 (50.0) | 14 (100.0) | |
Type of cART | 0.557 | |||
NNRTI | 49 (52.1) | 45 (47.9) | 94 (100.0) | |
Boosted PI | 19 (50.0) | 19 (50.0) | 38 (100.0) | |
INSTI. | 6 (37.5) | 10 (62.5) | 16 (100.0) | |
AIDS before cART | 0.092 | |||
No | 64 (47.8) | 70 (52.2) | 134 (100.0) | |
Yes | 10 (71.4) | 4 (28.6) | 14 (100.0) | |
Death | 0.172 | |||
No | 70 (49.0) | 73 (51.0) | 143 (100.0) | |
Yes | 4 (80.0) | 1 (20.0) | 5 (100.0) | |
Nadir CD4 (cells/microL) | 0.245 | |||
0–99 | 11 (47.8) | 12 (52.2) | 23 (100.0) | |
100–199 | 11 (44.0) | 14 (56.0) | 25 (100.0) | |
200–349 | 21 (41.2) | 30 (58.8) | 51 (100.0) | |
350–499 | 19 (63.3) | 11 (36.7) | 30 (100.0) | |
500+ | 12 (63.2) | 7 (36.8) | 19 (100.0) | |
Baseline CD4 (cells/microL) | 0.360 | |||
0–99 | 11 (47.8) | 12 (52.2) | 23 (100.0) | |
100–199 | 10 (41.7) | 14 (58.3) | 24 (100.0) | |
200–349 | 18 (41.9) | 25 (58.1) | 43 (100.0) | |
350–499 | 22 (61.1) | 14 (38.9) | 36 (100.0) | |
500+ | 13 (59.1) | 9 (40.9) | 22 (100.0) | |
Baseline CD4 (cells/microL) | 326 (160, 464) | 278 (132, 417) | 298 (154, 442) | 0.245 |
Baseline HIV RNA (copies/mL) | 0.117 | |||
500–9999 | 15 (75.0) | 5 (25.0) | 20 (100.0) | |
10,000–49,999 | 26 (44.8) | 32 (55.2) | 58 (100.0) | |
50,000–99,999 | 9 (45.0) | 11 (55.0) | 20 (100.0) | |
100,000+ | 24 (48.0) | 26 (52.0) | 50 (100.0) | |
Baseline HIV RNA (log10 c/mL) | 4.5 (4.2, 5.1) | 4.7 (4.5, 5.2) | 4.7 (4.3, 5.2) | 0.051 |
Log10 HIV DNA (/106 PBMCs) | 2.0 (1.7, 2.4) | 3.0 (2.8, 3.3) | 2.6 (2.0, 3.0) | <0.001 |
1st HIV+ to cART (months) | 3.1 (1.1, 9.3) | 2.7 (1.0, 9.2) | 2.9 (1.0, 9.2) | 0.809 |
1st HIV+ to HIV DNA sample (months) | 0.4 (0.2, 0.9) | 0.5 (0.2, 1.3) | 0.4 (0.2, 1.1) | 0.446 |
Factor | Estimate (Cells/μL) | 95% C.I. | p-Value |
---|---|---|---|
CD4 Change 0–3 months (per month) | 65.7 | (49.9, 81.4) | <0.001 |
Baseline HIV DNA/RNA combination and CD4 Change 0–3 months interaction | |||
DNA/RNA: low/high vs. low/low | 5.9 | (−17.2, 29.0) | 0.617 |
DNA/RNA: high/low vs. low/low | −11.2 | (−34.8, 12.5) | 0.355 |
DNA/RNA: high/high vs. low/low | 12.8 | (−9.3, 34.9) | 0.256 |
CD4 Change 3+ months (per month) | 3.1 | (1.8, 4.3) | <0.001 |
Baseline HIV DNA/RNA combination and CD4 Change 3+ months interaction | |||
DNA/RNA: low/high vs. low/low | 0.2 | (−1.7, 2.0) | 0.863 |
DNA/RNA: high/low vs. low/low | 0.4 | (−1.5, 2.3) | 0.672 |
DNA/RNA: high/high vs. low/low | 2.1 | (0.3, 4.0) | 0.024 |
Factor | Estimate (Cells/μL) | 95% C.I. | p-Value |
---|---|---|---|
CD4 Change 0–3 months (per month) | 108.3 | (69.7, 146.9) | <0.001 |
Baseline HIV DNA/RNA combination and CD4 Change 0–3 months interaction | |||
DNA/RNA: low/high vs. low/low | 9.0 | (−24.4, 42.4) | 0.598 |
DNA/RNA: high/low vs. low/low | −7.2 | (−42.1, 27.7) | 0.685 |
DNA/RNA: high/high vs. low/low | −5.8 | (−37.9, 26.3) | 0.723 |
Risk group and CD4 Change 0–3 months interaction | |||
PWID vs. non-PWID | −37.9 | (−65.8, −9.9) | 0.008 |
Age at cART initiation and CD4 Change 0–3 months interaction | |||
30–39 vs. <30 | −16.1 | (−48.0, 15.8) | 0.322 |
40–49 vs. <30 | −23.6 | (−57.5, 10.2) | 0.171 |
50+ vs. <30 | −39.1 | (−77.6, −0.5) | 0.047 |
Type of cART and CD4 Change 0–3 months interaction | |||
Boosted PI vs. NNRTI | −18.3 | (−44.1, 7.4) | 0.163 |
INSTI vs. NNRTI | −32.2 | (−77.0, 12.7) | 0.160 |
CD4 Change 3+ months (per month) | 3.1 | (0.7, 5.5) | 0.013 |
Baseline HIV DNA/RNA combination and CD4 Change 3+ months interaction | |||
DNA/RNA: low/high vs. low/low | 1.0 | (−1.1, 3.1) | 0.349 |
DNA/RNA: high/low vs. low/low | 1.2 | (−1.2, 3.5) | 0.327 |
