Monitoring of an Applied Beneficial Trichoderma Strain in Root-Associated Soil of Field-Grown Maize by MALDI-TOF MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trials
2.2. Isolation of Trichoderma from Root-Associated Soil
2.3. Culture of Isolates and Extraction of Proteins
2.4. Measurement of Protein Spectra by MALDI-TOF MS
2.5. Confirmation of Species Identity Using PCR-Based Method
3. Results
3.1. Agriculture Practice Affect Presence of Trichoderma Strains in Root-Associated Soil
3.2. Species Identification of Trichoderma Strains
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abad Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.R.; Brain, P.; Xu, X.M.; Jeffries, P. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: Effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 2015, 25, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [Green Version]
- Pedranzani, H.; Rodríguez-Rivera, M.; Gutiérrez, M.; Porcel, R.; Hause, B.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 2016, 26, 141–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiappero, J.; Del Rosario, S.; Cappellari, L.; Alderete, L.G.S.; Palermo, T.B.; Banchio, E. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind. Crops Prod. 2019, 139, 111553. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef]
- Ben Zineb, A.; Gargouri, M.; López-Ráez, J.A.; Trabelsi, D.; Aroca, R.; Mhamdi, R. Interaction between P fertilizers and microbial inoculants at the vegetative and flowering stage of Medicago truncatula. Plant Growth Regul. 2022, 98, 511–524. [Google Scholar] [CrossRef]
- Hannula, S.E.; Heinen, R.; Huberty, M.; Steinauer, K.; De Long, J.R.; Jongen, R.; Bezemer, T.M. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat. Commun. 2021, 12, 5686. [Google Scholar] [CrossRef]
- Massa, F.; Defez, R.; Bianco, C. Exploitation of plant growth promoting bacteria for sustainable agriculture: Hierarchical approach to link laboratory and field experiments. Microorganisms 2022, 10, 865. [Google Scholar] [CrossRef]
- Schreiter, S.; Sandmann, M.; Smalla, K.; Grosch, R. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS ONE 2014, 9, e103726. [Google Scholar] [CrossRef] [Green Version]
- Babin, D.; Deubel, A.; Jacquiod, S.; Sørensen, S.; Geistlinger, J.; Grosch, R.; Smalla, K. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biol. Biochem. 2019, 129, 17–28. [Google Scholar] [CrossRef]
- Romano, I.; Ventorino, V.; Pepe, O. Effectiveness of plant beneficial microbes: Overview of the methodological approaches for the assessment of root colonization and persistence. Front. Plant Sci. 2020, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Kandel, S.L.; Joubert, P.M.; Doty, S.L. Bacterial endophyte colonization and distribution within plants. Microorganisms 2017, 5, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiter, S.; Babin, D.; Smalla, K.; Grosch, R. Rhizosphere competence and biocontrol effect of Pseudomonas sp. Ru47 independent from plant species and soil type at the field scale. Front. Microbiol. 2018, 9, 97. [Google Scholar] [CrossRef]
- Li, D.; Tang, Y.; Lin, J.; Cai, W. Methods for genetic transformation of filamentous fungi. Microb. Cell Fact. 2017, 16, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulse, J.D. Review of comprehensive staining techniques used to differentiate arbuscular mycorrhizal fungi from plant root tissues. Acta Sci. Agric. 2018, 2, 39–44. [Google Scholar]
- Singh, S.R.; Zargar, M.Y.; Najar, G.R.; Peer, F.A.; Ishaq, M. Microbial dynamics, root colonization, and nutrient availability as influenced by inoculation of liquid bioinoculants in cultivars of apple seedlings. Commun. Soil Sci. Plant Anal. 2013, 44, 1511–1523. [Google Scholar] [CrossRef]
