Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Ceftolozane/Tazobactam
Study | Study Design | Population | Infection | C/T MIC (μg/mL) | C/T Dosage and Duration | TDM (μg/mL) | AEs | Outcomes |
---|---|---|---|---|---|---|---|---|
Roilides et al. [64] | Phase 2, randomized, double-blind study C/T compared with meropenem | mMITT: from birth (>32 weeks gestational age and ≥7 days postnatal) to <18 years of age (C/T group n = 71 meropenem n = 24) | cUTI Most common pathogens: E. coli (74.6%) K. pneumonia (8.5%) P. aeruginosa (7%) | NA | From birth to <12 years 20/10 mg/kg q8h in 1 h infusion From 12 to <18 years 1.5 g q8h in 1 h infusion | NA | ≥1 AEs 59.0% (59/100) C/T 60.6% (20/33) meropenem | Clinical cure rates EOT (mMITT population): 94.4% (67/71) C/T 100% (24/24) meropenem |
Jackson et al. [63] | Phase 2, randomized, double-blind study C/T + MTZ compared with meropenem | MITT: from birth (>32 weeks gestational age and ≥7 days postnatal) to <18 years of age (C/T n = 70 meropenem n = 21) | Presumed or documented cIAI Most common diagnosis: complicated appendicitis (91.4%) Most common pathogens: E. coli (67.1%) P. aeruginosa (27.1%) Bacteroides fragilis (18.6%) | NA | From birth to <12 years 20/10 mg/kg in 1 h infusion + IV MTZ 10–15 mg/kg From 12 to <18 years 1,5 g in 1 h infusion + IV MTZ 10–15 mg/kg | NA | No AEs leading to death, drug-related serious AEs‚ or discontinuations due to drug-related AEs or serious AEs | Clinical cure rates EOT (MITT population): 80% (vs. 95.2% meropenem) |
Molloy et al. [62] | Case series | Patients aged 0.25–19 years (n = 13) | MDR-P. aeruginosa infections Pneumonia (n = 8) CF exacerbation (n = 3) IAI (n = 2) Osteomyelitis (n = 1) | 0.06 (n = 1) 0.5 (n = 2) 2 (n = 6) 2 (n = 3) 4 (n = 1) | −20/10 mg/kg q8h −30/15–40/20 mg/kg (max 2/1 g) q8h for serious respiratory infections | NA | Elevation of transaminitis (n = 1) Neutropenia (n = 1) | Clinical resolution (n = 12/13) |
Perruccio et al. [66] | Retrospective, observational study | Children with hematological malignancies (n = 4) (subgroup patient characteristics NA) | MDR Gram-negative infections (subgroup microbiological characteristics NA) | NA | 1.5 g q8h for a median of 20 days (range: 14–20) One patient who weighed <10 kg: 200/100 mg q8h | NA | Subgroup description of AEs NA | Subgroup analysis NA |
Aitken et al. [57] | Case report | 9-year-old male patient with acute myeloid leukemia | Two episodes of MDR-P. aeruginosa BSI | 6 (first episode) 8 (second episode) | 50/25 mg/kg q8h over a 3 h infusion (first treatment) + tobramycin and ciprofloxacin for 3 weeks 40/20 mg/kg q6h over a 3 h infusion + tobramycin and ciprofloxacin for 3 weeks | Cmin (C): 5.2 Cmax (C): 74.1 Cmin (C): 18.1 Cmax (C): 54.3 | None | Clinical and microbiological resolution |
Ang et al. [58] | Case report | 14-year-old female with cystic fibrosis | P. aeruginosa pulmonary exacerbation (two strains: mucoid and nonmucoid) | 0.5 (mucoid) 1 (nonmucoid) | C/T 1.5 g q8h in 1 h infusion for 14 days | Cmax (C): 94.1 Cmin (C): 1.2 Cmax (T): 12.1 Cmin(T): 0.04 | Elevation of transaminasis | Clinical resolution |
Martín-Cazaña et al. [59] | Case report | 5-year-old male with complex congenital heart disease | MDR-P. aeruginosa endocarditis | 2 | 50/25 mg/kg q8h over 3 h infusion + tobramycin for 45 days | Cmax (C): 72.9 Cmin (C): 2.6 | None | Clinical and microbiological resolution |
Zikri and El Masri [60] | Case report | 14-year-old female with combined immunodeficiency syndrome | MDR-P. aeruginosa pneumonia | 3 | 1.5 g q8h + amikacin and colistin | NA | None | Clinical resolution |
Dinh et al. [61] | Case report | 3-year-old male with liver transplant | XDR-P. aeruginosa vascular graft infection | NA | 1.5/0.75 g/day for 57 days + colistin | NA | Clostridioides difficile infection | Clinical and microbiological failure |
Summary
4. Ceftazidime/Avibactam
Summary
5. Meropenem/Vaborbactam
Summary
6. Imipenem/Cilastatin/Relebactam
Summary
7. Cefiderocol
Summary
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Correction in Lancet 2022, 400, 1102. [Google Scholar] [CrossRef]
- Bassetti, M.; Poulakou, G.; Ruppé, E.; Bouza, E.; Van Hal, S.J.; Brink, A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Med. 2017, 43, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Chiotos, K.; Tamma, P.D.; Flett, K.B.; Karandikar, M.V.; Nemati, K.; Bilker, W.B.; Zaoutis, T.; Han, J. Increased 30-Day Mortality Associated With Carbapenem-Resistant Enterobacteriaceae in Children. Open Forum Infect. Dis. 2018, 5, ofy222. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 10 May 2023).
- Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H.; ARPEC Project Group; Calle, G.M.; Garrahan, J.P.; Clark, J.; Cooper, C.; et al. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016, 71, 1106–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, J.S.; Newland, J.G.; Coffin, S.E.; Hall, M.; Thurm, C.; Prasad, P.A.; Feudtner, C.; Zaoutis, T.E. Variability in Antibiotic Use at Children's Hospitals. Pediatrics 2010, 126, 1067–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillier, S.; Roberts, Z.; Dunstan, F.; Butler, C.; Howard, A.; Palmer, S. Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: A case-control study. J. Antimicrob. Chemother. 2007, 60, 92–99. [Google Scholar] [CrossRef]
- Lob, S.H.; Badal, R.E.; Hackel, M.A.; Sahm, D.F. Epidemiology and Antimicrobial Susceptibility of Gram-Negative Pathogens Causing Intra-abdominal Infections in Pediatric Patients in Europe—SMART 2011–2014. J. Pediatr. Infect. Dis. Soc. 2017, 6, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Flokas, M.E.; Detsis, M.; Alevizakos, M.; Mylonakis, E. Prevalence of ESBL-producing Enterobacteriaceae in paediatric urinary tract infections: A systematic review and meta-analysis. J. Infect. 2016, 73, 547–557. [Google Scholar] [CrossRef]
- Bryce, A.; Hay, A.D.; Lane, I.F.; Thornton, H.V.; Wootton, M.; Costelloe, C. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: Systematic review and meta-analysis. BMJ 2016, 352, i939. [Google Scholar] [CrossRef] [Green Version]
- Logan, L.K.; Renschler, J.P.; Gandra, S.; Weinstein, R.A.; Laxminarayan, R. Carbapenem-Resistant Enterobacteriaceae in Children, United States, 1999–2012. Emerg. Infect. Dis. 2015, 21, 2014–2021. [Google Scholar] [CrossRef] [Green Version]
- Caselli, D.; Cesaro, S.; Fagioli, F.; Carraro, F.; Ziino, O.; Zanazzo, G.; Meazza, C.; Colombini, A.; Castagnola, E. Incidence of colonization and bloodstream infection with carbapenem-resistant Enterobacteriaceae in children receiving antineoplastic chemotherapy in Italy. Infect. Dis. 2016, 48, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, J.; Vlahović-Palčevski, V.; Iwamoto, K.; Högberg, L.D.; Godman, B.; Monnet, D.L.; Garner, S.; Weist, K. Variations in the Consumption of Antimicrobial Medicines in the European Region, 2014–2018: Findings and Implications from ESAC-Net and WHO Europe. Front. Pharmacol. 2021, 12, 639207. [Google Scholar] [CrossRef] [PubMed]
- Coppini, R.; Simons, S.H.; Mugelli, A.; Allegaert, K. Clinical research in neonates and infants: Challenges and perspectives. Pharmacol. Res. 2016, 108, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Unni, J. Newer Antibiotics: Need for More Studies in Neonates and Children. Pediatr. Infect. Dis. 2019, 1, 164–168. [Google Scholar] [CrossRef]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.K.; Stockmann, C.; Constance, J.E.; Stiers, J.; Spigarelli, M.G.; Ward, R.M.; Sherwin, C.M.T. Pharmacokinetics and Pharmacodynamics of Antibacterials, Antifungals, and Antivirals Used Most Frequently in Neonates and Infants. Clin. Pharmacokinet. 2014, 53, 581–610. [Google Scholar] [CrossRef]
- de Groot, R.; Smith, A.L. Antibiotic Pharmacokinetics in Cystic Fibrosis. Clin. Pharmacokinet. 1987, 13, 228–253. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Jensen, C.; Fanous, H.; Chaney, H.; Sami, I.; Perez, G.; Louie, S.; Koumbourlis, A.C.; Bost, J.E.; Anker, J.N.V.D. Relationship of Pulmonary Outcomes, Microbiology, and Serum Antibiotic Concentrations in Cystic Fibrosis Patients. J. Pediatr. Pharmacol. Ther. 2018, 23, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.Y.; Taccone, F.; Villois, P.; Scheetz, M.H.; Rhodes, N.; Briscoe, S.; McWhinney, B.; Nunez-Nunez, M.; Ungerer, J.; Lipman, J.; et al. β-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J. Antimicrob. Chemother. 2020, 75, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.A. State-of-the-Art Clinical Article: Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin. Infect. Dis. 1998, 26, 1–10. [Google Scholar] [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: Are Current β-Lactam Antibiotic Doses Sufficient for Critically Ill Patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, S.J.F.; Brüggemann, R.J.; Orriëns, L.; Dia, N.; Schreuder, M.F.; de Wildt, S.N. Pharmacokinetics and Target Attainment of Antibiotics in Critically Ill Children: A Systematic Review of Current Literature. Clin. Pharmacokinet. 2020, 59, 173–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, J.C.; Satlin, M.J.; Elabor, A.; Saraiya, N.; McCreary, E.K.; Molnar, E.; El-Beyrouty, C.; Jones, B.M.; Dixit, D.; Heil, E.L.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: A Multicenter Study. Open Forum Infect. Dis. 2018, 5, ofy280. [Google Scholar] [CrossRef]
- Shortridge, D.; Castanheira, M.; Pfaller, M.A.; Flamm, R.K. Ceftolozane-Tazobactam Activity against Pseudomonas aeruginosa Clinical Isolates from U.S. Hospitals: Report from the PACTS Antimicrobial Surveillance Program, 2012 to 2015. Antimicrob. Agents Chemother. 2017, 61, e00465-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanheira, M.; Doyle, T.B.; Mendes, R.E.; Sader, H. Comparative Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Enterobacteriaceae Isolates Producing Extended-Spectrum β-Lactamases from U.S. Hospitals. Antimicrob. Agents Chemother. 2019, 63, e00465-17. [Google Scholar] [CrossRef] [Green Version]
- Moyá, B.; Zamorano, L.; Juan, C.; Ge, Y.; Oliver, A. Affinity of the New Cephalosporin CXA-101 to Penicillin-Binding Proteins of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2010, 54, 3933–3937. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Ishii, Y.; Hatano, K.; Tateda, K.; Yamaguchi, K. Stability of FR264205 against AmpC β-lactamase of Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2007, 30, 443–445. [Google Scholar] [CrossRef]
- Bulik, C.C.; Christensen, H.; Nicolau, D.P. In Vitro Potency of CXA-101, a Novel Cephalosporin, against Pseudomonas aeruginosa Displaying Various Resistance Phenotypes, Including Multidrug Resistance. Antimicrob. Agents Chemother. 2010, 54, 557–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M.; Mushtaq, S.; Ge, Y.; Warner, M. Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. Int. J. Antimicrob. Agents 2009, 34, 402–406. [Google Scholar] [CrossRef] [Green Version]
- Zerbaxa® (Ceftolozane and Tazobactam). US Prescribing Information. Merck Sharp & Dohme Llc. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/206829s011s012lbl.pdf (accessed on 10 May 2023).
- Zerbaxa® (Ceftolozane and Tazobactam). EMA Summary of Product Characteristics. Merck Sharp & Dohme B.V. Available online: https://www.ema.europa.eu/en/documents/product-information/zerbaxa-epar-product-information_en.pdf (accessed on 10 May 2023).
