Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. IEDB Analysis
2.2. TepiTool Analysis
2.3. HLA-SPREAD Analysis
3. Results
3.1. IEDB Analysis Results
3.2. HLA-SPREAD Analysis Results
3.3. TepiTool Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Available online: https://covid19.who.int (accessed on 10 May 2023).
- Arruda, H.R.S.; Lima, T.M.; Alvim, R.G.F.; Victorio, F.B.A.; Abreu, D.P.B.; Marsili, F.F.; Cruz, K.D.; Marques, M.A.; Sosa-Acosta, P.; Quinones-Vega, M.; et al. Conformational Stability of SARS-CoV-2 Glycoprotein Spike Variants. iScience 2023, 26, 105696. [Google Scholar] [CrossRef]
- Akkuzu, G.; Bes, C.; Özgür, D.; Karaalioğlu, B.; Mutlu, M.; Yıldırım, F.; Atagündüz, P.; Gündüz, A.; Soy, M. Inflammatory Rheumatic Diseases Developed after COVID-19 Vaccination: Presentation of a Case Series and Review of the Literature. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2143–2151. [Google Scholar]
- Frasca, L.; Ocone, G.; Palazzo, R. Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population. Pathogens 2023, 12, 233. [Google Scholar] [CrossRef]
- Simoncelli, E.; Conticini, E.; Colafrancesco, S.; Gattamelata, A.; Spinelli, F.R.; Garufi, C.; Truglia, S.; Grazzini, S.; Giardina, F.; Izzo, R.; et al. Multicentre Case-Control Study Evaluating the Safety of Anti-SARS-CoV-2 Vaccines in a Cohort of Patients with Systemic Vasculitis. Clin. Exp. Rheumatol. 2023, 41, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Vacchi, C.; Testoni, S.; Visentini, M.; Zani, R.; Lauletta, G.; Gragnani, L.; Filippini, D.; Mazzaro, C.; Fraticelli, P.; Quartuccio, L.; et al. COVID-19 Vaccination Rate and Safety Profile in a Multicentre Italian Population Affected by Mixed Cryoglobulinaemic Vasculitis. Clin. Exp. Rheumatol. 2022, 41, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Mohanasundaram, K.; Santhanam, S.; Natarajan, R.; Murugesan, H.; Nambi, T.; Chilikuri, B.; Nallasivan, S. COVID-19 Vaccination in Autoimmune Rheumatic Diseases: A Multi-Center Survey from Southern India. Int. J. Rheum. Dis. 2022, 25, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Flores, E.; Salcedo-Matienzo, J.; Quiroz-Alva, A.; Berrocal-Kasay, A. Side Effects and Flares Risk after SARS-CoV-2 Vaccination in Patients with Systemic Lupus Erythematosus. Clin. Rheumatol. 2022, 41, 1349–1357. [Google Scholar] [CrossRef]
- Shinjo, S.K.; de Souza, F.H.C.; Borges, I.B.P.; dos Santos, A.M.; Miossi, R.; Misse, R.G.; Medeiros-Ribeiro, A.C.; Saad, C.G.S.; Yuki, E.F.N.; Pasoto, S.G.; et al. Systemic Autoimmune Myopathies: A Prospective Phase 4 Controlled Trial of an Inactivated Virus Vaccine against SARS-CoV-2. Rheumatology 2021, 61, 3351–3361. [Google Scholar] [CrossRef]
- Furer, V.; Eviatar, T.; Zisman, D.; Peleg, H.; Paran, D.; Levartovsky, D.; Zisapel, M.; Elalouf, O.; Kaufman, I.; Meidan, R.; et al. Immunogenicity and Safety of the BNT162b2 MRNA COVID-19 Vaccine in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases and in the General Population: A Multicentre Study. Ann. Rheum. Dis. 2021, 80, 1330–1338. [Google Scholar] [CrossRef]
- Yuki, E.F.N.; Borba, E.F.; Pasoto, S.G.; Seguro, L.P.; Lopes, M.; Saad, C.G.S.; Medeiros-Ribeiro, A.C.; Silva, C.A.; de Andrade, D.C.O.; Kupa, L.D.V.K.; et al. Impact of Distinct Therapies on Antibody Response to SARS-CoV-2 Vaccine in Systemic Lupus Erythematosus. Arthritis Care Res. 2022, 74, 562–571. [Google Scholar] [CrossRef]
- Tzioufas, A.G.; Bakasis, A.D.; Goules, A.V.; Bitzogli, K.; Cinoku, I.I.; Chatzis, L.G.; Argyropoulou, O.D.; Venetsanopoulou, A.I.; Mavrommati, M.; Stergiou, I.E.; et al. A Prospective Multicenter Study Assessing Humoral Immunogenicity and Safety of the MRNA SARS-CoV-2 Vaccines in Greek Patients with Systemic Autoimmune and Autoinflammatory Rheumatic Diseases. J. Autoimmun. 2021, 125, 102743. [Google Scholar] [CrossRef] [PubMed]