- Sorte, P.M.F.B.; Simoes-Araujo, J.L.; de Melo, L.H.V.; de Souza Galisa, P.; Leal, L.; Baldani, J.I.; Vera, L.D.B. Development of a real-time PCR assay for the detection and quantification of Gluconacetobacter diazotrophicus in sugarcane grown under field conditions. Afr. J. Microbiol. Res. 2014, 8, 2937–2946. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Romano, I.; Lombardi, N.; Napolitano, M.; Colla, G.; et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve n uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef] [Green Version]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Saldinger, S.S. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl. Microbiol. Biotechnol. 2018, 102, 4025–4037. [Google Scholar] [CrossRef]
- Kumar, S.; Suyal, D.C.; Bhoriyal, M.; Goel, R. Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J. Plant Nutr. 2018, 41, 1035–1046. [Google Scholar] [CrossRef]
- Ventorino, V.; Pascale, A.; Adamo, P.; Rocco, C.N.; Mori, M.; Faraco, V.; Pepe, O.; Fagnano, M. Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi. Sci. Rep. 2018, 8, 14281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, S.; Radkowski, P.; Blendowska, A.; Ludwig-Gałęzowska, A.; Łoś, J.M.; Łoś, M. The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis. Microbiology 2017, 6, e00453. [Google Scholar] [CrossRef] [Green Version]
- Eigner, U.; Holfelder, M.; Oberdorfer, K.; Betz-Wild, U.; Bertsch, D.; Fahr, A.M. Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin. Lab. 2009, 55, 289–296. [Google Scholar]
- Ilina, E.N.; Borovskaya, A.D.; Malakhova, M.M.; Vereshchagin, V.A.; Kubanova, A.A.; Kruglov, A.N. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J. Mol. Diagn. 2009, 11, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderaro, A.; Arcangeletti, M.C.; Rodighiero, I.; Buttrini, M.; Gorrini, C.; Motta, F. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep. 2014, 4, 6803. [Google Scholar] [CrossRef] [Green Version]
- Agustini, B.C.; Silva, L.P.; Bloch, C., Jr.; Bonfim, T.M.B.; da Silva, G.A. Evaluation of MALDI-TOF mass spectrometry for identification of environmental yeasts and development of supplementary database. Appl. Microbiol. Biotechnol. 2014, 98, 5645–5654. [Google Scholar] [CrossRef]
- Bonatto, C.C.; Silva, L.P. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry. J. Sci. Food Agric. 2015, 95, 1753–1756. [Google Scholar] [CrossRef]
- Mehta, A.; Silva, L.P. MALDI-TOF MS profiling approach: How much can we get from it? Front. Plant Sci. 2015, 6, 184. [Google Scholar] [CrossRef] [Green Version]
- Huschek, D.; Witzel, K. Rapid dereplication of microbial isolates using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: A mini-review. J. Adv. Res. 2019, 19, 99–104. [Google Scholar] [CrossRef]
- Djalali Farahani-Kofoet, R.; Witzel, K.; Graefe, J.; Grosch, R.; Zrenner, R. Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens 2020, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Ventura, J.A.; Costa, H.; Fernandes, P.M.B.; Lima, N. MALDI-TOF MS to identify the pineapple pathogen Fusarium guttiforme and its antagonist Trichoderma asperellum on decayed pineapple. Trop. Plant Pathol. 2015, 40, 227–232. [Google Scholar] [CrossRef]
- Adnan, M.; Waqar, I.; Shabbir, A.; Ali Khan, K.; Ghramh, H.A.; Huang, Z.; Chen, H.Y.H.; Lu, G. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb. Pathog. 2019, 129, 7–18. [Google Scholar] [CrossRef] [PubMed]
- dela Cruz, T.E.E.; Din, H.J.F.; Aril-dela Cruz, J.V. Microbes for sustainable agriculture: Isolation and identification of beneficial soil- and plant-associated microorganisms. In SEARCA Professorial Chair Lecture; Monograph No. 6; SEARCA: Los Baños, Laguna, Philippines, 2021. [Google Scholar]