- Grupper, M.; Sutherland, C.; Nicolau, D.P. Multicenter Evaluation of Ceftazidime-Avibactam and Ceftolozane-Tazobactam Inhibitory Activity against Meropenem-Nonsusceptible Pseudomonas aeruginosa from Blood, Respiratory Tract, and Wounds. Antimicrob. Agents Chemother. 2017, 61, e00875-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortridge, D.; Pfaller, M.A.; Streit, J.M.; Flamm, R.K. Antimicrobial activity of ceftolozane/tazobactam tested against contemporary (2015–2017) Pseudomonas aeruginosa isolates from a global surveillance programme. J. Glob. Antimicrob. Resist. 2020, 21, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, D.; Duncan, L.R.; Pfaller, M.A.; Flamm, R.K. Activity of ceftolozane-tazobactam and comparators when tested against Gram-negative isolates collected from paediatric patients in the USA and Europe between 2012 and 2016 as part of a global surveillance programme. Int. J. Antimicrob. Agents 2019, 53, 637–643. [Google Scholar] [CrossRef]
- Humphries, R.M.; Hindler, J.A.; Wong-Beringer, A.; Miller, S.A. Activity of Ceftolozane-Tazobactam and Ceftazidime-Avibactam against Beta-Lactam-Resistant Pseudomonas aeruginosa Isolates. Antimicrob. Agents Chemother. 2017, 61, e01858-e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goltermann, L.; Tolker-Nielsen, T. Importance of the Exopolysaccharide Matrix in Antimicrobial Tolerance of Pseudomonas aeruginosa Aggregates. Antimicrob. Agents Chemother. 2017, 61, e02696-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gherardi, G.; Linardos, G.; Pompilio, A.; Fiscarelli, E.; Di Bonaventura, G. Evaluation of in vitro activity of ceftolozane-tazobactam compared to other antimicrobial agents against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Diagn. Microbiol. Infect. Dis. 2019, 94, 297–303. [Google Scholar] [CrossRef]
- Kuti, J.L.; Pettit, R.S.; Neu, N.; Cies, J.J.; Lapin, C.; Muhlebach, M.S.; Novak, K.J.; Nguyen, S.T.; Saiman, L.; Nicolau, D.P. Microbiological activity of ceftolozane/tazobactam, ceftazidime, meropenem, and piperacillin/tazobactam against Pseudomonas aeruginosa isolated from children with cystic fibrosis. Diagn. Microbiol. Infect. Dis. 2015, 83, 53–55. [Google Scholar] [CrossRef]
- Forrester, J.B.; Steed, L.L.; A Santevecchi, B.; Flume, P.; E Palmer-Long, G.; A Bosso, J. In Vitro Activity of Ceftolozane/Tazobactam vs Nonfermenting, Gram-Negative Cystic Fibrosis Isolates. Open Forum Infect. Dis. 2018, 5, ofy158. [Google Scholar] [CrossRef]
- Marner, M.; Kolberg, L.; Horst, J.; Böhringer, N.; Hübner, J.; Kresna, I.D.M.; Liu, Y.; Mettal, U.; Wang, L.; Meyer-Bühn, M.; et al. Antimicrobial Activity of Ceftazidime-Avibactam, Ceftolozane-Tazobactam, Cefiderocol, and Novel Darobactin Analogs against Multidrug-Resistant Pseudomonas aeruginosa Isolates from Pediatric and Adolescent Cystic Fibrosis Patients. Microbiol. Spectr. 2023, 11, e0443722. [Google Scholar] [CrossRef]
- Ho, S.; Nguyen, L.; Trinh, T.; MacDougall, C. Recognizing and Overcoming Resistance to New Beta-Lactam/Beta-Lactamase Inhibitor Combinations. Curr. Infect. Dis. Rep. 2019, 21, 39. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Bassetti, M.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Menichetti, F.; Pea, F.; Rossolini, G.M.; Tumbarello, M.; Viale, P.; et al. Ceftolozane/tazobactam: Place in therapy. Expert Rev. Anti-Infect. Ther. 2018, 16, 307–320. [Google Scholar] [CrossRef]
- Fraile-Ribot, P.; Cabot, G.; Mulet, X.; Periañez, L.; Martín-Pena, M.L.; Juan, C.; Pérez, J.L.; Oliver, A. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2018, 73, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Beisken, S.; Bergman, Y.; Posch, A.E.; Avdic, E.; Sharara, S.L.; Cosgrove, S.E.; Simner, P.J. Modifiable Risk Factors for the Emergence of Ceftolozane-tazobactam Resistance. Clin. Infect. Dis. 2021, 73, e4599–e4606. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Ang, J.Y.; Arrieta, A.C.; Larson, K.B.; Rizk, M.L.; Caro, L.; Yang, S.; Yu, B.; Johnson, M.G.; Rhee, E.G. Pharmacokinetics and Safety of Single Intravenous Doses of Ceftolozane/Tazobactam in Children With Proven or Suspected Gram-Negative Infection. Pediatr. Infect. Dis. J. 2018, 37, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Ang, J.Y.; Arrieta, A.; Bradley, J.S.; Zhang, Z.; Yu, B.; Rizk, M.L.; Johnson, M.G.; Rhee, E.G. Ceftolozane/Tazobactam in Neonates and Young Infants: The Challenges of Collecting Pharmacokinetics and Safety Data in This Vulnerable Patient Population. Am. J. Perinatol. 2020, 38, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Larson, K.B.; Patel, Y.T.; Willavize, S.; Bradley, J.S.; Rhee, E.G.; Caro, L.; Rizk, M.L. Ceftolozane-Tazobactam Population Pharmacokinetics and Dose Selection for Further Clinical Evaluation in Pediatric Patients with Complicated Urinary Tract or Complicated Intra-abdominal Infections. Antimicrob. Agents Chemother. 2019, 63, e02578-18. [Google Scholar] [CrossRef] [Green Version]
- Garazzino, S.; Altieri, E.; Silvestro, E.; Pruccoli, G.; Scolfaro, C.; Bignamini, E. Ceftolozane/Tazobactam for Treating Children With Exacerbations of Cystic Fibrosis Due to Pseudomonas aeruginosa: A Review of Available Data. Front. Pediatr. 2020, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Larson, K.; Bradley, J.S.; Arrieta, A.; Yang, S.; Yu, B.; Johnson, M.G.; Rizk, M.; Rhee, E. Plasma Pharmacokinetics of Ceftolozane/Tazobactam in Pediatric Subjects with Cystic Fibrosis. Open Forum Infect. Dis. 2017, 4, S295–S296. [Google Scholar] [CrossRef]
- Arrieta, A.C.; Ang, J.Y.; Zhang, Z.; Larson, K.B.; Yu, B.; Johnson, M.G.; Rhee, E.G.; Feng, E.H.; Rizk, M.L. Plasma pharmacokinetics of ceftolozane/tazobactam in pediatric patients with cystic fibrosis. Pediatr. Pulmonol. 2020, 55, 2025–2032. [Google Scholar] [CrossRef]
- Butragueño-Laiseca, L.; Troconiz, I.F.; Grau, S.; Campillo, N.; García, X.; Padilla, B.; Fernández, S.N.; Santiago, M.J. Finding the Dose for Ceftolozane-Tazobactam in Critically Ill Children with and without Acute Kidney Injury. Antibiotics 2020, 9, 887. [Google Scholar] [CrossRef]
- Aitken, S.; Kontoyiannis, D.P.; DePombo, A.M.; Bhatti, M.M.; Tverdek, F.P.; Gettys, S.C.; Nicolau, D.P.; Nunez, C.A. Use of Ceftolozane/Tazobactam in the Treatment of Multidrug-resistant Pseudomonas aeruginosa Bloodstream Infection in a Pediatric Leukemia Patient. Pediatr. Infect. Dis. J. 2016, 35, 1040–1042. [Google Scholar] [CrossRef]
- Ang, J.Y.; Abdel-Haq, N.; Zhu, F.; Thabit, A.K.; Nicolau, D.P.; Satlin, M.J.; van Duin, D. Multidrug-Resistant Pseudomonas aeruginosa Infection in a Child with Cystic Fibrosis. Antimicrob. Agents Chemother. 2016, 60, 5627–5630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Cazaña, M.; Grau, S.; Epalza, C.; Brañas, P.; Flores, M.; Olmedilla, M.; Blázquez-Gamero, D. Successful ceftolozane-tazobactam rescue therapy in a child with endocarditis caused by multidrug-resistant Pseudomonas aeruginosa. J. Paediatr. Child Health 2019, 55, 985–987. [Google Scholar] [CrossRef] [PubMed]
- Zikri, A.; El Masri, K. Use of Ceftolozane/Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Pneumonia in a Pediatric Patient with Combined Immunodeficiency (CID): A Case Report from a Tertiary Hospital in Saudi Arabia. Antibiotics 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Dinh, A.; Wyplosz, B.; Kernéis, S.; Lebeaux, D.; Bouchand, F.; Duran, C.; Béraud, G.; Lazaro, P.; Davido, B.; Hénard, S.; et al. Use of ceftolozane/tazobactam as salvage therapy for infections due to extensively drug-resistant Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2017, 49, 782–783. [Google Scholar] [CrossRef]
- Molloy, L.; Abdulhamid, I.; Srivastava, R.; Ang, J.Y. Ceftolozane/Tazobactam Treatment of Multidrug-resistant Pseudomonas aeruginosa Infections in Children. Pediatr. Infect. Dis. J. 2020, 39, 419–420. [Google Scholar] [CrossRef]
- Jackson, C.-C.A.; Newland, J.M.; Dementieva, N.; Lonchar, J.M.; Su, F.-H.M.; Huntington, J.A.; Bensaci, M.; Popejoy, M.W.; Johnson, M.G.; De Anda, C.; et al. Safety and Efficacy of Ceftolozane/Tazobactam Plus Metronidazole Versus Meropenem From a Phase 2, Randomized Clinical Trial in Pediatric Participants With Complicated Intra-abdominal Infection. Pediatr. Infect. Dis. J. 2023, 42, 557–563. [Google Scholar] [CrossRef]
- Roilides, E.; Ashouri, N.; Bradley, J.S.; Johnson, M.G.; Lonchar, J.M.; Su, F.-H.M.; Huntington, J.A.; Popejoy, M.W.; Bensaci, M.; De Anda, C.; et al. Safety and Efficacy of Ceftolozane/Tazobactam Versus Meropenem in Neonates and Children With Complicated Urinary Tract Infection, Including Pyelonephritis: A Phase 2, Randomized Clinical Trial. Pediatr. Infect. Dis. J. 2023, 42, 292–298. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Safety and Pharmacokinetics of Ceftolozane/Tazobactam in Pediatric Participants with Nosocomial Pneumonia (MK-7625A-036) Identifier: NCT04223752. Available online: https://clinicaltrials.gov/ct2/show/NCT04223752 (accessed on 10 May 2023).