- Shoenfeld, Y.; Aron-Maor, A. Vaccination and Autoimmunity-“Vaccinosis”: A Dangerous Liaison? J. Autoimmun. 2000, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghodke, Y.; Joshi, K.; Chopra, A.; Patwardhan, B. HLA and Disease. Eur. J. Epidemiol. 2005, 20, 475–488. [Google Scholar] [CrossRef]
- Bodis, G.; Toth, V.; Schwarting, A. Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases. Rheumatol. Ther. 2018, 5, 5–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, Y.; Shoenfeld, Y. Vaccine-Induced Autoimmunity: The Role of Molecular Mimicry and Immune Crossreaction. Cell. Mol. Immunol. 2018, 15, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Lin, X.; Fu, B.; Xiong, Y.; Zaky, M.Y.; Wu, H. Functional Studies of HLA and Its Role in SARS-CoV-2: Stimulating T Cell Response and Vaccine Development. Life Sci. 2023, 315, 121374. [Google Scholar] [CrossRef]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 Update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [Green Version]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Paul, S.; Sidney, J.; Sette, A.; Peters, B. TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates. Curr. Protoc. Immunol. 2016, 2016, 18.19.1–18.19.24. [Google Scholar] [CrossRef] [Green Version]
- Dholakia, D.; Kalra, A.; Misir, B.R.; Kanga, U.; Mukerji, M. HLA-SPREAD: A Natural Language Processing Based Resource for Curating HLA Association from PubMed Abstracts. BMC Genom. 2022, 23, 10. [Google Scholar] [CrossRef]
- Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Güler, A.; et al. BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2. Nature 2021, 592, 283–289. [Google Scholar] [CrossRef]
- Hatano, H.; Ishigaki, K. Functional Genetics to Understand the Etiology of Autoimmunity. Genes 2023, 14, 572. [Google Scholar] [CrossRef]
- Talotta, R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms 2022, 10, 2452. [Google Scholar] [CrossRef]
- Lani, R.; Senin, N.A.; AbuBakar, S.; Hassandarvish, P. Knowledge of SARS-CoV-2 Epitopes and Population HLA Types is Important in the Design of COVID-19 Vaccines. Vaccines 2022, 10, 1606. [Google Scholar] [CrossRef]
- Takenaka, M.C.; Robson, S.; Quintana, F.J. Regulation of the T Cell Response by CD39. Trends Immunol. 2016, 37, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Loretelli, C.; Pastore, I.; Lunati, M.E.; Abdelsalam, A.; Usuelli, V.; Assi, E.; Fiorina, E.; Loreggian, L.; Balasubramanian, H.B.; Xie, Y.; et al. EATP and Autoimmune Diabetes. Pharmacol. Res. 2023, 190, 106709. [Google Scholar] [CrossRef] [PubMed]
- Roszek, K.; Czarnecka, J. Is Ecto-Nucleoside Triphosphate Diphosphohydrolase (NTPDase)-Based Therapy of Central Nervous System Disorders Possible? Mini Rev. Med. Chem. 2015, 15, 5–20. [Google Scholar] [CrossRef]
- Yano, M.; Morioka, T.; Natsuki, Y.; Sasaki, K.; Kakutani, Y.; Ochi, A.; Yamazaki, Y.; Shoji, T.; Emoto, M. New-Onset Type 1 Diabetes after COVID-19 MRNA Vaccination. Intern. Med. 2022, 61, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Narita, D.; Saito, N.; Ueno, T.; Sato, R.; Niitsuma, S.; Takahashi, K.; Arihara, Z. Type 1 Diabetes Mellitus Following COVID-19 RNA-Based Vaccine. J. Diabetes Investig. 2022, 13, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Morioka, T.; Okada, N.; Natsuki, Y.; Kakutani, Y.; Ochi, A.; Yamazaki, Y.; Shoji, T.; Ohmura, T.; Emoto, M. New-Onset Fulminant Type 1 Diabetes after Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination: A Case Report. J. Diabetes Investig. 2022, 13, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Lind, A.L.; Emami Khoonsari, P.; Sjödin, M.; Katila, L.; Wetterhall, M.; Gordh, T.; Kultima, K. Spinal Cord Stimulation Alters Protein Levels in the Cerebrospinal Fluid of Neuropathic Pain Patients: A Proteomic Mass Spectrometric Analysis. Neuromodulation 2016, 19, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Valko, P.O.; Roschitzki, B.; Faigle, W.; Grossmann, J.; Panse, C.; Biro, P.; Dambach, M.; Spahn, D.R.; Weller, M.; Martin, R.; et al. In Search of Cerebrospinal Fluid Biomarkers of Fatigue in Multiple Sclerosis: A Proteomics Study. J. Sleep Res. 2019, 28, e12721. [Google Scholar] [CrossRef]