- Pecundo, M.H.; dela Cruz, T.E.E.; Chen, T.; Notarte, K.I.; Ren, H.; Li, N. Diversity, phylogeny and antagonistic activity of fungal endophytes associated with endemic species of Cycas (Cycadales) in China. J. Fungi 2021, 7, 572. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Shurigin, V.; Jabborova, D.; dela Cruz, J.A.; dela Cruz, T.E.; Wirth, S.; Bellingrath, D.; Kimura, S.D.; Egamberdieva, D. The integrated effect of microbial inoculants and biochar types on soil biological properties, and plant growth of lettuce (Lactuca sativa L.). Plants 2022, 11, 423. [Google Scholar] [CrossRef]
- Deubel, A.; Hofmann, B.; Orzessek, D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil Tillage Res. 2011, 117, 85–92. [Google Scholar] [CrossRef]
- Moradtalab, N.; Ahmed, A.; Geistlinger, J.; Walker, F.; Höglinger, B.; Ludewig, U.; Neumann, G. Synergisms of microbial consortia, N Forms, and micronutrients alleviate oxidative damage and stimulate hormonal cold stress adaptations in maize. Front. Plant Sci. 2020, 11, 396. [Google Scholar] [CrossRef]
- Hafiz, F.B.; Moradtalab, N.; Goertz, S.; Rietz, S.; Dietel, K.; Rozhon, W.; Humbeck, K.; Geistlinger, J.; Neumann, G.; Schellenberg, I. Synergistic effects of a root-endophytic Trichoderma fungus and Bacillus on early root colonization and defense activation against Verticillium longisporum in rapeseed. Mol. Plant Microbe Interact. 2022, 35, 380–392. [Google Scholar] [CrossRef]
- Williams, J.; Clarkson, J.M.; Mills, P.R.; Cooper, R.M. A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Appl. Environ. Microbiol. 2003, 69, 4190–4191. [Google Scholar] [CrossRef] [Green Version]
- Meincke, R.; Weinert, N.; Radl, V.; Schloter, M.; Smalla, K.; Berg, G. Development of a molecular approach to describe the composition of Trichoderma communities. J. Microbiol. Methods 2010, 80, 63–69. [Google Scholar] [CrossRef]
- Gu, X.; Wang, R.; Sun, Q.; Wu, B.; Sun, J.Z. Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 2020, 73, 109–132. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 8, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Hinterdobler, W.; Li, G.; Spiegel, K.; Basyouni-Khamis, S.; Gorfer, M.; Schmoll, M. Trichoderma reesei isolated from Austrian soil with high potential for biotechnological application. Front. Microbiol. 2021, 12, 552301. [Google Scholar] [CrossRef]
- Liu, B.; Ji, S.; Zhang, H.; Wang, Y.; Liu, Z. Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiol. Res. 2020, 235, 126445. [Google Scholar] [CrossRef] [PubMed]
- De Padua, J.C.; dela Cruz, T.E.E. Isolation and characterization of nickel-tolerant Trichoderma strains from marine and terrestrial environments. J. Fungi 2021, 7, 591. [Google Scholar] [CrossRef] [PubMed]
- Nandini, B.; Puttaswamy, H.; Saini, R.K.; Geetha, N. Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Sci. Rep. 2021, 11, 9517. [Google Scholar] [CrossRef]
- Moron, L.S.; Lim, Y.W.; dela Cruz, T.E.E. Antimicrobial activities of crude culture extracts from mangrove fungal endophytes collected in Luzon Island, Philippines. Philipp. Sci. Lett. 2018, 11, 28–36. [Google Scholar]
- Cai, F.; Yu, G.; Wang, P.; Wei, Z.; Fu, L.; Shen, Q.; Chen, W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Biochem. 2013, 73, 106–113. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; del-Val, E.; Larsen, J. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl. Soil Ecol. 2021, 124, 45–53. [Google Scholar] [CrossRef]
- Manfredini, A.; Malusà, E.; Costa, C.; Pallottino, F.; Mocali, S.; Pinzari, F.; Canfora, L. Current methods, common practices, and perspectives in tracking and monitoring bioinoculants in soil. Front. Microbiol. 2021, 12, 698491. [Google Scholar] [CrossRef]