- Iosifidis, E.; Chorafa, E.; Agakidou, E.; Kontou, A.; Violaki, A.; Volakli, E.; Christou, E.-I.; Zarras, C.; Drossou-Agakidou, V.; Sdougka, M.; et al. Use of Ceftazidime-avibactam for the Treatment of Extensively drug-resistant or Pan drug-resistant Klebsiella pneumoniae in Neonates and Children <5 Years of Age. Pediatr. Infect. Dis. J. 2019, 38, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Castaldo, N.; Cattelan, A.; Mussini, C.; Righi, E.; Tascini, C.; Menichetti, F.; Mastroianni, C.M.; Tumbarello, M.; Grossi, P.; et al. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: A multicentre nationwide clinical experience. Int. J. Antimicrob. Agents 2019, 53, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Vickery, S.B.; McClain, D.; Wargo, K.A. Successful Use of Ceftolozane-Tazobactam to Treat a Pulmonary Exacerbation of Cystic Fibrosis Caused by Multidrug-Resistant Pseudomonas aeruginosa. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2016, 36, e154–e159. [Google Scholar] [CrossRef]
- Stokem, K.; Zuckerman, J.B.; Nicolau, D.P.; Wungwattana, M.; Sears, E.H. Use of ceftolozane-tazobactam in a cystic fibrosis patient with multidrug-resistant pseudomonas infection and renal insufficiency. Respir. Med. Case Rep. 2017, 23, 8–9. [Google Scholar] [CrossRef]
- Stachyra, T.; Levasseur, P.; Péchereau, M.-C.; Girard, A.-M.; Claudon, M.; Miossec, C.; Black, M.T. In vitro activity of the -lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J. Antimicrob. Chemother. 2009, 64, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Karlowsky, J.A.; Biedenbach, D.J.; Kazmierczak, K.M.; Stone, G.G.; Sahm, D.F. Activity of Ceftazidime-Avibactam against Extended-Spectrum- and AmpC β-Lactamase-Producing Enterobacteriaceae Collected in the INFORM Global Surveillance Study from 2012 to 2014. Antimicrob. Agents Chemother. 2016, 60, 2849–2857. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.W.; de Jonge, B.L.M.; Kazmierczak, K.M.; Karlowsky, J.A.; Sahm, D.F. In Vitro Susceptibility of Global Surveillance Isolates of Pseudomonas aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014). Antimicrob. Agents Chemother. 2016, 60, 4743–4749. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; Biedenbach, D.J.; Hackel, M.; Rabine, S.; de Jonge, B.L.M.; Bouchillon, S.K.; Sahm, D.F.; Bradford, P.A. Global Dissemination of bla KPC into Bacterial Species beyond Klebsiella pneumoniae and in vitro Susceptibility to Ceftazidime-Avibactam and Aztreonam-Avibactam. Antimicrob. Agents Chemother. 2016, 60, 4490–4500. [Google Scholar] [CrossRef] [Green Version]
- Chalhoub, H.; Sáenz, Y.; Nichols, W.W.; Tulkens, P.M.; Van Bambeke, F. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. Int. J. Antimicrob. Agents 2018, 52, 697–701. [Google Scholar] [CrossRef]
- Nelson, K.; Hemarajata, P.; Sun, D.; Rubio-Aparicio, D.; Tsivkovski, R.; Yang, S.; Sebra, R.; Kasarskis, A.; Nguyen, H.; Hanson, B.M.; et al. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity. Antimicrob. Agents Chemother. 2017, 61, e00989-17. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M.; Warner, M.; Jamrozy, D.; Mushtaq, S.; Nichols, W.W.; Mustafa, N.; Woodford, N. In vitro Selection of Ceftazidime-Avibactam Resistance in Enterobacteriaceae with KPC-3 Carbapenemase. Antimicrob. Agents Chemother. 2015, 59, 5324–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanheira, M.; Mendes, R.E.; Sader, H.S. Low Frequency of Ceftazidime-Avibactam Resistance among Enterobacteriaceae Isolates Carrying blaKPC Collected in U.S. Hospitals from 2012 to 2015. Antimicrob. Agents Chemother. 2017, 61, e02369-16. [Google Scholar] [CrossRef] [Green Version]
- Gaibani, P.; Campoli, C.; Lewis, R.E.; Volpe, S.L.; Scaltriti, E.; Giannella, M.; Pongolini, S.; Berlingeri, A.; Cristini, F.; Bartoletti, M.; et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J. Antimicrob. Chemother. 2018, 73, 1525–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2016, 63, 1615–1618. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Car-bapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giddins, M.J.; Macesic, N.; Annavajhala, M.K.; Stump, S.; Khan, S.; McConville, T.H.; Mehta, M.; Gomez-Simmonds, A.; Uhlemann, A.-C. Successive Emergence of Ceftazidime-Avibactam Resistance through Distinct Genomic Adaptations in blaKPC-3-Harboring Klebsiella pneumoniae Sequence Type 307 Isolates. Antimicrob. Agents Chemother. 2018, 62, e02101-17. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Rapid Risk Assessment: Emergence of Resistance to Ceftazidime-Avibactam in Carbapenem-Resistant Enterobacteriaceae. Available online: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-emergence-resistance-ceftazidime-avibactam-carbapenem (accessed on 10 May 2023).
