Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Cotton Farms
2.2. Collection of Air Samples during the Cotton Harvesting Season from the Farm Air and the Interior of the N95 Respirators and the Estimation of the Culturable Microbial Concentrations
2.3. Analysis of Antibiotic Resistance Genes in the Air Samples
2.3.1. Genomic DNA Extraction
2.3.2. Polymerase Chain Reaction (PCR) of Antibiotic Resistance Genes
2.4. Evaluation of N95 Respirators against the Airborne Microorganisms
2.5. ATP Measurement of the Interior and Exterior Surfaces of the N95 Respirators
2.6. Statistical Analyses
3. Results and Discussion
3.1. Concentrations of Airborne Culturable Fungi and Bacteria on the Cotton Farms during Harvesting
3.2. Presence of ARGs in the Collected Air Samples and the Relative Abundance of ARGs with Respect to 16S rRNA Gene Copies
3.3. Evaluation of the N95 Respirators against Airborne Culturable Fungi, Bacteria, and ARGs
3.4. Microbial Loads on the Interior and Exterior Surfaces of the Tested N95 Respirators
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schenker, M.B. Farming and asthma. Occup. Environ. Med. 2005, 62, 211–212. [Google Scholar] [CrossRef] [Green Version]
- American Thoracic Society. Respiratory health hazards in agriculture. Am. J. Respir. Crit. Care Med. 1998, 158, S1–S76. [Google Scholar] [CrossRef]
- Cushen, B.; Sulaiman, I.; Donoghue, N.; Langan, D.; Cahill, T.; Dhonncha, E.N.; Healy, O.; Keegan, F.; Browne, M.; O’Regan, A. High prevalence of obstructive lung disease in non-smoking farmers: The Irish farmers’ lung health study. Resp. Med. 2016, 115, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Van Hage Hamsten, M.; Johansson, G.; Zetterström, O. Predominance of mite allergy over allergy to pollens and animal dander in a farming population. Clin. Exp. Allergy 1987, 17, 417–423. [Google Scholar] [CrossRef]
- Iversen, M.; Pedersen, B. The prevalence of allergy in Danish farmers. Allergy 1990, 45, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Omland, Ø.; Sigsgaard, T.; Hjort, C.; Pedersaen, O.F.; Miller, M.R. Lung status in young Danish rurals: The effect of farming exposure on asthma-like symptoms and lung function. Eur. Respir. J. 1999, 13, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelzang, P.F.J.; van der Gulden, J.W.J.; Tielen, M.J.M.; Folgering, H.; van Schayk, C.P. Health-based selection for asthma but not for chronic bronchitis in pig farmers: An evidence based hypothesis. Eur. Respir. J. 1999, 13, 187–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppin, J.A.; Umbach, D.M.; Long, S.; Rinsky, J.L.; Henneberger, P.K.; Salo, P.M.; Zeldin, D.C.; London, S.J.; Alavanja, M.C.; Blair, A.; et al. Respiratory disease in United States farmers. Occup. Environ. Med. 2014, 71, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Ege, M.J.; Frei, R.; Bieli, C.; Schram-Bijkerk, D.; Waser, M.; Benz, M.R.; Weiss, G.; Nyberg, F.; van Hage, M.; Pershagen, G.; et al. Not all farming environments protect against the development of asthma and wheeze in children. J. Allergy Clin. Immunol. 2007, 119, 1140–1147. [Google Scholar] [CrossRef]
- Holness, D.L.; O’Blenis, E.L.; Sass-Kortsak, A.; Pilger, C.; Nethercott, J.R. Respiratory effects and dust exposures in hog confinement farming. Am. J. Ind. Med. 1987, 11, 571–580. [Google Scholar] [CrossRef]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar]
- May, J.J.; Kullman, G.J. Agricultural safety and health in a new century. Am. J. Ind. Med. 2002, 42 (Suppl. 2), 1–73. [Google Scholar] [CrossRef]
- Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Surrey, UK, 1971. [Google Scholar]
- Malling, H.J. Diagnosis and immunotherapy of mould allergy. IV. Relation between asthma symptoms, spore counts and diagnostic tests. Allergy 1986, 41, 342–350. [Google Scholar] [CrossRef]
- Strachan, D.P. Damp housing and childhood asthma: Validation of reporting of symptoms. Br. Med. J. 1988, 297, 1223–1226. [Google Scholar] [CrossRef] [Green Version]
- Horner, W.E.; Helbling, A.; Salvaggio, J.E.; Lehrer, S.B. Fungal allergens. Clin. Microbiol. Rev. 1995, 8, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Latgé, J.P.; Paris, S. The fungal spore: Reservoir of allergens. In The Fungal Spore and Disease Initiation in Plants and Animals; Cole, G.T., Hoch, H.C., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 379–401. [Google Scholar]
- Krysińska-Traczyk, E.; Skórska, C.; Prazmo, Z.; Sitkowska, J.; Cholewa, G.; Dutkiewicz, J. Exposure to airborne microorganisms, dust and endotoxin during flax scutching on farms. Ann. Agric. Environ. Med. 2004, 11, 309–317. [Google Scholar] [PubMed]
