Management of Complex Infections in Hemophagocytic Lymphohistiocytosis in Adults
Abstract
:1. Introduction
1.1. Definition and Classification of HLH
1.2. Definition and Classification of Complex Infections
1.3. Reasons for the High Prevalence of Complex Infections in HLH
1.4. Dilemmas in the Diagnosis and Treatment of Complex Infections in HLH
2. Current Status of Complex Infections in HLH
3. Diagnosis and Differential Diagnosis of Complex Infections in HLH
3.1. Diagnosis of Complex Infections in HLH
3.2. Differential Diagnosis of Complex Infections in HLH
4. Treatment of Complex Infection in HLH
4.1. Initial Treatment: Empirical Broad-Spectrum Antibiotic Therapy Is Recommended as Soon as Possible after Identification of the Infection; Narrow the Scope of Empirical Therapy Once the Pathogen Is Identified; and Select the Appropriate Dosage Based on Drug Metabolism and Pharmacokinetic Characteristics
4.2. Patients with Septic Shock or Neutropenia in HLH Should Be Treated Empirically with a Combination of the Most Likely Pathogens at the Time of the First Anti-Infective Dose
4.3. Patients with Septic Shock or Neutropenia in HLH Should Emphasize Early Downgrading When Using Combination Therapy; the Course of Therapy Should Be Extended Appropriately According to Immune Status, Site of Infection, Pathogen Type, and Drug Resistance; Infection Status Can Be Assessed by Monitoring PCT
4.4. The Fundamental Aspect of Complex Infections in HLH Is to Eliminate the Source of Infection and, If Necessary, to Remove the Central Venous Catheter
5. Prevention of Complex Infections in HLH
5.1. Prevention of Pneumocystis carinii Pneumonia
5.2. Prevention of Fungal Infections
5.3. Prevention of Bacterial Infections
5.4. Prevention of Viral Infections
5.5. Vaccination
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Samkari, H.; Berliner, N. Hemophagocytic Lymphohistiocytosis. Annu. Rev. Pathol. 2018, 13, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Hayden, A.; Park, S.; Giustini, D.; Lee, A.Y.; Chen, L.Y. Hemophagocytic syndromes (HPSs) including hemophagocytic lymphohistiocytosis (HLH) in adults: A systematic scoping review. Blood Rev. 2016, 30, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, E.; Ohga, S.; Imashuku, S.; Yasukawa, M.; Tsuda, H.; Miura, I.; Yamamoto, K.; Horiuchi, H.; Takada, K.; Ohshima, K.; et al. Nationwide survey of hemophagocytic lymphohistiocytosis in Japan. Int. J. Hematol. 2007, 86, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Machaczka, M.; Vaktnäs, J.; Klimkowska, M.; Hägglund, H. Malignancy-associated hemophagocytic lymphohistiocytosis in adults: A retrospective population-based analysis from a single center. Leuk. Lymphoma 2011, 52, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.; Berliner, N. Hemophagocytic Lymphohistiocytosis in Adults. Hematol. Oncol. Clin. N. Am. 2015, 29, 915–925. [Google Scholar] [CrossRef]
- Henter, J.I.; Horne, A.; Aricó, M.; Egeler, R.M.; Filipovich, A.H.; Imashuku, S.; Ladisch, S.; McClain, K.; Webb, D.; Winiarski, J.; et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 2007, 48, 124–131. [Google Scholar] [CrossRef]
- Trottestam, H.; Horne, A.; Aricò, M.; Egeler, R.M.; Filipovich, A.H.; Gadner, H.; Imashuku, S.; Ladisch, S.; Webb, D.; Janka, G.; et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: Long-term results of the HLH-94 treatment protocol. Blood 2011, 118, 4577–4584. [Google Scholar] [CrossRef] [Green Version]