- Hobson, C.A.; Cointe, A.; Jacquier, H.; Choudhury, A.; Magnan, M.; Courroux, C.; Tenaillon, O.; Bonacorsi, S.; Birgy, A. Cross-resistance to cefiderocol and ceftazidime–avibactam in KPC β-lactamase mutants and the inoculum effect. Clin. Microbiol. Infect. 2021, 27, 1172.e7–1172.e10. [Google Scholar] [CrossRef]
- Allergan. AVYCAZ (Ceftazidime and Avibactam) for Injection, for Intravenous Use. Available online: https://www.rxabbvie.com/pdf/avycaz_pi.pdf (accessed on 10 May 2023).
- Pfizer. Summary of Product Characteristics: Zavicefta 2 g/0.5 g Powder for Concentrate for Solution for Infusion. Available online: https://www.ema.europa.eu/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 10 May 2023).
- Sader, H.; Huband, M.; Duncan, L.R.; Flamm, R.K. Ceftazidime–Avibactam Antimicrobial Activity and Spectrum When Tested Against Gram-negative Organisms from Pediatric Patients. Pediatr. Infect. Dis. J. 2018, 37, 549–554. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Riccobene, T.; Debabov, D. Antimicrobial Activity of Ceftazidime-Avibactam Against Contemporary Pathogens from Urinary Tract Infections and Intra-abdominal Infections Collected from US Children During the 2016–2019 INFORM Surveillance Program. Pediatr. Infect. Dis. J. 2021, 40, 338–343. [Google Scholar] [CrossRef]
- Bradley, J.S.; Armstrong, J.; Arrieta, A.; Bishai, R.; Das, S.; Delair, S.; Edeki, T.; Holmes, W.C.; Li, J.; Moffett, K.S.; et al. Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients. Antimicrob. Agents Chemother. 2016, 60, 6252–6259. [Google Scholar] [CrossRef] [Green Version]
- Franzese, R.C.; McFadyen, L.; Watson, K.J.; Riccobene, T.; Carrothers, T.J.; Vourvahis, M.; Chan, P.L.; Raber, S.; Bradley, J.S.; Lovern, M. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin. Pharmacol. Ther. 2021, 111, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Franzese, R.; Riccobene, T.; Carrothers, T.; Vourvahis, M.; Winter, E.; Lovern, M.; McFadyen, L. Population Pharmacokinetic Modeling for Ceftazidime-Avibactam Renal Dose Adjustments in Pediatric Patients 3 months and Older. Clin. Pharmacol. Ther. 2022, 113, 182–195. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Evaluation of Pharmacokinetics, Safety, and Tolerability of Ceftazidime-Avibactam in Neonates and Infants. (NOOR). Identifier: NCT04126031. Available online: https://clinicaltrials.gov/ct2/show/NCT04126031 (accessed on 10 May 2023).
- Perruccio, K.M.; D’amico, M.R.; Baretta, V.; Onofrillo, D.; Carraro, F.; Calore, E.; Muggeo, P.; Colombini, A.; Zama, D.; Meazza, C.; et al. Ceftolozane/Tazobactam and Ceftazidime/Avibactam: An Italian Multi-center Retrospective Analysis of Safety and Efficacy in Children With Hematologic Malignancies and Multi-drug Resistant Gram-negative Bacteria Infections. Pediatr. Infect. Dis. J. 2022, 41, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, Q.; Liu, L.; Xiao, Y.; Ji, P.; Du, H.; Wang, S.; Zheng, Y.; Yang, Q. Ceftazidime-Avibactam Treatment for Severe Post-Neurosurgical Meningitis and Abscess Caused by Extended-Spectrum β-Lactamase Escherichia coli in a Pediatric Patient: A Case Report. Infect. Drug Resist. 2023, 16, 1905–1911. [Google Scholar] [CrossRef]
- Almangour, T.A.B.; Alsubaie, S.; Ghonem, L.M.; Almohaini, H.A.; Bakheet, H.M.; Altweijri, I.F. Ceftazidime-avibactam for the Treatment of Multidrug-resistant Pseudomonas aeruginosa Central Nervous System Infection in Pediatric Patient: A Case Report. Pediatr. Infect. Dis. J. 2022, 41, 436–438. [Google Scholar] [CrossRef]
- Tamma, P.D.; Fan, Y.; Bergman, Y.; Sick-Samuels, A.C.; Hsu, A.J.; Timp, W.; Simner, P.J.; Prokesch, B.C.; Greenberg, D.E. Successful Treatment of Persistent Burkholderia cepacia Complex Bacteremia with Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2018, 62, e02213-17. [Google Scholar] [CrossRef] [Green Version]
- Alamarat, Z.I.; Babic, J.; Tran, T.T.; Wootton, S.H.; Dinh, A.Q.; Miller, W.R.; Hanson, B.; Wanger, A.; Gary, J.L.; Arias, C.A.; et al. Long-Term Compassionate Use of Cefiderocol To Treat Chronic Osteomyelitis Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae in a Pediatric Patient. Antimicrob. Agents Chemother. 2020, 64, e01872-19. [Google Scholar] [CrossRef] [Green Version]
- Coskun, Y.; Atici, S. Successful Treatment of Pandrug-resistant Klebsiella pneumoniae Infection With Ceftazidime-avibactam in a Preterm Infant. Pediatr. Infect. Dis. J. 2020, 39, 854–856. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Zhang, Y.; Zeng, L.; Kong, H.; Bai, X.; Zhang, W.; Liang, T. Ceftazidime-Avibactam as Salvage Therapy in Pediatric Liver Transplantation Patients with Infections Caused by Carbapenem-Resistant Enterobacterales. Infect. Drug Resist. 2022, 15, 3323–3332. [Google Scholar] [CrossRef]
- Bradley, J.S.; Roilides, E.; Broadhurst, H.; Cheng, K.; Huang, L.-M.; MasCasullo, V.; Newell, P.; Stone, G.G.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime–Avibactam in the Treatment of Children ≥3 Months to <18 Years With Complicated Urinary Tract Infection: Results from a Phase 2 Randomized, Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, 920–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davido, B.; Fellous, L.; Lawrence, C.; Maxime, V.; Rottman, M.; Dinh, A. Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy To Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01008-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, E.; Rombauts, A.; Tubau, F.; Padullés, A.; Càmara, J.; Lozano, T.; Cobo-Sacristán, S.; Sabé, N.; Grau, I.; Rigo-Bonnin, R.; et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J. Antimicrob. Chemother. 2017, 73, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase–Producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef]
- Hobson, C.A.; Bonacorsi, S.; Fahd, M.; Baruchel, A.; Cointe, A.; Poey, N.; Jacquier, H.; Doit, C.; Monjault, A.; Tenaillon, O.; et al. Successful Treatment of Bacteremia Due to NDM-1-Producing Morganella morganii with Aztreonam and Ceftazidime-Avibactam Combination in a Pediatric Patient with Hematologic Malignancy. Antimicrob. Agents Chemother. 2019, 63, e02463-18. [Google Scholar] [CrossRef] [Green Version]
- Cowart, M.C.P.; Ferguson, C.L.P. Optimization of Aztreonam in Combination With Ceftazidime/Avibactam in a Cystic Fibrosis Patient With Chronic Stenotrophomonas maltophilia Pneumonia Using Therapeutic Drug Monitoring: A Case Study. Ther. Drug Monit. 2020, 43, 146–149. [Google Scholar] [CrossRef]
- Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Aitken, S.L.; A Bonomo, R.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Novelli, A.; Del Giacomo, P.; Rossolini, G.M.; Tumbarello, M. Meropenem/vaborbactam: A next generation β-lactam β-lactamase inhibitor combination. Expert Rev. Anti-Infect. Ther. 2020, 18, 643–655. [Google Scholar] [CrossRef]
- Castanheira, M.; Huband, M.D.; Mendes, R.E.; Flamm, R.K. Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00567-17. [Google Scholar] [CrossRef] [Green Version]
- Hackel, M.A.; Lomovskaya, O.; Dudley, M.N.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Meropenem-Vaborbactam against Clinical Isolates of KPC-Positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e01904-17. [Google Scholar] [CrossRef] [Green Version]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Quale, J.; Landman, D. Activity of Meropenem Combined with RPX7009, a Novel β-Lactamase Inhibitor, against Gram-Negative Clinical Isolates in New York City. Antimicrob. Agents Chemother. 2015, 59, 4856–4860. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.S.; Pogue, J.M.; Mills, J.P.; Kaye, K.S.; Samonis, G.; Maraki, S.; I Rafailidis, P.; Kapaskelis, A.; Kastoris, A.C.; E Falagas, M.; et al. Meropenem–vaborbactam: A new weapon in the war against infections due to resistant Gram-negative bacteria. Futur. Microbiol. 2018, 13, 971–983. [Google Scholar] [CrossRef]
- Vabomere (Meropenem and Vaborbactam) for Injection. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209776lbl.pdf (accessed on 10 May 2023).