- Garg, R.K.; Paliwal, V.K. Spectrum of Neurological Complications following COVID-19 Vaccination. Neurol. Sci. 2021, 43, 3–40. [Google Scholar] [CrossRef]
- Habib, A.M.; Matsuyama, A.; Okorokov, A.L.; Santana-Varela, S.; Bras, J.T.; Aloisi, A.M.; Emery, E.C.; Bogdanov, Y.D.; Follenfant, M.; Gossage, S.J.; et al. A Novel Human Pain Insensitivity Disorder Caused by a Point Mutation in ZFHX2. Brain 2018, 141, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Doyon, Y.; Selleck, W.; Lane, W.S.; Tan, S.; Côté, J. Structural and Functional Conservation of the NuA4 Histone Acetyltransferase Complex from Yeast to Humans. Mol. Cell. Biol. 2004, 24, 1884–1896. [Google Scholar] [CrossRef] [Green Version]
- Sosicka, P.; Bazan, B.; Maszczak-Seneczko, D.; Shauchuk, Y.; Olczak, T.; Olczak, M. SLC35A5 Protein—A Golgi Complex Member with Putative Nucleotide Sugar Transport Activity. Int. J. Mol. Sci. 2019, 20, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollina, E.A.; Gilliam, D.T.; Landau, A.T.; Lin, C.; Pajarillo, N.; Davis, C.P.; Harmin, D.A.; Yap, E.-L.; Vogel, I.R.; Griffith, E.C.; et al. A NPAS4–NuA4 Complex Couples Synaptic Activity to DNA Repair. Nature 2023, 614, 732–741. [Google Scholar] [CrossRef]
- Astbury, S.; Reynolds, C.J.; Butler, D.K.; Muñoz-Sandoval, D.C.; Lin, K.M.; Pieper, F.P.; Otter, A.; Kouraki, A.; Cusin, L.; Nightingale, J.; et al. HLA-DR Polymorphism in SARS-CoV-2 Infection and Susceptibility to Symptomatic COVID-19. Immunology 2022, 166, 68–77. [Google Scholar] [CrossRef]
- Sacco, K.; Castagnoli, R.; Vakkilainen, S.; Liu, C.; Delmonte, O.M.; Oguz, C.; Kaplan, I.M.; Alehashemi, S.; Burbelo, P.D.; Bhuyan, F.; et al. Immunopathological Signatures in Multisystem Inflammatory Syndrome in Children and Pediatric COVID-19. Nat. Med. 2022, 28, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Bertinetto, F.E.; Magistroni, P.; Mazzola, G.A.; Costa, C.; Elena, G.; Alizzi, S.; Scozzari, G.; Migliore, E.; Galassi, C.; Ciccone, G.; et al. The Humoral and Cellular Response to MRNA SARS-CoV-2 Vaccine is Influenced by HLA Polymorphisms. HLA 2023. ahead of print. [Google Scholar] [CrossRef]
- Higuchi, T.; Oka, S.; Furukawa, H.; Tohma, S. Associations of HLA Polymorphisms with Anti-SARS-CoV-2 Spike and Neutralizing Antibody Titers in Japanese Rheumatoid Arthritis Patients Vaccinated with BNT162b2. Vaccines 2023, 11, 404. [Google Scholar] [CrossRef] [PubMed]
- Romero-López, J.P.; Carnalla-Cortés, M.; Pacheco-Olvera, D.L.; Ocampo-Godínez, J.M.; Oliva-Ramírez, J.; Moreno-Manjón, J.; Bernal-Alferes, B.; López-Olmedo, N.; García-Latorre, E.; Domínguez-López, M.L.; et al. A Bioinformatic Prediction of Antigen Presentation from SARS-CoV-2 Spike Protein Revealed a Theoretical Correlation of HLA-DRB1*01 with COVID-19 Fatality in Mexican Population: An Ecological Approach. J. Med. Virol. 2021, 93, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Pisanti, S.; Deelen, J.; Gallina, A.M.; Caputo, M.; Citro, M.; Abate, M.; Sacchi, N.; Vecchione, C.; Martinelli, R. Correlation of the Two Most Frequent HLA Haplotypes in the Italian Population to the Differential Regional Incidence of COVID-19. J. Transl. Med. 2020, 18, 352. [Google Scholar] [CrossRef] [PubMed]
- Nakafero, G.; Grainge, M.J.; Card, T.; Mallen, C.D.; Nguyen Van-Tam, J.S.; Williams, H.C.; Abhishek, A. Is Vaccination against COVID-19 Associated with Autoimmune Rheumatic Disease Flare? A Self-Controlled Case Series Analysis. Rheumatology 2023, 62, 1445–1450. [Google Scholar] [CrossRef]
- Mahil, S.K.; Bechman, K.; Raharja, A.; Domingo-Vila, C.; Baudry, D.; Brown, M.A.; Cope, A.P.; Dasandi, T.; Graham, C.; Khan, H.; et al. Humoral and Cellular Immunogenicity to a Second Dose of COVID-19 Vaccine BNT162b2 in People Receiving Methotrexate or Targeted Immunosuppression: A Longitudinal Cohort Study. Lancet Rheumatol. 2022, 4, e42–e52. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; Winthrop, K.; Emery, P. COVID-19 Vaccination and Antirheumatic Therapy. Rheumatology 2021, 60, 3496–3502. [Google Scholar] [CrossRef]