DNA/RNA: high/high vs. low/low | 2.5 | (0.5, 4.6) | 0.017 |
Risk group and CD4 Change 3+ months interaction | |||
PWID vs. non-PWID | −0.7 | (−2.6, 1.2) | 0.480 |
Age at cART initiation and CD4 Change 3+ months interaction | |||
30–39 vs. <30 | −0.4 | (−2.4, 1.6) | 0.705 |
40–49 vs. <30 | −2.1 | (−4.4, 0.2) | 0.076 |
50+ vs. <30 | −2.0 | (−4.4, 0.5) | 0.119 |
Type of cART and CD4 Change 3+ months interaction | |||
Boosted PI vs. NNRTI | 1.1 | (−0.5, 2.6) | 0.179 |
INSTI vs. NNRTI | 3.9 | (0.3, 7.5) | 0.032 |
Factor | Estimate (Cells/μL) | 95% C.I. | p-Value |
---|---|---|---|
CD4 Change 0–3 months (per month) | 76.1 | (49.9, 102.4) | <0.001 |
Baseline HIV DNA/RNA combination and CD4 Change 0–3 months interaction | |||
DNA/RNA: low/high vs. low/low | −9.2 | (−41.8, 23.4) | 0.580 |
DNA/RNA: high/low vs. low/low | −7.2 | (−37.6, 23.2) | 0.642 |
DNA/RNA: high/high vs. low/low | 30.7 | (−1.2, 62.5) | 0.059 |
Risk group and CD4 Change 0–3 months interaction | |||
PWID vs. non-PWID | −30.5 | (−58.7, −2.3) | 0.034 |
Age at cART initiation and CD4 Change 0–3 months interaction | |||
30–39 vs. <30 | −5.6 | (−32.0, 20.8) | 0.678 |
40–49 vs. <30 | 14.5 | (−21.9, 50.9) | 0.436 |
50+ vs. <30 | −26.6 | (−67.9, 14.6) | 0.206 |
Type of cART and CD4 Change 0–3 months interaction | |||
Boosted PI vs. NNRTI | 13.1 | (−27.2, 53.5) | 0.523 |
INSTI vs. NNRTI | 1.5 | (−34.5, 37.5) | 0.934 |
CD4 Change 3+ months (per month) | 2.3 | (−0.3, 4.9) | 0.089 |
Baseline HIV DNA/RNA combination and CD4 Change 3+ months interaction | |||
DNA/RNA: low/high vs. low/low | −0.2 | (−3.5, 3.1) | 0.888 |
DNA/RNA: high/low vs. low/low | 0.2 | (−2.8, 3.2) | 0.884 |
DNA/RNA: high/high vs. low/low | 0.7 | (−2.7, 4.1) | 0.677 |
Risk group and CD4 Change 3+ months interaction | |||
PWID vs. non-PWID | 2.0 | (−1.2, 5.2) | 0.212 |
Age at cART initiation and CD4 Change 3+ months interaction | |||
30–39 vs. <30 | 1.4 | (−1.4, 4.2) | 0.323 |
40–49 vs. <30 | 0.7 | (−2.8, 4.3) | 0.684 |
50+ vs. <30 | −0.6 | (−5.1, 3.9) | 0.792 |
Type of cART and CD4 Change 3+ months interaction | |||
Boosted PI vs. NNRTI | −0.5 | (−5.1, 4.1) | 0.827 |
INSTI vs. NNRTI | 0.3 | (−3.8, 4.4) | 0.887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basoulis, D.; Pantazis, N.; Paraskevis, D.; Iliopoulos, P.; Papadopoulou, M.; Akinosoglou, K.; Hatzakis, A.; Daikos, G.L.; Psichogiou, M. HIV RNA/DNA Levels at Diagnosis Can Predict Immune Reconstitution: A Longitudinal Analysis. Microorganisms 2023, 11, 1510. https://doi.org/10.3390/microorganisms11061510
Basoulis D, Pantazis N, Paraskevis D, Iliopoulos P, Papadopoulou M, Akinosoglou K, Hatzakis A, Daikos GL, Psichogiou M. HIV RNA/DNA Levels at Diagnosis Can Predict Immune Reconstitution: A Longitudinal Analysis. Microorganisms. 2023; 11(6):1510. https://doi.org/10.3390/microorganisms11061510
Chicago/Turabian StyleBasoulis, Dimitrios, Nikos Pantazis, Dimitrios Paraskevis, Panos Iliopoulos, Martha Papadopoulou, Karolina Akinosoglou, Angelos Hatzakis, George L. Daikos, and Mina Psichogiou. 2023. "HIV RNA/DNA Levels at Diagnosis Can Predict Immune Reconstitution: A Longitudinal Analysis" Microorganisms 11, no. 6: 1510. https://doi.org/10.3390/microorganisms11061510
APA StyleBasoulis, D., Pantazis, N., Paraskevis, D., Iliopoulos, P., Papadopoulou, M., Akinosoglou, K., Hatzakis, A., Daikos, G. L., & Psichogiou, M. (2023). HIV RNA/DNA Levels at Diagnosis Can Predict Immune Reconstitution: A Longitudinal Analysis. Microorganisms, 11(6), 1510. https://doi.org/10.3390/microorganisms11061510