- Vaborem-Epar-Product-Information. Available online: https://www.ema.europa.eu/en/documents/product-information/vaborem-epar-product-information_en.pdf (accessed on 10 May 2023).
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem–Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Hanretty, A.M.; Kaur, I.; Evangelista, A.T.; Moore, W.S.; Enache, A.; Chopra, A.; Cies, J.J. Pharmacokinetics of the Meropenem Component of Meropenem-Vaborbactam in the Treatment ofKPC-Producing Klebsiella pneumoniae Bloodstream Infection in a Pediatric Patient. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, e87–e91. [Google Scholar] [CrossRef]
- Gainey, A.B.; Burch, A.; Brownstein, M.J.; Brown, D.E.; Fackler, J.; Bs, B.H.; Biswas, B.; Bivens, B.N.; Malagon, F.; Daniels, R. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr. Pulmonol. 2020, 55, 2990–2994. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Dose-Finding, Pharmacokinetics, and Safety of VABOMERE in Pediatric Subjects with Bacterial Infections (TANGOKIDS). Identifier: NCT02687906. Available online: https://clinicaltrials.gov/ct2/show/NCT02687906 (accessed on 10 May 2023).
- Smith, J.R.; Rybak, J.M.; Claeys, K.C. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam–β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1303–1308. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem–Relebactam and Meropenem–Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.D.; Bethel, C.R.; Alsop, J.; Becka, S.A.; Rutter, J.D.; Papp-Wallace, K.M.; Bonomo, R.A. Inactivation of the Pseudomonas-Derived Cephalosporinase-3 (PDC-3) by Relebactam. Antimicrob. Agents Chemother. 2018, 62, e02406-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of Imipenem with Relebactam against Gram-Negative Pathogens from New York City. Antimicrob. Agents Chemother. 2015, 59, 5029–5031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asempa, T.E.; Nicolau, D.P.; Kuti, J.L. In Vitro Activity of Imipenem-Relebactam Alone or in Combination with Amikacin or Colistin against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00997-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.; Painter, R.E.; Raghoobar, S.L.; Hairston, N.N.; Racine, F.; Wisniewski, D.; Balibar, C.J.; Villafania, A.; Zhang, R.; Sahm, D.F.; et al. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC Microbiol. 2019, 19, 150. [Google Scholar] [CrossRef]
- Lob, S.H.; Hackel, M.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program). Antimicrob. Agents Chemother. 2017, 61, e02209-16. [Google Scholar] [CrossRef] [Green Version]
- Tooke, C.L.; Hinchliffe, P.; Lang, P.A.; Mulholland, A.J.; Brem, J.; Schofield, C.J.; Spencer, J. Molecular Basis of Class A β-Lactamase Inhibition by Relebactam. Antimicrob. Agents Chemother. 2019, 63, e00564-19. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Wiebe, R.; Dilay, L.; Thomson, K.; Rubinstein, E.; Hoban, D.J.; Noreddin, A.M.; A Karlowsky, J. Comparative Review of the Carbapenems. Drugs 2007, 67, 1027–1052. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. In-vitro activity of imipenem/relebactam and key β-lactam agents against Gram-negative bacilli isolated from lower respiratory tract infection samples of intensive care unit patients—SMART Surveillance United States 2015–2017. Int. J. Antimicrob. Agents 2019, 55, 105841. [Google Scholar] [CrossRef]
- RECARBRIO™ (Imipenem, Cilastatin, and Relebactam) for Injection, for Intravenous Use. Initial U.S. Approval: 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212819s002lbl.pdf (accessed on 10 May 2023).
- European Medicines Agency. Recarbrio (Imipenem/Cilastatin/Relebactam)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/recarbrio-epar-product-information_en.pdf (accessed on 10 May 2023).
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients with Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Gonzalez, D.R.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults With Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef]
- Bradley, J.S.; Makieieva, N.; Tøndel, C.; Roilides, E.; Kelly, M.S.; Patel, M.; Vaddady, P.; Maniar, A.; Zhang, Y.; Paschke, A.; et al. 1159. Pharmacokinetics, Safety, and Tolerability of Imipenem/Cilastatin/Relebactam in Pediatric Participants With Confirmed or Suspected Gram-negative Bacterial Infections: A Phase 1b, Open-label, Single-Dose Clinical Trial. Open Forum Infect. Dis. 2021, 8, S671. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Safety, Tolerability, Efficacy and Pharmacokinetics of Imipenem/Cilastatin/Relebactam (MK-7655A) in Pediatric Participants with Gram Negative Bacterial Infection (MK-7655A-021). Identifier: NCT03969901. Available online: https://clinicaltrials.gov/ct2/show/NCT03969901 (accessed on 10 May 2023).
- El-Lababidi, R.M.; Rizk, J.G. Cefiderocol: A Siderophore Cephalosporin. Ann. Pharmacother. 2020, 54, 1215–1231. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Lupia, T.; Andriani, L.; Campanile, F.; Carcione, D.; Corcione, S.; De Rosa, F.G.; Luzzati, R.; Stroffolini, G.; Steyde, M.; et al. Microbiological, Clinical, and PK/PD Features of the New Anti-Gram-Negative Antibiotics: β-Lactam/β-Lactamase Inhibitors in Combination and Cefiderocol—An All-Inclusive Guide for Clinicians. Pharmaceuticals 2022, 15, 463. [Google Scholar] [CrossRef]
- Malik, S.; Kaminski, M.; Landman, D.; Quale, J. Cefiderocol Resistance in Acinetobacter baumannii: Roles of β-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrob. Agents Chemother. 2020, 64, e01221-20. [Google Scholar] [CrossRef] [PubMed]
- FETROJA (Cefiderocol) for Injection, for Intravenous Use. Initial U.S. Approval: 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/209445s004lbl.pdf (accessed on 10 May 2023).