- Huang, J.; Hou, S.; An, J.; Zhou, C. In-Depth Characterization of Protein N-Glycosylation for a COVID-19 Variant-Design Vaccine Spike Protein. Anal. Bioanal. Chem. 2023, 415, 1455–1464. [Google Scholar] [CrossRef]
- Al-Fattah Yahaya, A.A.; Khalid, K.; Lim, H.X.; Poh, C.L. Development of Next Generation Vaccines against SARS-CoV-2 and Variants of Concern. Viruses 2023, 15, 624. [Google Scholar] [CrossRef]
- Chen, L.C.; Nersisyan, S.; Wu, C.J.; Chang, C.M.; Tonevitsky, A.; Guo, C.L.; Chang, W.C. On the Peptide Binding Affinity Changes in Population-Specific HLA Repertoires to the SARS-CoV-2 Variants Delta and Omicron. J. Autoimmun. 2022, 133, 102952. [Google Scholar] [CrossRef]
- Nersisyan, S.A.; Shkurnikov, M.Y.; Zhiyanov, A.P.; Novosad, V.O.; Tonevitsky, A.G. Differences in Presentation of SARS-CoV-2 Omicron Strain Variant BA.1–BA.5 Peptides by HLA Molecules. Dokl. Biochem. Biophys. 2022, 507, 298–301. [Google Scholar] [CrossRef]
- Gutiérrez-Bautista, J.F.; Sampedro, A.; Gómez-Vicente, E.; Rodríguez-Granger, J.; Reguera, J.A.; Cobo, F.; Ruiz-Cabello, F.; López-Nevot, M.Á. HLA Class II Polymorphism and Humoral Immunity Induced by the SARS-CoV-2 MRNA-1273 Vaccine. Vaccines 2022, 10, 402. [Google Scholar] [CrossRef]
Antigen Name | Antigen IRI | Organism Name | Organism IRI | Epitopes (n°) | Assays (n°) | References (n°) |
---|---|---|---|---|---|---|
Envelope glycoprotein gp62 | http://www.uniprot.org/uniprot/P03381, accessed on 7 May 2023 | Primate T-lymphotropic virus 1 | http://purl.obolibrary.org/obo/NCBITaxon_1944, accessed on 7 May 2023 | 7 | 23 | 12 |
Spike glycoprotein | http://www.uniprot.org/uniprot/P59594, accessed on 7 May 2023 | SARS-CoV1 | https://ontology.iedb.org/taxon/10002316, accessed on 7 May 2023 | 913 | 1624 | 62 |
Genome polyprotein | http://www.uniprot.org/uniprot/P27958, accessed on 7 May 2023 | HCV | http://purl.obolibrary.org/obo/NCBITaxon_1110, accessed on 7 May 2023 | 1 | 4 | 1 |
Solute carrier family 35 member G2 | http://www.uniprot.org/uniprot/Q8TBE7, accessed on 7 May 2023 | Homo sapiens | http://purl.obolibrary.org/obo/NCBITaxon_9606, accessed on 7 May 2023 | 1 | 1 | 1 |
Ectonucleoside triphosphate diphosphohydrolase 1 (UniProt:P49961) | http://www.uniprot.org/uniprot/P49961, accessed on 7 May 2023 | Homo sapiens | http://purl.obolibrary.org/obo/NCBITaxon_9606, accessed on 7 May 2023 | 4 | 11 | 9 |
Neural cell adhesion molecule L1-like protein (UniProt:O00533) | http://www.uniprot.org/uniprot/O00533, accessed on 7 May 2023 | Homo sapiens | http://purl.obolibrary.org/obo/NCBITaxon_9606, accessed on 7 May 2023 | 2 | 3 | 3 |
Chromatin modification-related protein MEAF6 (UniProt:Q9HAF1) | http://www.uniprot.org/uniprot/Q9HAF1, accessed on 7 May 2023 | Homo sapiens | http://purl.obolibrary.org/obo/NCBITaxon_9606, accessed on 7 May 2023 | 2 | 2 | 2 |
Spike glycoprotein | http://www.uniprot.org/uniprot/Q3LZX1, accessed on 7 May 2023 | Other SARS | https://ontology.iedb.org/taxon/10002383, accessed on 7 May 2023 | 116 | 163 | 2 |
Other SARS-CoV1 protein | https://ontology.iedb.org/taxon-protein/10002316-other, accessed on 7 May 2023 | SARS-CoV1 | https://ontology.iedb.org/taxon/10002316, accessed on 7 May 2023 | 18 | 35 | 1 |
Other SARS protein | https://ontology.iedb.org/taxon-protein/10002383-other, accessed on 7 May 2023 | Other SARS | https://ontology.iedb.org/taxon/10002383, accessed on 7 May 2023 | 3 | 6 | 1 |
Spike glycoprotein | http://www.uniprot.org/uniprot/A0A140H1H1, accessed on 7 May 2023 | Human coronavirus HKU1 | http://purl.obolibrary.org/obo/NCBITaxon_2900, accessed on 7 May 2023 | 3 | 3 | 2 |
Replicase polyprotein 1ab | http://www.uniprot.org/uniprot/K9N7C7, accessed on 7 May 2023 | MERS-related coronavirus | http://purl.obolibrary.org/obo/NCBITaxon_1335, accessed on 7 May 2023 | 4 | 4 | 1 |