- Elad, Y.; Chet, I.; Henis, Y. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 1981, 9, 59–67. [Google Scholar] [CrossRef]
- Pellegrino, E.; Turrini, A.; Gamper, H.A.; Cafà, G.; Bonari, E.; Young, J.P.W.; Giovannetti, M. Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol. 2012, 194, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Thioye, B.; Van Tuinen, D.; Kane, A.; De Faria, S.M.; Ndiaye, C.; Duponnois, R.; Sylla, S.N.; Mustapha, A. Tracing Rhizophagus irregularis isolate IR27 in Ziziphus mauritiana roots under field conditions. Mycorrhiza 2019, 29, 77–83. [Google Scholar] [CrossRef] [PubMed]
Control | +BMc | |||||
---|---|---|---|---|---|---|
ID | CFU Count CFU/mL (104) | No. Isolates | ID | CFU Count CFU/mL (104) | No. Isolates | |
MP-Ext | 101 | 7.5 | 3 | 117 | 33.5 | 17 |
102 | 24.5 | 7 | 118 | 90.5 | 16 | |
103 | 22.0 | 14 | 119 | 38.5 | 23 | |
104 | 18.5 | 13 | 120 | 116.5 | 22 | |
Mean | 18.13 ± 7.5 | Mean | 69.75 ± 40.4 | |||
MP-Int | 105 | 4.5 | 13 | 121 | 112.5 | 14 |
106 | 5.5 | 11 | 122 | 261.5 | 19 | |
107 | 11.0 | 15 | 123 | 109.5 | 11 | |
108 | 11.5 | 13 | 124 | 148.0 | 20 | |
Mean | 8.13 ± 3.6 | Mean | 157.88 ± 71.3 | |||
CT-Ext | 109 | 27.5 | 14 | 125 | 122.5 | 10 |
110 | 25.0 | 15 | 126 | 188.0 | 16 | |
111 | 8.5 | 10 | 127 | 81.5 | 22 | |
112 | 13.5 | 14 | 128 | 124.5 | 13 | |
Mean | 18.63 ± 9.1 | Mean | 129.13 ± 44.0 | |||
CT-Int | 113 | 29.5 | 10 | 129 | 222.0 | 14 |
114 | 28.0 | 10 | 130 | 153.0 | 9 | |
115 | 27.0 | 9 | 131 | 111.0 | 14 | |
116 | 40.5 | 6 | 132 | 86.5 | 11 | |
Mean | 31.25 ± 6.3 | Mean | 143.13 ± 59.3 | |||
Total: | 177 | 251 |
Trichoderma sp. Depending on | Other Taxa Depending on | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatment | Total | TP | NI | Total | TP | NI | Total | TP | NI |
Control | |||||||||
MP-Ext | 14 | 16 | 20 | 23 | 73 | 70 | 37 | 89 | 90 |
MP-Int | 2 | 6 | 50 | 81 | 52 | 87 | |||
CT-Ext | 6 | 10 | 47 | 78 | 53 | 88 | |||
CT-Int | 4 | 31 | 35 | ||||||
Total | 26 | 151 | 177 | ||||||
+BMc | |||||||||
MP-Ext | 53 | 101 | 96 | 25 | 41 | 43 | 78 | 142 | 139 |
MP-Int | 48 | 83 | 16 | 29 | 64 | 112 | |||
CT-Ext | 43 | 78 | 18 | 31 | 61 | 109 | |||
CT-Int | 35 | 13 | 48 | ||||||
Total | 179 | 72 | 251 |
Duration | Estimated Cost c (In Euro) | |||
---|---|---|---|---|
Isolation and Culture | Extraction a (1 Sample) | Data Processing b (1 Sample) | Per 50 Samples | |
MALDI-TOF-based method | 1–2 weeks | 45 min | 10–15 min | 13.10 |
PCR-based method | 1–2 weeks | 45 min | 3–4 h (+2–3 days) | 484.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dela Cruz, T.E.E.; Behr, J.H.; Geistlinger, J.; Grosch, R.; Witzel, K. Monitoring of an Applied Beneficial Trichoderma Strain in Root-Associated Soil of Field-Grown Maize by MALDI-TOF MS. Microorganisms 2023, 11, 1655. https://doi.org/10.3390/microorganisms11071655
dela Cruz TEE, Behr JH, Geistlinger J, Grosch R, Witzel K. Monitoring of an Applied Beneficial Trichoderma Strain in Root-Associated Soil of Field-Grown Maize by MALDI-TOF MS. Microorganisms. 2023; 11(7):1655. https://doi.org/10.3390/microorganisms11071655
Chicago/Turabian Styledela Cruz, Thomas Edison E., Jan Helge Behr, Joerg Geistlinger, Rita Grosch, and Katja Witzel. 2023. "Monitoring of an Applied Beneficial Trichoderma Strain in Root-Associated Soil of Field-Grown Maize by MALDI-TOF MS" Microorganisms 11, no. 7: 1655. https://doi.org/10.3390/microorganisms11071655
APA Styledela Cruz, T. E. E., Behr, J. H., Geistlinger, J., Grosch, R., & Witzel, K. (2023). Monitoring of an Applied Beneficial Trichoderma Strain in Root-Associated Soil of Field-Grown Maize by MALDI-TOF MS. Microorganisms, 11(7), 1655. https://doi.org/10.3390/microorganisms11071655