- Skórska, C.; Sitkowska, J.; Krysińska-Traczyk, E.; Cholewa, G.; Dutkiewicz, J. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms. Ann. Agric. Environ. Med. 2005, 12, 281–288. [Google Scholar] [PubMed]
- Monteil, C.L.; Bardin, M.; Morris, C.E. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. ISME J. 2014, 8, 2290–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cevallos-Cevallos, J.M.; Gu, G.; Danyluk, M.D.; Dufault, N.S.; van Bruggen, A.H. Salmonella can reach tomato fruits on plants exposed to aerosols formed by rain. Int. J. Food Microbiol. 2012, 158, 140–146. [Google Scholar] [CrossRef]
- Atiemo, M.A.; Yoshida, K.; Zoerb, G.C. Dust measurement in tractor and combine cabs. Trans. Am. Soc. Agric. Eng. 1980, 23, 571–576. [Google Scholar] [CrossRef]
- Lee, S.A.; Adhikari, A.; Grinshpun, S.A.; McKay, R.; Shukla, R.; Reponen, T. Personal exposure to airborne dust and microorganisms in agricultural environments. J. Occup. Environ. Hyg. 2006, 3, 118–130. [Google Scholar] [CrossRef]
- Lighthart, B. Microbial aerosols: Estimated contribution of combine harvesting to an airshed. Appl. Environ. Microbiol. 1984, 47, 430–432. [Google Scholar] [CrossRef] [Green Version]
- Elin, R.J.; Robertson, E.A.; Sever, G.A. Workload, space, and personnel of microbiology laboratories in teaching hospitals. Am. J. Clin. Pathol. 1984, 82, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Roy, C.J.; Thorne, P.S. Exposure to particulates, microorganisms, β (1–3)-glucans, and endotoxins during soybean harvesting. AIHA J. 2003, 64, 487–495. [Google Scholar] [CrossRef]
- Green, B.J.; Couch, J.R.; Lemons, A.R.; Burton, N.C.; Victory, K.R.; Nayak, A.P.; Beezhold, D.H. Microbial hazards during harvesting and processing at an outdoor United States cannabis farm. J. Occup. Environ. Hyg. 2018, 15, 430–440. [Google Scholar] [CrossRef]
- Lacey, J. The microflora of grain dust. In Occupational Pollutionary Disease: Focus on Grain Dust and Health, International Symposium on Grain Dust and Health, Saskatoon, Canada, 1977; Academic Press, Inc.: New York, NY, USA, 1980; pp. 417–440. [Google Scholar]
- Business & Economy: Cotton. Available online: https://www.georgiaencyclopedia.org/articles/business-economy/cotton (accessed on 7 May 2023).
- Griffith, C.J.; Cooper, R.A.; Gilmore, J.; Davies, C.; Lewis, M. An evaluation of hospital cleaning regimes and standards. J. Hosp. Infect. 2000, 45, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Aycicek, H.; Oguz, U.; Karci, K. Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen. Int. J. Hyg. Environ. Health 2006, 209, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.A.; Griffith, C.J.; Malik, R.E.; Obee, P.; Looker, N. Monitoring the effectiveness of cleaning in four British hospitals. Am. J. Infect. Control. 2007, 35, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Chang, M. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 2000, 41, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Fahad Alomirah, H.; Moda, H.M. Assessment of Indoor Air Quality and Users Perception of a Renovated Office Building in Manchester. Int. J. Environ. Res. Public Health 2020, 17, 1972. [Google Scholar] [CrossRef] [Green Version]
- Martony, M.; Nollens, H.; Tucker, M.; Henry, L.; Schmitt, T.; Hernandez, J. Prevalence of and environmental factors associated with aerosolised Aspergillus spores at a zoological park. Vet. Rec. Open. 2019, 6, e000281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, A.; Kurella, S.; Banerjee, P.; Mitra, A. Aerosolized bacteria and microbial activity in dental clinics during cleaning procedures. J. Aerosol. Sci. 2017, 114, 209–218. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, S.; White, D.G.; Schroeder, C.M.; Lu, R.; Yang, H.; McDermott, P.F.; Ayers, S.; Meng, J. Characterization of multiple-antimicrobial-resistant salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 2004, 70, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, N.C.; Cooksey, R.C.; Hill, B.C.; Swenson, J.M.; Tenover, F.C. Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob. Agents Chemother. 1993, 37, 2311–2317. [Google Scholar] [CrossRef] [Green Version]
- Gevers, D.; Danielsen, M.; Huys, G.; Swings, J. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl. Environ. Microbiol. 2003, 69, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-G.; Johnson, T.A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Occupational Safety and Health (NIOSH). 42 CFR 84 Respiratory Protective Devices; Final Rules and Notice. Federal Register 60:110; U.S. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Morgantown, WV, USA, 1997.