- European Medicines Agency. Fetcroja (Cefiderocol)—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja (accessed on 10 May 2023).
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2020, 21, 213–225. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs 2021, 81, 1559–1571. [Google Scholar] [CrossRef]
- Nakamura, R.; Ito-Horiyama, T.; Takemura, M.; Toba, S.; Matsumoto, S.; Ikehara, T.; Tsuji, M.; Sato, T.; Yamano, Y. In vivo Pharmacodynamic Study of Cefiderocol, a Novel Parenteral Siderophore Cephalosporin, in Murine Thigh and Lung Infection Models. Antimicrob. Agents Chemother. 2019, 63, e02031-18. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65, 01437-20. [Google Scholar] [CrossRef]
- Monari, C.; Spagnuolo, F.; Pisaturo, M.; Ascione, S.; Donnarumma, G.; Calò, F.; Caredda, E.; Montella, F.; Maietta, A.; Montaldo, P.; et al. Bloodstream Infection Due to a VIM-Metallo-β-Lactamase-Producing Klebsiella pneumoniae Treated with Cefiderocol in a Preterm Newborn. Infect. Dis. Ther. 2023, 12, 727–734. [Google Scholar] [CrossRef]
- Hsu, A.J.; Simner, P.J.; Bergman, Y.; Mathers, A.J.; Tamma, P.D. Successful Treatment of Persistent Stenotrophomonas maltophilia Bacteremia with Cefiderocol in an Infant. Open Forum Infect. Dis. 2023, 10, ofad174. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. A Study to Assess the Safety, Tolerability, and Pharmacokinetics of Cefiderocol in Hospitalized Pediatric Participants. 2020 ClinicalTrials.gov Identifier: NCT04335539. Available online: https://clinicaltrials.gov/ct2/show/NCT04335539 (accessed on 10 May 2023).
- ClinicalTrials.gov. A Study to Assess the Safety, Tolerability, and Pharmacokinetics of Cefiderocol in Hospitalized Pediatric Participants. Identifier: NCT04215991. Available online: https://clinicaltrials.gov/ct2/show/NCT04215991?term=cefiderocol&draw=2&rank=10 (accessed on 10 May 2023).
- Chiotos, K.; Han, J.H.; Tamma, P.D. Carbapenem-Resistant Enterobacteriaceae Infections in Children. Curr. Infect. Dis. Rep. 2015, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Madney, Y.; Aboubakr, S.; Khedr, R.; Hafez, H.; Ahmed, N.; Elsheshtawy, K.; Elanany, M.; Salahelden, A.; Shalaby, L.; Behairy, O.G. Carbapenem-Resistant Enterobacteriaceae (CRE) among Children with Cancer: Predictors of Mortality and Treatment Outcome. Antibiotics 2023, 12, 405. [Google Scholar] [CrossRef] [PubMed]
- Tripiciano, C.; Romani, L.; Mercadante, S.; Cursi, L.; Di Giuseppe, M.; Carducci, F.I.C.; Fragasso, T.; Di Chiara, L.; Garisto, C.; Sisto, A.; et al. The Prevalence of Carbapenemase-Producing Microorganisms and Use of Novel Cephalosporins for the Treatment of Severe Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria in a Pediatric Cardiac Intensive Care Unit. Antibiotics 2023, 12, 796. [Google Scholar] [CrossRef] [PubMed]
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J. Pediatr. Infect. Dis. Soc. 2020, 9, 56–66. [Google Scholar] [CrossRef]
- Hsu, A.J.; Tamma, P.D. Treatment of Multidrug-Resistant Gram-Negative Infections in Children. Clin. Infect. Dis. 2014, 58, 1439–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
β-Lactam Agent | Trials under Investigation | ||||
---|---|---|---|---|---|
Study | Population | Investigated Dose | Status | Completion Date * | |
Ceftolozane/tazobactam | Safety and Pharmacokinetics of Ceftolozane/Tazobactam in Pediatric Participants With Nosocomial Pneumonia (MK-7625A-036) (NCT04223752) | Infants and children from birth to <18 years of age with nosocomial pneumonia | >12 to <18 years of age: 2/1 g over a 60 min <12 years of age: 40/20 mg/kg over a 60 min | Recruiting | September 2025 |
Ceftazidime/avibactam | Evaluation of Pharmacokinetics, Safety, and Tolerability of Ceftazidime-Avibactam in Neonates and Infants (NOOR) (NCT04126031) | Neonates and infants aged 26 weeks post-menstrual age to <3 months (participants enrolled n = 48) | NA | Terminated due to sponsor decision | NA |
Safety and Tolerability of Ceftazidime-Avibactam for Pediatric Patients With Suspected or Confirmed Infections (NCT01893346) | Children from 3 months of age to <18 years (participants enrolled n = 35) | >12 to <18 years: 2/0.5 g >6 to <12 years: 2/0.5 g (>40 kg), 50/12.5 mg/kg (<40 kg) >3 months to <6 years: 50/12.5 mg/kg | Completed | NA | |
Meropenem/vaborbactam | Dose-Finding, Pharmacokinetics, and Safety of Vabomere in Pediatric Subjects With Bacterial Infections (TANGOKIDS) (NCT02687906) | From birth to less than 18 years of age with serious bacterial infections | >3 months to <12 years: 60 m/kg >6 years to <18 years: 40 mg/kg Birth to <3 months: TBD 2 to <12 years: <35 kg 80 mg/kg | Recruiting | December 2023 |
Imipenem/relebactam | Safety, Tolerability, Efficacy and Pharmacokinetics of Imipenem/Cilastatin/Relebactam (MK-7655A) in Pediatric Participants With Gram-Negative Bacterial Infection (NCT03969901) | From birth to less than 18 years of age with confirmed or suspected Gram-negative bacterial infection | 12 to <18 years: 500/250 mg q6h hours over 30 min 3 months to <2 years: 15/7.5 mg/kg, q6h over 30 min Birth to <3 month: 15/7.5 mg/kg q8h over 30 min | Recruiting | February 2024 |
Imipenem/Cilastatin/Relebactam Pharmacokinetics, Safety, and Outcomes in Adults and Adolescents With Cystic Fibrosis | 12 years and older | Adolescents: 15/7.5 mg/kg q6h over 30 min | Recruiting | December 2023 | |
Cefiderocol | A Study to Assess the Safety, Tolerability, and Pharmacokinetics of Cefiderocol in Hospitalized Pediatric Participants (NCT04215991) | Single-dose phase: 3 months to less than 12 years with suspected or confirmed aerobic Gram-negative bacterial infections Multiple-dose phase: 3 months to less than 18 years with cUTI, HABP, or VABP | Single-dose phase: <34 kg 60 mg/kg; >34 kg 2 g over 3 h Multiple-dose phase: <34 kg 60 mg/kg; >34 kg 2 g q8h over 3 h | Recruiting | June 2024 |