- Ponnatt, T.S.; Lilley, C.M.; Mirza, K.M. Hemophagocytic Lymphohistiocytosis. Arch. Pathol. Lab. Med. 2022, 146, 507–519. [Google Scholar] [CrossRef]
- Bseiso, O.; Zahdeh, A.; Isayed, O.; Mahagna, S.; Bseiso, A. The Role of Immune Mechanisms, Inflammatory Pathways, and Macrophage Activation Syndrome in the Pathogenesis of Hemophagocytic Lymphohistiocytosis. Cureus 2022, 14, e33175. [Google Scholar] [CrossRef]
- Egeler, R.M.; Shapiro, R.; Loechelt, B.; Filipovich, A. Characteristic immune abnormalities in hemophagocytic lymphohistiocytosis. J. Pediatr. Hematol. Oncol. 1996, 18, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Zoumbos, N.C.; Gascon, P.; Djeu, J.Y.; Young, N.S. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc. Natl. Acad. Sci. USA 1985, 82, 188–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, L.; Weitzman, S.S.; Petric, M.; King, S.M. The role of infections in primary hemophagocytic lymphohistiocytosis: A case series and review of the literature. Clin. Infect. Dis. 2001, 33, 1644–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Marle, S.; Richard-Colmant, G.; Fauvernier, M.; Ghesquières, H.; Hot, A.; Sève, P.; Jamilloux, Y. Mortality and Associated Causes in Hemophagocytic Lymphohistiocytosis: A Multiple-Cause-of-Death Analysis in France. J. Clin. Med. 2023, 12, 1696. [Google Scholar] [CrossRef]
- Yang, Y.; Lian, H.; Ma, H.; Zhao, Y.; Zhang, Q.; Zhang, L.; Wang, T.; Li, Z.; Zhang, R. Hemophagocytic Lymphohistiocytosis Associated with Histiocytic Necrotizing Lymphadenitis: A Clinical Study of 13 Children and Literature Review. J. Pediatr. 2021, 229, 267–274.e263. [Google Scholar] [CrossRef]
- Knaak, C.; Schuster, F.S.; Spies, C.; Vorderwülbecke, G.; Nyvlt, P.; Schenk, T.; Balzer, F.; La Rosée, P.; Janka, G.; Brunkhorst, F.M.; et al. Hemophagocytic Lymphohistiocytosis in Critically Ill Patients. Shock 2020, 53, 701–709. [Google Scholar] [CrossRef]
- Machowicz, R.; Janka, G.; Wiktor-Jedrzejczak, W. Similar but not the same: Differential diagnosis of HLH and sepsis. Crit. Rev. Oncol. Hematol. 2017, 114, 1–12. [Google Scholar] [CrossRef]
- Sung, L.; King, S.M.; Carcao, M.; Trebo, M.; Weitzman, S.S. Adverse outcomes in primary hemophagocytic lymphohistiocytosis. J. Pediatr. Hematol. Oncol. 2002, 24, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Noor, A.; Anwar, S.; Wali, H.; Ansari, S.S.; Ali, Z. A Case of Gastric Mucormycosis in a 21-Year-Old Patient with Hemophagocytic Lymphohistiocytosis. Cureus 2022, 14, e32215. [Google Scholar] [CrossRef]
- Scheer, C.S.; Fuchs, C.; Gründling, M.; Vollmer, M.; Bast, J.; Bohnert, J.A.; Zimmermann, K.; Hahnenkamp, K.; Rehberg, S.; Kuhn, S.O. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: A prospective clinical cohort study. Clin. Microbiol. Infect. 2019, 25, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Chaves, F.; Garnacho-Montero, J.; Del Pozo, J.L.; Bouza, E.; Capdevila, J.A.; de Cueto, M.; Domínguez, M.; Esteban, J.; Fernández-Hidalgo, N.; Fernández Sampedro, M.; et al. Diagnosis and treatment of catheter-related bloodstream infection: Clinical guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC). Med. Intensiv. 2018, 42, 5–36. [Google Scholar]