Spike glycoprotein | http://www.uniprot.org/uniprot/K9N5Q8, accessed on 7 May 2023 | MERS-related coronavirus | http://purl.obolibrary.org/obo/NCBITaxon_1335, accessed on 7 May 2023 | 32 | 59 | 2 |
Spike glycoprotein | http://www.uniprot.org/uniprot/P0DTC2, accessed on 7 May 2023 | SARS-CoV2 | http://purl.obolibrary.org/obo/NCBITaxon_2697049, accessed on 7 May 2023 | 4432 | 14837 | 225 |
Replicase polyprotein 1ab | http://www.uniprot.org/uniprot/P0C6X7, accessed on 7 May 2023 | SARS-CoV1 | https://ontology.iedb.org/taxon/10002316, accessed on 7 May 2023 | 9 | 9 | 1 |
Spike glycoprotein | http://www.uniprot.org/uniprot/A0A0P0G321, accessed on 7 May 2023 | Human coronavirus NL63 | http://purl.obolibrary.org/obo/NCBITaxon_2779, accessed on 7 May 2023 | 1 | 5 | 2 |
Spike glycoprotein | http://www.uniprot.org/uniprot/A0A0P0K6L9, accessed on 7 May 2023 | Human coronavirus 229E | http://purl.obolibrary.org/obo/NCBITaxon_11137, accessed on 7 May 2023 | 1 | 8 | 2 |
Spike protein | http://www.uniprot.org/uniprot/F1DB20, accessed on 7 May 2023 | Chaerephon bat coronavirus/Kenya/KY22/2006 | http://purl.obolibrary.org/obo/NCBITaxon_9839, accessed on 7 May 2023 | 1 | 4 | 1 |
Zinc finger homeobox protein 2 | http://www.uniprot.org/uniprot/Q9C0A1, accessed on 7 May 2023 | Homo sapiens | http://purl.obolibrary.org/obo/NCBITaxon_9606, accessed on 7 May 2023 | 1 | 1 | 1 |
Spike glycoprotein | http://www.uniprot.org/uniprot/A0A059VFK8, accessed on 7 May 2023 | Porcine epidemic diarrhea virus | http://purl.obolibrary.org/obo/NCBITaxon_2829, accessed on 7 May 2023 | 3 | 6 | 1 |
Spike glycoprotein | http://www.uniprot.org/uniprot/A0A060A825, accessed on 7 May 2023 | Coronavirus HKU15 | http://purl.obolibrary.org/obo/NCBITaxon_1965089, accessed on 7 May 2023 | 2 | 7 | 2 |
Epitope | Source Molecule | MHC Type Presentation | Antigen Processing | Assay |
---|---|---|---|---|
FEMTLPFQQF | ENTPD1 | HLA class I-bound peptides were isolated from human C1R B cell lines (stably expressing B27, B39, or B40) using immunoaffinity chromatography and analyzed with DDA on an Orbitrap-XL mass spectrometer | cellular MHC/mass spectrometry | |
MYGNIIRGW | chromosome 1 open reading frame 149, isoform CRA_c | secreted MHC/mass spectrometry | ||
LPFQQFEI | ENTPD1 isoform 2 | HLA-B*51:01 expressing 721.221 cells were used as the source for the HLA molecule | cellular MHC/mass spectrometry | |
TLPFQQFEI | ENTPD1 isoform 7 | cellular MHC/mass spectrometry | ||
LPFQQFEI | ENTPD1 isoform 7 | cellular MHC/mass spectrometry | ||
LPFQQFEI | ENTPD1 isoform 1 | CIR B cells were transfected with a single HLA-A (A*01:01, A*02:03, A*02:04, A*02:07, A*03:01, A*24:02, A*31:01, or A*68:02) or HLA-B allele (B*07:02, B*08:01, B*15:02, B*27:05, B*44:02, B*51:01, B*57:01, B*57:03, or B*58:01). HLA–peptide complexes were immunoaffinity purified from cell lysates using anti-HLA class I mAb W6/32. Bound complexes were acid-eluted and the peptide ligands were isolated and analyzed using LC-MS/MS | cellular MHC/mass spectrometry | |
FEMTLPFQQF | ENTPD1 isoform 1 | Stable C1R transfectants expressing HLA-B*40:02 were used for immunopeptidomics studies. The cells were either wild-type or ERAP2 knockouts | cellular MHC/mass spectrometry | |
LPFQQFEI | ENTPD1 isoform 1 | cellular MHC/mass spectrometry | ||
TLPFQQFEI | ENTPD1 | The HLA class I-deficient B721.221 cell line was transfected with the HLA allele expression vectors for single-HLA alleles | mass spectrometry | |
LPFQQFEI | ENTPD1 | The HLA class I-deficient B721.221 cell line was transfected with the HLA allele expression vectors for single-HLA alleles | mass spectrometry | |
TKRFEMTLPFQQFE | ENTPD1 | cellular MHC/mass spectrometry | ||
KPQSAVYSTGSNGIL | CHL1 | cellular MHC/mass spectrometry | ||
TAAFLGVYYALDK | SLC35G2 | cellular MHC/mass spectrometry | ||