Study | Study Design | Population | Infection | C/A MIC (μg/mL) | C/A Dosage and Duration | TDM (μg/mL) | AEs | Outcomes |
---|---|---|---|---|---|---|---|---|
Bradley et al. [98] | Single-blind, randomized, phase 2 study C/A compared with cefepime | Hospitalized children ≥3 months to <18 years with cUTI (C/A n = 67 cefepime n = 28) | cUTI, including acute pyelonephritis E. coli (90.7%) | NA | C/A doses q8h over 2 h: ≥3 months to <6 months: 40/10 mg/kg ≥6 months to <18 year (<40 kg): 50/12.5 mg/kg ≥6 years to <18 years (>40 kg): 2/0.5 g In the case of CrCl (≥30 to <50 mL/min): 50% dose reduction | Median values at 15 min 0.5–1.5 h 5–6 h C/A 78.35/13.20 47.10/6.88 6.91/0.88 | Overall incidence: 53.7% (36/67) C/A 53.6% (15/28) cefepime | Favorable clinical response at TOC (mMITT): 88.9% (48/54) C/A 82.6% (19/23) cefepime |
Bradley et al. [99] | Single-blind, randomized, phase 2 study C/A + MTZ compared with meropenem | ≥3 months to <18 years with cIAI (C/A n = 61 meropenem n = 22) | cIAI: Most frequent origin: appendiceal perforation (85.2%) Most frequent pathogens: E. coli (84%) and P. aeruginosa (28%) | NA | C/A doses q8h over 2 h + MTZ q8h over 30 min ≥3 months to <6 months: 40/10 mg/kg ≥6 months to <18 years (<40 kg): 50/12.5 mg/kg ≥6 years to <18 years (>40 kg): 2/0.5 g In the case of CrCl (≥30 to <50 mL/min): 50% dose reduction | Median values at 15 min 0.5–1.5 h 5–6 h C/A 62.3/12.4 39.45/7.33 4.42/0.67 | Overall incidence: 52.5% (32/61) C/A + MTZ 59.1% (13/22) meropenem | Favorable clinical response at TOC (ITT): 91.8% (56/61) C/A + MTZ 95.5% (21/22) meropenem |
Peruccio et al. [66] | Retrospective, observational study | Children with hematological malignancies (n = 21) (subgroup patient characteristics NA) | MDR Gram-negative infections (subgroup microbiological characteristics NA) | NA | 50/12.5 mg/kg q8h for a median of 14 days (range 6–19 days) | NA | Subgroup description of AEs NA | Subgroup outcome analysis NA |
Wang et al. [97] | Retrospective, observational study | Children with liver transplant (n = 6) | Intraperitoneal infections (6/6) and BSI (5/6) CR-K. pneumonia (6/6) CR-E. coli (1/6) | K. pneumonia: 1 (4/6), 2 (2/6) E.Coli: NA | 50/12.5 mg/kg q8h | NA | Vomiting (1/6), skin rash (1/6), increase in γ-GT (2/6) or ALP (3/6) | Clinical and microbiological resolution (6/6) |
Iosifidis et al. [91] | Case series | Patients aged from 13 days to 4.5 years (n = 8) | XDR or PDR K. pneumoniae infections Possible or proven BSI (7/8) | Etest: 0.75 (n = 5) Disk: 17 mm (n = 1), 20 mm (n = 1), 22 mm (n = 2) | 50/12.5 mg/kg q8h (n = 7) 25/6.25 mg/kg q8h due to AKI and CVVH (n = 1) | NA | No serious AEs, discontinuation or dose modification due to any AEs. | Clinical microbiologic and response (n = 8/8) |
Alamarat et al. [95] | Case report | 15-year-old male with chronic osteomyelitis | XDR-P. aeruginosa and ESBL-producing K. pneumoniae | P. aeruginosa >256 K. pneumonia 0.38 | 2/0.5 g q8h + ATM 2 g q8h | NA | None | Clinical and microbiological failure and switch to cefiderocol |
Hobson et al. [100] | Case report | 3-year-old female with relapse of LAL | NDM-1-producing Morganella morganii | C/A > 256 ATM: 4 C/A + ATM 0.016 | 120/30 mg/kg/day + ATM 100 mg/kg/day | NA | NA | Clinical and microbiological resolution |
Cowart et al. [101] | Case report | 11-year-old female with cystic fibrosis | S. maltophilia pulmonary exacerbation | C/A >256 μg/mL ATM >256 μg/mL C/A + ATM 8 μg/mL | 150/37.5 mg/kg/day over 2 h + ATM 200 mg/kg/day over 3 h After TDM adjustments: 200/50 mg/kg/day in CI + ATM 200 mg/kg/day | 1 h after bolus: C 6 ATM 67.6 CI: C 50.2 ATM 96.5 | None | Improvement of symptoms and lung examination observed but a progressive decline in lung function persisted |
Ren et al. [92] | Case report | 4-year-old female with intracranial SOL | ESBL-E. coli post-neurosurgical meningitis and abscess | <0.125 | 1/0.25 g q8h for 45 days + meropenem | CSF post-infusion 3 h: 15.6/4 5 h: 7.1/2.1 7 h: 3.5/2.1 Serum post-infusion: 3 h 57/11.3 5 h 25.8/4.5 | None | Clinical and microbiological resolution |
Tamma et al. [94] | Case report | 2-month female infant with congenital diaphragmatic hernia surgically repaired | Burkholderia cepacia complex BSI | 2 | 120/30 mg/kg/day in CI for 6 weeks | NA | None | Clinical and microbiological resolution |
Coskun et al. [96] | Case report | 25-day-old preterm neonate (27 gestational weeks) | XDR-K. pneumoniae urinary tract infection | NA | 50/12.5 mg/kg q8h for 10 days | NA | Glycosuria | Clinical and microbiological resolution |
Almangour et al. [93] | Case report | 2-year-old male delivered at 26 weeks with hydrocephalus | MDR-P. aeruginosa infection of the ventriculoperitoneal shunt | 2 | 50/12.5 mg/kg/dose q8h for 21 days + IVT colistin for 14 days | NA | None | Clinical and microbiological resolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venuti, F.; Romani, L.; De Luca, M.; Tripiciano, C.; Palma, P.; Chiriaco, M.; Finocchi, A.; Lancella, L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023, 11, 1798. https://doi.org/10.3390/microorganisms11071798
Venuti F, Romani L, De Luca M, Tripiciano C, Palma P, Chiriaco M, Finocchi A, Lancella L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms. 2023; 11(7):1798. https://doi.org/10.3390/microorganisms11071798
Chicago/Turabian StyleVenuti, Francesco, Lorenza Romani, Maia De Luca, Costanza Tripiciano, Paolo Palma, Maria Chiriaco, Andrea Finocchi, and Laura Lancella. 2023. "Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review" Microorganisms 11, no. 7: 1798. https://doi.org/10.3390/microorganisms11071798
APA StyleVenuti, F., Romani, L., De Luca, M., Tripiciano, C., Palma, P., Chiriaco, M., Finocchi, A., & Lancella, L. (2023). Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms, 11(7), 1798. https://doi.org/10.3390/microorganisms11071798