- von Lilienfeld-Toal, M.; Dietrich, M.P.; Glasmacher, A.; Lehmann, L.; Breig, P.; Hahn, C.; Schmidt-Wolf, I.G.; Marklein, G.; Schroeder, S.; Stuber, F. Markers of bacteremia in febrile neutropenic patients with hematological malignancies: Procalcitonin and IL-6 are more reliable than C-reactive protein. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.W.; Wu, J.Y.; Chen, C.K.; Huang, S.L.; Hsu, S.C.; Lee, M.T.; Chang, S.S.; Lee, C.C. Does procalcitonin, C-reactive protein, or interleukin-6 test have a role in the diagnosis of severe infection in patients with febrile neutropenia? A systematic review and meta-analysis. Support. Care Cancer 2015, 23, 2863–2872. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Toprak, S.K.; Atilla, P.A.; Atilla, E.; Demirer, T. An overview of infectious complications after allogeneic hematopoietic stem cell transplantation. J. Infect. Chemother. 2016, 22, 505–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Li, Y.; Yin, J.; Xi, B.; Wang, N.; Zhang, Y. Application of Next-Generation Sequencing in Infections After Allogeneic Haematopoietic Stem Cell Transplantation: A Retrospective Study. Front. Cell. Infect. Microbiol. 2022, 12, 888398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, X.; Tang, L.V.; Xia, L.; Hu, Y. Nanopore-Targeted Sequencing Improves the Diagnosis and Treatment of Patients with Serious Infections. mBio 2023, 14, e0305522. [Google Scholar] [CrossRef]
- La Rosée, P.; Horne, A.; Hines, M.; von Bahr Greenwood, T.; Machowicz, R.; Berliner, N.; Birndt, S.; Gil-Herrera, J.; Girschikofsky, M.; Jordan, M.B.; et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood 2019, 133, 2465–2477. [Google Scholar] [CrossRef] [Green Version]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003, 29, 530–538. [Google Scholar] [CrossRef]
- Hande, K.R. Etoposide pharmacology. Semin. Oncol. 1992, 19 (Suppl. S13), 3–9. [Google Scholar]
- Fauter, M.; Mainbourg, S.; El Jammal, T.; Guerber, A.; Zaepfel, S.; Henry, T.; Gerfaud-Valentin, M.; Sève, P.; Jamilloux, Y. Extreme Hyperferritinemia: Causes and Prognosis. J. Clin. Med. 2022, 11, 5438. [Google Scholar] [CrossRef]
- Chong, J.; Jones, P.; Spelman, D.; Leder, K.; Cheng, A.C. Overwhelming post-splenectomy sepsis in patients with asplenia and hyposplenia: A retrospective cohort study. Epidemiol. Infect. 2017, 145, 397–400. [Google Scholar] [CrossRef]
- Belok, S.H.; Bosch, N.A.; Klings, E.S.; Walkey, A.J. Evaluation of leukopenia during sepsis as a marker of sepsis-defining organ dysfunction. PLoS ONE 2021, 16, e0252206. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Tsujita, Y.; Yamane, T.; Eguchi, Y. Decreasing Plasma Fibrinogen Levels in the Intensive Care Unit Are Associated with High Mortality Rates In Patients With Sepsis-Induced Coagulopathy. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221101386. [Google Scholar] [CrossRef]
- Valade, S.; Mariotte, E.; Azoulay, E. Coagulation Disorders in Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome. Crit. Care Clin. 2020, 36, 415–426. [Google Scholar] [CrossRef]
- Makoveichuk, E.; Vorrsjö, E.; Olivecrona, T.; Olivecrona, G. TNF-α decreases lipoprotein lipase activity in 3T3-L1 adipocytes by up-regulation of angiopoietin-like protein 4. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 533–540. [Google Scholar] [CrossRef]