LEDTQMYGNIIRGWDRYLTNQKNSN | chromatin modification-related protein MEAF6 | HLA-A*24:02; HLA-A*25:01; HLA-B*18:01; HLA-B*41:01; HLA-C*12:03; HLA-C*17:01; HLA-DPA1*01:03/DPB1*02:01; HLA-DPA1*01:03/DPB1*09:01; HLA-DPA1*02:01/DPB1*02:01; HLA-DPA1*02:01/DPB1*09:01; HLA-DQA1*01:02/DQB1*02:02; HLA-DQA1*01:02/DQB1*06:02; HLA-DQA1*03:03/DQB1*02:02; HLA-DQA1*03:03/DQB1*06:02; HLA-DRB1*04:05; HLA-DRB1*15:01; HLA-DRB4*01:03; HLA-DRB5*01:01 | cellular MHC/mass spectrometry | |
KPQSAVYSTGSNGILL | CHL1 | HLA-A*24:02; HLA-A*30:01; HLA-B*13:02; HLA-B*35:08; HLA-C*04:01; HLA-C*06:02; HLA-DPA1*01:03/DPB1*03:01; HLA-DPA1*01:03/DPB1*04:02; HLA-DQA1*02:01/DQB1*02:02; HLA-DRB1*07:01; HLA-DRB4*01:03 | cellular MHC/mass spectrometry | |
FEMTLPFQQF | ENTPD1 | C1R cells modified to express HLA-B*15:02 were treated with carbamazepine | cellular MHC/mass spectrometry | |
PPEAEVQALILLDEE | ZFHX2 | HLA-DRB1*11:01; HLA-DRB1*15:01; HLA-DQB1*03:01; HLA-DQB1*06:02; HLA-DPB1*01:01; HLA-DPB1*04:01 | Resected human lung parenchymal tissues from three donors were either mock-infected with UV-inactivated influenza or infected with A/H3N2/Wisconsin/67/2005 or A/X-31 H3N2, and then subjected to ligand elution | cellular MHC/mass spectrometry |
KPQSAVYSTGSNGIL | CHL1 | HLA-DRB1*07:01; HLA-DRB4*01:03 | cellular MHC/mass spectrometry |
Epitope | Human Protein | HLA-Presenting Molecule | Associated Disease | Ethnic Group |
---|---|---|---|---|
LEDTQMYGNIIRGWDRYLTNQKNSN | MEAF6 | HLA-A*24:02 | arthritis | Basque |
HLA-A*25:01 | / | / | ||
HLA-B*18:01 | psoriatic arthritis, psoriasis, type 1 diabetes | NA | ||
HLA-B*41:01 | / | / | ||
HLA-C*12:03 | / | / | ||
HLA-C*17:01 | / | / | ||
HLA-DPA1*01:03/DPB1*02:01 | / | / | ||
HLA-DPA1*01:03/DPB1*09:01 | systemic sclerosis | Japanese | ||
HLA-DPA1*02:01/DPB1*02:01 | / | / | ||
HLA-DPA1*02:01/DPB1*09:01 | / | / | ||
HLA-DQA1*01:02/DQB1*02:02 | multiple sclerosis | Caucasian | ||
psoriasis | Croatian | |||
systemic lupus erythematosus | Mexican American | |||
type 1 diabetes | NA | |||
Crohn’s disease | Japanese | |||
primary biliary cirrhosis | Japanese | |||
celiac disease | Japanese | |||
HLA-DQA1*01:02/DQB1*06:02 | as above except for celiac disease | |||
HLA-DQA1*03:03/DQB1*02:02 | Graves’ disease | Japanese | ||
celiac disease | Japanese | |||
type 1 diabetes | NA | |||
HLA-DQA1*03:03/DQB1*06:02 | Graves’ disease | Japanese | ||
multiple sclerosis | Cantonese, Caucasian, and African Brazilian | |||
systemic lupus erythematosus | Mexican American | |||
type 1 diabetes | NA | |||
sarcoidosis | Caucasian | |||
HLA-DRB1*04:05 | optic neuritis | NA | ||
autoimmune disease | Tunisian | |||
HLA-DRB1*15:01 | multiple sclerosis | African American, Caucasian, Australian, and Israeli | ||
anti-gbm disease | Chinese and Japanese | |||
uveitis | Japanese | |||
rheumatoid arthritis | NA | |||
type 1 diabetes | NA | |||
systemic lupus erythematosus | Mexican American | |||
sarcoidosis | NA | |||
HLA-DRB4*01:03 | / | / | ||
HLA-DRB5*01:01 | autoimmune disease | NA | ||
multiple sclerosis | Caucasian | |||
KPQSAVYSTGSNGILL | CHL1 | HLA-A*24:02 | arthritis | Basque |
HLA-A*30:01 | / | / | ||
HLA-B*13:02 | / | / | ||
HLA-B*35:08 | / | / | ||
HLA-C*04:01 | pemphigus vulgaris | Iranian | ||
HLA-C*06:02 | psoriasis | Korean, Croatian, Caucasian, Chinese, Jew, Spanish, and Swedish | ||
ankylosing spondylitis | NA | |||
polyarthritis | NA | |||
psoriatic arthritis | NA | |||
pemphigus vulgaris | Iranian | |||
vitiligo | Chinese | |||
HLA-DPA1*01:03/DPB1*03:01 | iridocyclitis | NA | ||
ankylosing spondylitis | NA | |||
arthritis | Caucasian | |||
pulmonary fibrosis | Korean | |||
type 1 diabetes | NA | |||
HLA-DPA1*01:03/DPB1*04:02 | type 1 diabetes | NA | ||
HLA-DQA1*02:01/DQB1*02:02 | type 1 diabetes | NA | ||
HLA-DRB1*07:01 | / | / | ||
HLA-DRB4*01:03 | / | / | ||
PPEAEVQALILLDEE | ZHX2 | HLA-DRB1*11:01 | Lyme arthritis | NA |
colitis | NA | |||
psoriasis | Iraqi | |||
HLA-DRB1*15:01 | multiple sclerosis | African American, Caucasian, Australian, and Israeli | ||