- December 2019 Weather History in Statesboro. Available online: https://weatherspark.com/h/m/17830/2019/12/Historical-Weather-in-December-2019-in-Statesboro-Georgia-United-States#Figures-ColorTemperature (accessed on 14 May 2023).
- Roberts, M.C.; Schwarz, S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. J. Environ. Qual. 2016, 45, 576–592. [Google Scholar] [CrossRef]
- Tang, B.; Zheng, X.; Lin, J.; Wu, J.; Lin, R.; Jiang, H.; Ji, X.; Yang, H.; Shen, Z.; Xia, F. Prevalence of the phenicol resistance gene fexA in Campylobacter isolated from the poultry supply chain. Int. J. Food Microbiol. 2022, 381, 109912. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Ding, L.J.; Fan, M.Z. Resistance patterns and detection of aac(3)-IV gene in apramycin-resistant Escherichia coli isolated from farm animals and farm workers in northeastern of China. Res. Vet. Sci. 2009, 87, 449–454. [Google Scholar] [CrossRef]
- Mathew, A.G.; Arnett, D.B.; Cullen, P.; Ebner, P.D. Characterization of resistance patterns and detection of apramycin resistance genes in Escherichia coli isolated from swine exposed to various environmental conditions. Int. J. Food Microbiol. 2003, 89, 11–20. [Google Scholar] [CrossRef]
- Choi, J.; Rieke, E.L.; Moorman, T.B.; Soupir, M.L.; Allen, H.K.; Smith, S.D.; Howe, A. Practical implications of erythromycin resistance gene diversity on surveillance and monitoring of resistance. FEMS Microbiol. Ecol. 2018, 94, fiy006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.; He, L.Y.; Wu, D.L.; Gao, F.Z.; Zhang, M.; Zou, H.Y.; Yao, M.S.; Ying, G.G. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environ. Int. 2022, 158, 106927. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Wang, C.; Jiang, G.; Ma, J.; Li, Y.; Chen, H.; Guo, J. Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Environ. Int. 2021, 154, 106559. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Jin, L.; Luo, X.; Zhao, Z.; Li, X. Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites. Environ. Sci. Technol. Lett. 2018, 5, 74–79. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, Q.L.; Ding, J.; Wang, Y.F.; Cui, H.L.; Zhu, Y.G. Resistance genes in soil ecosystems and planetary health: Progress and prospects. Sci. China Life Sci. 2019, 49, 1652–1663. [Google Scholar] [CrossRef]
- Zammit, I.; Marano, R.B.M.; Vaiano, V.; Cytryn, E.; Rizzo, L. Changes in Antibiotic Resistance Gene Levels in Soil after Irrigation with Treated Wastewater: A Comparison between Heterogeneous Photocatalysis and Chlorination. Environ. Sci. Technol. 2020, 54, 7677–7686. [Google Scholar] [CrossRef] [PubMed]
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Sul, W.J.; Stedtfeld, T.M.; Chai, B.; Cole, J.R.; et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, A.; Banerjee, P.; Thornton, T.; Jones, D.H.; Adeoye, C.; Sherpa, S. Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols. Microorganisms 2023, 11, 1561. https://doi.org/10.3390/microorganisms11061561
Adhikari A, Banerjee P, Thornton T, Jones DH, Adeoye C, Sherpa S. Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols. Microorganisms. 2023; 11(6):1561. https://doi.org/10.3390/microorganisms11061561
Chicago/Turabian StyleAdhikari, Atin, Pratik Banerjee, Taylor Thornton, Daleniece Higgins Jones, Caleb Adeoye, and Sonam Sherpa. 2023. "Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols" Microorganisms 11, no. 6: 1561. https://doi.org/10.3390/microorganisms11061561
APA StyleAdhikari, A., Banerjee, P., Thornton, T., Jones, D. H., Adeoye, C., & Sherpa, S. (2023). Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols. Microorganisms, 11(6), 1561. https://doi.org/10.3390/microorganisms11061561