- Lekkou, A.; Mouzaki, A.; Siagris, D.; Ravani, I.; Gogos, C.A. Serum lipid profile, cytokine production, and clinical outcome in patients with severe sepsis. J. Crit. Care 2014, 29, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Tang, Y.M.; Song, H.; Yang, S.L.; Xu, W.Q.; Zhao, N.; Shi, S.W.; Shen, H.P.; Mao, J.Q.; Zhang, L.Y.; et al. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J. Pediatr. 2012, 160, 984–990.e1. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, N.; Huang, L.; Zhou, X.; Jin, J.; Li, C.; Wang, D.; Xu, B.; Xu, J.; Jiang, L.; et al. Inflammatory signatures for quick diagnosis of life-threatening infection during the CAR T-cell therapy. J. Immunother. Cancer 2019, 7, 271. [Google Scholar] [CrossRef]
- Park, J.H.; Romero, F.A.; Taur, Y.; Sadelain, M.; Brentjens, R.J.; Hohl, T.M.; Seo, S.K. Cytokine Release Syndrome Grade as a Predictive Marker for Infections in Patients With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia Treated With Chimeric Antigen Receptor T Cells. Clin. Infect. Dis. 2018, 67, 533–540. [Google Scholar] [CrossRef]
- Zoller, E.E.; Lykens, J.E.; Terrell, C.E.; Aliberti, J.; Filipovich, A.H.; Henson, P.M.; Jordan, M.B. Hemophagocytosis causes a consumptive anemia of inflammation. J. Exp. Med. 2011, 208, 1203–1214. [Google Scholar] [CrossRef] [Green Version]
- Goel, S.; Polski, J.M.; Imran, H. Sensitivity and specificity of bone marrow hemophagocytosis in hemophagocytic lymphohistiocytosis. Ann. Clin. Lab. Sci. 2012, 42, 21–25. [Google Scholar]
- Ferrer, R.; Martin-Loeches, I.; Phillips, G.; Osborn, T.M.; Townsend, S.; Dellinger, R.P.; Artigas, A.; Schorr, C.; Levy, M.M. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program. Crit. Care Med. 2014, 42, 1749–1755. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; Lapinsky, S.; Dial, S.; Arabi, Y.; Dodek, P.; Wood, G.; Ellis, P.; Guzman, J.; Marshall, J.; Parrillo, J.E.; et al. Acute kidney injury in septic shock: Clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009, 35, 871–881. [Google Scholar] [CrossRef]
- Iscimen, R.; Cartin-Ceba, R.; Yilmaz, M.; Khan, H.; Hubmayr, R.D.; Afessa, B.; Gajic, O. Risk factors for the development of acute lung injury in patients with septic shock: An observational cohort study. Crit. Care Med. 2008, 36, 1518–1522. [Google Scholar] [CrossRef] [Green Version]
- Kreger, B.E.; Craven, D.E.; McCabe, W.R. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am. J. Med. 1980, 68, 344–355. [Google Scholar] [CrossRef]
- Strich, J.R.; Heil, E.L.; Masur, H. Considerations for Empiric Antimicrobial Therapy in Sepsis and Septic Shock in an Era of Antimicrobial Resistance. J. Infect. Dis. 2020, 222 (Suppl. S2), S119–S131. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Torres, A.; Shorr, A.F.; Martin-Loeches, I.; Micek, S.T. Nosocomial Infection. Crit. Care Med. 2021, 49, 169–187. [Google Scholar] [CrossRef]
- Martin, G.S. Sepsis, severe sepsis and septic shock: Changes in incidence, pathogens and outcomes. Expert Rev. Anti Infect. Ther. 2012, 10, 701–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckman, S.A.; Turnbull, I.R.; Mazuski, J.E. Empiric Antibiotics for Sepsis. Surg. Infect. 2018, 19, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luyt, C.E.; Bréchot, N.; Trouillet, J.L.; Chastre, J. Antibiotic stewardship in the intensive care unit. Crit. Care 2014, 18, 480. [Google Scholar] [CrossRef] [Green Version]