anti-gbm disease | Chinese and Japanese | |||
uveitis | Japanese | |||
rheumatoid arthritis | NA | |||
type 1 diabetes | NA | |||
systemic lupus erythematosus | Mexican American | |||
sarcoidosis | NA | |||
HLA-DQB1*03:01 | colitis | NA | ||
reactive arthritis | NA | |||
pemphigus vulgaris | Non-Jewish | |||
systemic sclerosis | NA | |||
vitiligo | Italian | |||
HLA-DQB1*06:02 | multiple sclerosis | Cantonese, African, Brazilian, and Caucasian | ||
type 1 diabetes | NA | |||
systemic lupus erythematosus | Mexican American | |||
sarcoidosis | Caucasian | |||
HLA-DPB1*01:01 | celiac disease | NA, Italian | ||
Graves’ disease | NA | |||
HLA-DPB1*04:01 | Takayasu arteritis, type 1 diabetes | Japanese | ||
anti-gbm disease | Chinese | |||
type 1 diabetes | Saudi Arabian |
Cross-Reactive Antigen | Peptide Start | Peptide End | Peptide | Consensus Percentile Rank | Allele/Haplotype |
---|---|---|---|---|---|
MEAF6 | 6 | 14 | MYGNIIRGW | 0.1 | HLA-A*24:02 |
9 | 17 | NIIRGWDRY | 0.46 | HLA-A*25:01 | |
10 | 18 | IIRGWDRYL | 0.94 | HLA-C*12:03 | |
8 | 22 | GNIIRGWDRYLTNQK | 0.07 | HLA-DPA1*01:03/DPB1*02:01 | |
1 | 15 | LEDTQMYGNIIRGWD | 0.004 | HLA-DPA1*01:03/DPB1*02:01 | |
1 | 15 | LEDTQMYGNIIRGWD | 0.31 | HLA-DQA1*01:02/DQB1*06:02 | |
8 | 22 | GNIIRGWDRYLTNQK | 0.03 | HLA-DQA1*01:02/DQB1*06:02 | |
8 | 22 | GNIIRGWDRYLTNQK | 0.01 | HLA-DRB1*04:05 | |
1 | 15 | LEDTQMYGNIIRGWD | 0.005 | HLA-DRB1*04:05 | |
8 | 22 | GNIIRGWDRYLTNQK | 0.28 | HLA-DRB1*15:01 | |
1 | 15 | LEDTQMYGNIIRGWD | 0.13 | HLA-DRB1*15:01 | |
CHL1 | 6 | 14 | VYSTGSNGI | 0.31 | HLA-A*24:02 |
2 | 16 | PQSAVYSTGSNGILL | 0.75 | HLA-DRB1*07:01 | |
ZHX2 | 1 | 15 | PPEAEVQALILLDEE | 0.002 | HLA-DRB1*11:01 |
1 | 15 | PPEAEVQALILLDEE | 0.004 | HLA-DRB1*15:01 |
Author, Year | Ethnic Group | Number of Patients or Samples | HLA Allele | Outcome |
---|---|---|---|---|
Astbury et al., 2022 [39] | UK cohort of European and non-European descendance | 1364 | HLA-DRB1*13:02 | Symptomatic COVID-19 |
HLA-DRB1*15:02 | Less T-cell responsiveness to both SARS-CoV-2 spike and nucleoprotein | |||
HLA-DRB1*04:04 HLA-DRB1*07:01 | Lower anti-spike antibody titer in previously infected individuals receiving one single dose of BNT-162b2 vaccine | |||
HLA-DRB1*03:01 | Higher anti-spike antibody titer in previously infected individuals receiving one single dose of BNT-162b2 vaccine | |||
HLA-DRB1*15:01 | 4–6-fold enhancement of anti-spike T-cell response in previously infected individuals receiving one or two doses of BNT-162b2 vaccine | |||
Sacco et al., 2022 [40] | US | 262 | HLA-A*02 | Higher risk of MIS-C in SARS-CoV-2-infected children |
HLA-B*35 | ||||
HLA-C*04 | ||||
Bertinetto et al., 2023 [41] | Italian | 416 | HLA-A*03:01 HLA-B*40:02 HLA-DPB1*06:01 | Higher anti-spike humoral response in BNT-162b2 vaccine-recipients |
HLA-A*24:02 HLA-B*08:01 HLA-C*07:01 | Lower anti-spike humoral response in BNT-162b2 vaccine-recipients | |||
HLA-DRB1*15:01 HLA-DRB1*13:02 | Higher anti-spike T-cell response in BNT-162b2 vaccine-recipients | |||
HLA-DRB1*11:04 | Lower anti-spike T-cell response in BNT-162b2 vaccine-recipients | |||
Higuchi et al., 2023 [42] | Japanese | 87 | HLA-DRB1*12:01 HLA-DQB1*03:01 | Higher humoral response in RA patients vaccinated with BNT-162b2 mRNA formulation |
HLA-DRB1*15:01 HLA-DQB1*06:02 | Higher production of neutralizing antibodies in RA patients vaccinated with BNT-162b2 mRNA formulation | |||
Romero-Lopez et al., 2021 [43] | Mexican | 5840 | HLA-DRB1*01 | Lower rate of COVID-19 fatal cases in carriers of this HLA allele |
Pisanti et al. 2020 [44] | Italian | 104,135 | HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g | Higher COVID-19 morbidity and mortality rates among inhabitants of northern regions of Italy |
HLA-A*02:01g-B*18:01g-C*07:01g-DRB1*11:04g | Lower COVID-19 morbidity and mortality rates among inhabitants of southern regions of Italy |
Author, Country, Year | Type of Study | Population | Disease | Type of Vaccine Administered | Results |