- Micek, S.T.; Welch, E.C.; Khan, J.; Pervez, M.; Doherty, J.A.; Reichley, R.M.; Kollef, M.H. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: A retrospective analysis. Antimicrob. Agents Chemother. 2010, 54, 1742–1748. [Google Scholar] [CrossRef] [Green Version]
- David, M.Z.; Daum, R.S. Treatment of Staphylococcus aureus Infections. Curr. Top. Microbiol. Immunol. 2017, 409, 325–383. [Google Scholar] [PubMed]
- Cunha, B.A. The atypical pneumonias: Clinical diagnosis and importance. Clin. Microbiol. Infect. 2006, 12 (Suppl. S3), 12–24. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Rüddel, D.O.; Schlattmann, P.; Pletz, M.; Kurzai, O.; Bloos, F. Risk Factors for Invasive Candida Infection in Critically Ill Patients: A Systematic Review and Meta-analysis. Chest 2022, 161, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Ruhnke, M.; Rickerts, V.; Cornely, O.A.; Buchheidt, D.; Glöckner, A.; Heinz, W.; Höhl, R.; Horré, R.; Karthaus, M.; Kujath, P.; et al. Diagnosis and therapy of Candida infections: Joint recommendations of the German Speaking Mycological Society and the Paul-Ehrlich-Society for Chemotherapy. Mycoses 2011, 54, 279–310. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.H.E.; Bay, J.W.; Yeong, F.M.; Samuel, M. Efficacy and safety of echinocandin monotherapy and combination therapy for immunocompromised patients with systemic candidiasis: A systematic review and meta-analysis. J. Mycol. Med. 2023, 33, 101362. [Google Scholar] [CrossRef]
- Jabr, R.; El Atrouni, W.; Male, H.J.; Hammoud, K.A. Histoplasmosis-Associated Hemophagocytic Lymphohistiocytosis: A Review of the Literature. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 7107326. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.D.; Smith, C.R.; Lietman, P.S. Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am. J. Med. 1984, 77, 657–662. [Google Scholar] [CrossRef]
- Men, P.; Li, H.B.; Zhai, S.D.; Zhao, R.S. Association between the AUC0-24/MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0146224. [Google Scholar] [CrossRef] [Green Version]
- Forrest, A.; Nix, D.E.; Ballow, C.H.; Goss, T.F.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob. Agents Chemother. 1993, 37, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Kumar, A.; Zarychanski, R.; Light, B.; Parrillo, J.; Maki, D.; Simon, D.; Laporta, D.; Lapinsky, S.; Ellis, P.; Mirzanejad, Y.; et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis. Crit. Care Med. 2010, 38, 1773–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Imajo, K.; Akiyama, N.; Suzuki, K.; Urabe, A.; Ohyashiki, K.; Tanimoto, M.; Masaoka, T. Randomized trial of cefepime monotherapy or cefepime in combination with amikacin as empirical therapy for febrile neutropenia. Clin. Infect. Dis. 2004, 39 (Suppl. S1), S15–S24. [Google Scholar] [CrossRef]
- De la Calle, C.; Ternavasio-de la Vega, H.G.; Morata, L.; Marco, F.; Cardozo, C.; García-Vidal, C.; Del Rio, A.; Cilloniz, C.; Torres, A.; Martínez, J.A.; et al. Effectiveness of combination therapy versus monotherapy with a third-generation cephalosporin in bacteraemic pneumococcal pneumonia: A propensity score analysis. J. Infect. 2018, 76, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Brunkhorst, F.M.; Oppert, M.; Marx, G.; Bloos, F.; Ludewig, K.; Putensen, C.; Nierhaus, A.; Jaschinski, U.; Meier-Hellmann, A.; Weyland, A.; et al. Effect of empirical treatment with moxifloxacin and meropenem vs. meropenem on sepsis-related organ dysfunction in patients with severe sepsis: A randomized trial. JAMA 2012, 307, 2390–2399. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.V.; Reed, E.E.; Herman, D.D.; Magrum, B.; Beatty, J.J.; Stevenson, K.B. Antimicrobial Stewardship in the ICU. Semin. Respir. Crit. Care Med. 2022, 43, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef]
- Wilke, M.; Worf, K.; Heinlein, W.; Kast, T.; Bodmann, K.F. Early optimization of antibiotic therapy through rapid detection of pathogens and sensitivity: Health economic aspects. Med. Klin. Intensivmed. Notf. 2020, 115, 420–427. [Google Scholar] [CrossRef]
- Weiss, C.H.; Moazed, F.; McEvoy, C.A.; Singer, B.D.; Szleifer, I.; Amaral, L.A.; Kwasny, M.; Watts, C.M.; Persell, S.D.; Baker, D.W.; et al. Prompting physicians to address a daily checklist and process of care and clinical outcomes: A single-site study. Am. J. Respir. Crit. Care Med. 2011, 184, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keats, K.R.; Stitt, T.M.; Chastain, D.B.; Jivan, B.P.; Matznick, E.; Waller, J.L.; Clemmons, A.B. Evaluating Clostridioides difficile infection (CDI) treatment duration in hematology/oncology patients receiving concurrent non-CDI antibiotics. J. Oncol. Pharm. Pract. 2022, 28, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Aggrey, G.; Brennan, M.B.; Footer, B.; Forrest, G.; Hamilton, F.; Minejima, E.; Moore, J.; Ahn, J.; Angarone, M.; et al. Use of Novel Strategies to Develop Guidelines for Management of Pyogenic Osteomyelitis in Adults: A WikiGuidelines Group Consensus Statement. JAMA Netw. Open 2022, 5, e2211321. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Guisado, M.; Espigado, I.; Martín-Peña, A.; Gudiol, C.; Royo-Cebrecos, C.; Falantes, J.; Vázquez-López, L.; Montero, M.I.; Rosso-Fernández, C.; de la Luz Martino, M.; et al. Optimisation of empirical antimicrobial therapy in patients with haematological malignancies and febrile neutropenia (How Long study): An open-label, randomised, controlled phase 4 trial. Lancet. Haematol. 2017, 4, e573–e583. [Google Scholar] [CrossRef]
- Tan, M.; Lu, Y.; Jiang, H.; Zhang, L. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis. J. Cell. Biochem. 2019, 120, 5852–5859. [Google Scholar] [CrossRef]
- de Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Jimenez, M.F.; Marshall, J.C. Source control in the management of sepsis. Intensive Care Med. 2001, 27 (Suppl. S1), S49–S62. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- De Waele, J.J.; Girardis, M.; Martin-Loeches, I. Source control in the management of sepsis and septic shock. Intensive Care Med. 2022, 48, 1799–1802. [Google Scholar] [CrossRef]
- Timsit, J.F.; Baleine, J.; Bernard, L.; Calvino-Gunther, S.; Darmon, M.; Dellamonica, J.; Desruennes, E.; Leone, M.; Lepape, A.; Leroy, O.; et al. Expert consensus-based clinical practice guidelines management of intravascular catheters in the intensive care unit. Ann. Intensive Care 2020, 10, 118. [Google Scholar] [CrossRef]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.; Sherertz, R.J.; Warren, D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef]