---|---|---|---|---|---|
Simoncelli et al., Italy, 2023 [5] | multicenter case–control study | 107 patients and 107 HCs | systemic vasculitis | mRNA or viral vector vaccine | Only one flare of microscopic polyangiitis after the 1st dose of mRNA vaccine reported; no significant differences between patients and HCs in the rate of AEs in the other cases |
Vacchi et al., Italy, 2022 [6] | multicenter retrospective study | 416 patients (92.3% of whom were vaccinated) | mixed cryoglobulinaemic vasculitis | mRNA or viral vector vaccine | Mild and self-limiting AEs recorded in 31.7% of cases; vasculitis flares recorded in 5.3% of patients mainly suffering from peripheral neuropathy or skin vasculitis |
Mohanasundaram et al., India, 2022 [7] | multicenter, cross-sectional study | 2092 patients (61.8% of whom were vaccinated) | miscellaneous | viral vector and inactivated SARS-CoV-2 vaccine | AEs reported in 33.64% of vaccine recipients, being mainly fever and myalgia; disease flares following vaccination reported in 2.47% of recipients |
Yuki et al., Brazil, 2022 [11] | prospective controlled study | 232 SARS-CoV-2-naive SLE patients and 58 SARS-CoV-2-naive HCs | SLE | inactivated SARS-CoV-2 vaccine | Arthralgia after the first dose more common in SLE pts vs. controls (14.7% vs. 3.4%); myalgia after the second dose less common in SLE pts vs. controls (6.5% vs. 15.5%); SLE flares reported in 4.7% of the patients after full immunization; no worsening of SLEDAI-2K score up to 3 months after full vaccination |
Zavala-Flores et al., Peru, 2022 [8] | descriptive observational study | 100 patients | SLE | mRNA vaccine | AEs reported in 92.2% of vaccinated patients, being mostly local and of mild intensity; 27 post-vaccination flares (arthritis and skin rashes); the use of hydroxychloroquine and a history of renal disease were associated with a lower risk of presenting post-vaccination flare |
Tzioufas et al., Greece, 2021 [12] | prospective multicenter study | 605 patients and 116 HCs | systemic autoimmune and autoinflammatory rheumatic diseases | mRNA vaccine | Clinical deterioration observed by clinicians in 10.57% patients; self-reported disease worsening in 15% of patients; similar rate of mild AEs between patients and HCs |
Shinjo et al., Brazil, 2022 [9] | prospective controlled study | 53 patients and 106 HCs | idiopathic inflammatory myopathies | inactivated SARS-CoV-2 vaccine | Similar frequencies of AEs between patients and HCs |
Furer et al., Israel, 2022 [10] | multicenter observational study | 710 patients and 124 HCs | miscellaneous | mRNA vaccine | Similar prevalence rate of mild AEs in patients and controls; stable disease activity scores following vaccination; 2 cases of death, 6 cases of non-disseminated herpes zoster infection, 2 cases of uveitis, and 1 case of pericarditis occurring in vaccinated patients |
Nakafero et al., 2023, UK [45] | self-controlled case series | 3554 patients | miscellaneous | mRNA or viral vector vaccine | No disease flares recorded after vaccination |
Mahil et al., 2022, UK [46] | longitudinal cohort study | 67 patients and 15 HCs | PsO | BNT-162b2 mRNA vaccine | PsO flare in 12% of patients; T-cell responses recorded in a lower percentage of immunosuppressed patients compared with controls |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talotta, R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023, 11, 1686. https://doi.org/10.3390/microorganisms11071686
Talotta R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms. 2023; 11(7):1686. https://doi.org/10.3390/microorganisms11071686
Chicago/Turabian StyleTalotta, Rossella. 2023. "Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis" Microorganisms 11, no. 7: 1686. https://doi.org/10.3390/microorganisms11071686
APA StyleTalotta, R. (2023). Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms, 11(7), 1686. https://doi.org/10.3390/microorganisms11071686