- Pasic, S.; Jankovic, I.; Rosic, R.; Ognjanovic, M. Pneumocystis carinii pneumonitis in haemophagocytic lymphohistiocytosis. Acta Paediatr. 2001, 90, 1480–1482. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Abourehab, M.A.S.; Almalki, W.A.; Almontashri, A.M.; Bajawi, S.A.; Aljoaid, A.M.; Alsahabi, B.M.; Algethamy, M.; AlQarni, A.; Iqbal, M.S.; et al. Trimethoprim-Sulfamethoxazole (Bactrim) Dose Optimization in Pneumocystis jirovecii Pneumonia (PCP) Management: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2833. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.; Cesaro, S.; Maschmeyer, G.; Einsele, H.; Donnelly, J.P.; Alanio, A.; Hauser, P.M.; Lagrou, K.; Melchers, W.J.; Helweg-Larsen, J.; et al. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2397–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellinghoff, S.C.; Panse, J.; Alakel, N.; Behre, G.; Buchheidt, D.; Christopeit, M.; Hasenkamp, J.; Kiehl, M.; Koldehoff, M.; Krause, S.W.; et al. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann. Hematol. 2018, 97, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Taplitz, R.A.; Kennedy, E.B.; Bow, E.J.; Crews, J.; Gleason, C.; Hawley, D.K.; Langston, A.A.; Nastoupil, L.J.; Rajotte, M.; Rolston, K.V.; et al. Antimicrobial Prophylaxis for Adult Patients with Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 3043–3054. [Google Scholar] [CrossRef] [PubMed]
- Barba, T.; Maucort-Boulch, D.; Iwaz, J.; Bohé, J.; Ninet, J.; Hot, A.; Lega, J.C.; Guérin, C.; Argaud, L.; Broussolle, C.; et al. Hemophagocytic Lymphohistiocytosis in Intensive Care Unit: A 71-Case Strobe-Compliant Retrospective Study. Medicine 2015, 94, e2318. [Google Scholar] [CrossRef]
- Horowitz, J.G.; Gawrys, G.W.; Lee, G.C.; Ramirez, B.A.; Elledge, C.M.; Shaughnessy, P.J. Early antimicrobial prophylaxis in autologous stem cell transplant recipients: Conventional versus an absolute neutrophil count-driven approach. Transpl. Infect. Dis. 2021, 23, e13689. [Google Scholar] [CrossRef]
- Pohlen, M.; Marx, J.; Mellmann, A.; Becker, K.; Mesters, R.M.; Mikesch, J.H.; Schliemann, C.; Lenz, G.; Müller-Tidow, C.; Büchner, T.; et al. Ciprofloxacin versus colistin prophylaxis during neutropenia in acute myeloid leukemia: Two parallel patient cohorts treated in a single center. Haematologica 2016, 101, 1208–1215. [Google Scholar] [CrossRef] [Green Version]
- Mikulska, M.; Averbuch, D.; Tissot, F.; Cordonnier, C.; Akova, M.; Calandra, T.; Ceppi, M.; Bruzzi, P.; Viscoli, C. Fluoroquinolone prophylaxis in haematological cancer patients with neutropenia: ECIL critical appraisal of previous guidelines. J. Infect. 2018, 76, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Classen, A.Y.; Henze, L.; von Lilienfeld-Toal, M.; Maschmeyer, G.; Sandherr, M.; Graeff, L.D.; Alakel, N.; Christopeit, M.; Krause, S.W.; Mayer, K.; et al. Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematologic malignancies and solid tumors: 2020 updated guidelines of the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO/DGHO). Ann. Hematol. 2021, 100, 1603–1620. [Google Scholar]
- Cattaneo, C.; Oberti, M.; Skert, C.; Passi, A.; Farina, M.; Re, A.; Tozzi, P.; Borlenghi, E.; Rossi, G. Adult onset hemophagocytic lymphohistiocytosis prognosis is affected by underlying disease and coexisting viral infection: Analysis of a single institution series of 35 patients. Hematol. Oncol. 2017, 35, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, X.; Zhu, J.; Ye, S.; Zhang, H.; Wang, W.; Wu, X.; Peng, J.; Xu, B.; Lin, Y.; et al. Entecavir vs lamivudine for prevention of hepatitis B virus reactivation among patients with untreated diffuse large B-cell lymphoma receiving R-CHOP chemotherapy: A randomized clinical trial. JAMA 2014, 312, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
- Zaia, J.; Baden, L.; Boeckh, M.J.; Chakrabarti, S.; Einsele, H.; Ljungman, P.; McDonald, G.B.; Hirsch, H. Viral disease prevention after hematopoietic cell transplantation. Bone Marrow Transplant. 2009, 44, 471–482. [Google Scholar] [CrossRef]
- Rieger, C.T.; Liss, B.; Mellinghoff, S.; Buchheidt, D.; Cornely, O.A.; Egerer, G.; Heinz, W.J.; Hentrich, M.; Maschmeyer, G.; Mayer, K.; et al. Anti-infective vaccination strategies in patients with hematologic malignancies or solid tumors-Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). Ann. Oncol. 2018, 29, 1354–1365. [Google Scholar] [CrossRef]
- Cheuk, D.K.; Chiang, A.K.; Lee, T.L.; Chan, G.C.; Ha, S.Y. Vaccines for prophylaxis of viral infections in patients with hematological malignancies. Cochrane Database Syst. Rev. 2011, 3, CD006505. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.V.; Hu, Y. Hemophagocytic lymphohistiocytosis after COVID-19 vaccination. J. Hematol. Oncol. 2021, 14, 87. [Google Scholar] [CrossRef]
- Hieber, M.L.; Sprute, R.; Eichenauer, D.A.; Hallek, M.; Jachimowicz, R.D. Hemophagocytic lymphohistiocytosis after SARS-CoV-2 vaccination. Infection 2022, 50, 1399–1404. [Google Scholar] [CrossRef]
- Matsui, S.; Tokunaga, M.; Yoshikawa, S.; Hasegawa, C.; Kondo, A.; Nishiura, N.; Inoue, S.; Tominaga, N.; Maeda, T. Hemophagocytic lymphohistiocytosis following mRNA-1273 COVID-19 vaccination. Rinsho Ketsueki 2022, 63, 1513–1519. [Google Scholar]
- Soliman, S.; Bakulina, A. Hemophagocytic Lymphohistiocytosis after Inactivated Influenza Vaccination in a Young Man Complicated by Severe Rhabdomyolysis. Cureus 2022, 14, e23334. [Google Scholar] [CrossRef] [PubMed]
The Diagnosis of HLH Can Be Established If Either A or B Is Fulfilled |
---|
|
Pathological mutations of PRF1, UNC13D, STXBP1, RAB27A, STX11, SH2D1A, or XIAP |
|
Clinical symptoms |
|
|
Laboratory findings |
|
|
|
|
|
Histological examination |
|
Complex Infection | HLH Relapse | |
---|---|---|
Similarities | ||
Fever | ||
Hemophagocytosis | ||
Low or absent NK cell activity | ||
Elevated sCD25 | ||
Differences | ||
Molecular diagnosis | Absent | Present |
Splenomegaly | Rare | Present |
Ferritin | ↑ | ↑↑↑ |
Leukocyte | ↑↑↑/↓ | ↓↓↓ |
Fibrinogen | ↑ | ↓↓↓ |
Triglycerides | ↑↑/- | ↑↑↑ |
CRP | ↑↑↑ | ↑ |
PCT | ↑↑ | - |
IL-10 | ↑ | ↑↑↑ |
IL-6 | ↑↑↑ | ↑ |
IFN-γ | - | ↑↑↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cheng, Z.; Hu, Y.; Tang, L.V. Management of Complex Infections in Hemophagocytic Lymphohistiocytosis in Adults. Microorganisms 2023, 11, 1694. https://doi.org/10.3390/microorganisms11071694
Zhang Y, Cheng Z, Hu Y, Tang LV. Management of Complex Infections in Hemophagocytic Lymphohistiocytosis in Adults. Microorganisms. 2023; 11(7):1694. https://doi.org/10.3390/microorganisms11071694
Chicago/Turabian StyleZhang, Yi, Zhipeng Cheng, Yu Hu, and Liang V. Tang. 2023. "Management of Complex Infections in Hemophagocytic Lymphohistiocytosis in Adults" Microorganisms 11, no. 7: 1694. https://doi.org/10.3390/microorganisms11071694
APA StyleZhang, Y., Cheng, Z., Hu, Y., & Tang, L. V. (2023). Management of Complex Infections in Hemophagocytic Lymphohistiocytosis in Adults. Microorganisms, 11(7), 1694. https://doi.org/10.3390/microorganisms11071694